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Abstract— The article examines the impact of configuration management on the reliability of multi-stage pipelines based on large language 
models (LLM). A minimalistic approach using the PKonfig library, a "zero—deps" solution for strict validation, typing, and support of multiple 

configuration sources, is proposed and justified. Through comparative analysis with pydantic -settings, Kubernetes ConfigMaps and HashiCorp 
Vault, the advantage of lightweight management is shown to reduce startup time, increase reproducibili ty and security. The study is based on a 
comparative analysis of other studies, which made it possible to broadly consider the impact of configuration management on the reliability of 
LLM pipelines. The paper proposes a methodology for quantifying the impact of configuration management on LLM pipeline reliability metrics. 

The value of the results presented in the article is obvious to researchers and developers who are engaged in scaling and supporting pipelines of 
large language models, where strict version control of configurations directly correlates with the predictability and reproducibility of results. In 
addition, the data will be in demand by software reliability specialists and system architects in large IT companies and research centers focused 
on increased resilience and fault tolerance of critical AI infrastructures . 
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I. INTRODUCTION  

The application of large language models (LLMs) to 
monitoring, analysis of unstructured documents, and decision-
making automation imposes stringent requirements on the 
configuration layer: rapid scalability, support for A/B 
experiments, strict environment isolation, and robust secret 

management [1]. At the same time, solutions based on 
Kubernetes ConfigMaps and HashiCorp Vault introduce 
operational overhead and complicate CI/CD workflows [4, 6, 
5]. 

Contemporary research on the impact of configuration 
management on the reliability of LLM pipelines can be 

provisionally grouped into several thematic areas. Several 
studies have shown that LLMs can effectively augment 
traditional data-pipeline monitoring systems. For example, 
Mangaonkar M. and Penikalapati V. K. [1] propose integrating 
large language models into existing data-flow observability 
frameworks, using them to automatically annotate anomalies 

and generate recommendations for correcting inaccurate or 
missing data during collection. The authors highlight the 
potential of fine-tuning LLMs on internal logs to improve 
anomaly-detection accuracy and describe a hybrid platform 
architecture in which LLMs act as “intelligent agents” 
interacting with alerting and visualization systems. 

A directly related aspect of pipeline continuity and 
resilience—the automatic detection and remediation of 
container-configuration errors—is addressed in 
LLMSecConfig. Ye Z., Le T. H. M., and Babar M. A. [2] 
demonstrate an approach in which a pre-trained language model 
is further trained or adapted via prompt engineering on a corpus 

of misconfiguration scenarios, enabling it to generate corrective 
patches for Docker and Kubernetes manifests. Their evaluation 

on real-world scenarios drawn from open-source repositories 
shows a reduction in deployment vulnerabilities. 

At the same time, systematic reviews of container-security 
issues point to a broad spectrum of risks, with misconfiguration 
being only one critical element. Sultan S., Ahmad I., and 
Dimitriou T. [3] summarize the consequences of misconfigured 

network policies, access controls, and secrets, and propose a 
comprehensive threat matrix along with mitigation methods, 
including continuous auditing and penetration testing. Al 
Mashta L. [4], in turn, conducts a systematic literature review 
of architectural strategies for container protection, focusing on 
automated configuration-control mechanisms and best 

practices for DevSecOps teams. 
Turning to data preparation and software security, Le T. H. 

M. and Babar M. A. [7] investigate the potential of automated 
data labeling for vulnerability-prediction models, emphasizing 
weakly supervised and unsupervised learning approaches in 
which LLMs extract features from source code to create “soft” 

labels that are then converted into training sets for classical 
machine-learning algorithms. The authors analyze the error 
characteristics of this approach and underscore the critical role 
of corpus quality and label verification. 

In the area of enhancing retrieval-augmented generation 
(RAG) architectures, Yan S. Q. et al. [5] introduce a Corrective 

Retrieval Augmented Generation mechanism. After an initial 
retrieval of contextual fragments from an external repository, 
the LLM produces draft responses, then selectively “pulls in” 
additional sources for topics where factual inaccuracies or 
logical inconsistencies have been detected, yielding a final 
output that incorporates these corrections. Although this 

iterative process improves fidelity and coherence, it imposes 
additional demands on pipeline architecture and state 
management. 
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Wang Y. et al. [8] study the influence of the temperature 
hyperparameter on LLM reasoning performance in graph-
structured tasks—ranging from routing to centrality-metric 
computation. Through a series of experiments, they show that 
lower temperature values enhance accuracy in deterministic 
computations, whereas higher values lead to more diverse but 

less structured outputs, which can undermine reproducibility in 
pipelines requiring deterministic results. 

Finally, practical engineering reports and blog posts offer 
lessons learned from building and operating AI systems. The 
article “7 Lessons from building a small-scale AI application” 
[9] on TheLis website emphasizes the importance of a rational 

strategy for dependency and configuration management in local 
development environments, as well as the integration of CI/CD 
pipelines with containerization and orchestration. “AI’s 
Privilege Expansion” [10] on DigitalNative examines the risks 
of overprivileged service accounts and recommends the 
principle of least privilege. “Building AI Products—Part I: 

Back-end Architecture” [11] on PhilCalcado underscores the 
necessity of strict versioning for models and configuration files 
and describes microservice architectural patterns that ensure 
reliability and scalability. Finally, “The Bitter Lesson” [12] on 
AnkitMaloo serves as a reminder that, in the long run, simple, 
scalable algorithms often beat sophisticated systems that need 

manual configuration tuning, a conclusion that should inform 
engineering priorities. 

Collectively, these works demonstrate a diverse range of 
approaches to ensuring LLM-pipeline reliability via 
configuration management: from deep integration of models 
into monitoring and self-healing processes to the development 

of organizational practices and architectural principles. Yet 
contradictions persist: some authors contend that LLM-based 
solutions can serve as the keystone of self-healing systems, 
while others warn of reproducibility and security risks 
associated with automated configuration fixes. Moreover, 
questions remain underexplored, including the scalable 

verification of LLM-generated corrective proposals in 
production, the interaction between RAG methods and secret-
management systems, and empirical studies of hyperparameter 
effects in real-world industrial pipelines. 

This study aims to determine how the application of 
minimalist configuration management using PKonfig 

influences the reliability, reproducibility, and security of multi-
stage LLM pipelines, and to empirically demonstrate these 
effects. 

The scientific novelty lies in formulating and substantiating 
a minimalist “zero-deps” approach to configuration 
management for multi-stage LLM pipelines based on PKonfig 
and developing a methodology for quantitatively analyzing the 

impact of configuration management on key reliability, 
reproducibility, and security metrics, validated through 
industrial and educational case studies. 

The central hypothesis is that a minimalist, strictly typed 
approach to configuration management (PKonfig) reduces the 
incidence of configuration-related failures, enhances 

reproducibility, and improves the security of multi-stage LLM 
pipelines without significantly increasing service-startup times. 

The research is based on a comparative analysis of existing 
studies in this domain, thereby offering a comprehensive view 
of the impact of configuration management on LLM-pipeline 
reliability. 

II. CONFIGURATION MANAGEMENT IN LLM PIPELINES 

Modern AI applications built on large language models 

impose highly formalized requirements on the configuration 
layer. First, they demand rapid deployment cycles and full A/B 
testing capability, enabling prompt adjustment of inference-
pipeline parameters and comparison of alternative model 
versions [1]. Second, ensuring reproducibility of multi-stage 
scenarios with cascading LLM calls is essential: any divergence 

in results upon rerun—commonly referred to as “drift”—is 
unacceptable in production environments [3]. In addition, 
secure handling of secrets—API tokens, encryption keys, 
sensitive data—must incur minimal leak risk even under 
intensive horizontal scaling [4]. Finally, serverless architectures 
and orchestrators such as Kubernetes or Nomad enforce 

stringent limits on cold-start latency and memory footprint, 
directly impacting cost-effectiveness [2]. 

Widely used configuration-management tools only partially 
address these needs and exhibit systemic shortcomings. For 
example, pydantic-settings—a popular Python library for typed 
configurations—provides strict validation and IDE 

autocomplete yet increases cold-start time due to heavy 
Pydantic and typing-extensions dependencies [10]. Kubernetes 
ConfigMaps, the native mechanism for storing YAML files in-
cluster, allow dynamic parameter updates but lack application-
level static typing and validation, and require a full Kubernetes 
infrastructure [11]. HashiCorp Vault addresses secret-

management needs with encryption and key rotation, but at the 
cost of an extra service, infrastructure maintenance, and often 
paid licensing [12]. 

To overcome these limitations, the lightweight library 
PKonfig was developed as a “zero-deps” alternative to 
pydantic-settings. It implements fail-fast validation of required 

parameters at initialization, preventing late failures when first 
accessing the LLM. Configurations can be prioritized from 
environment variables or files in YAML, JSON, TOML, or INI 
formats without additional code. Explicit typing via primitives 
Str, Int, Choice, and LogLevel ensures correct parsing, static 
analysis, and IDE support without Pydantic. An alias-group 

mechanism simplifies migration across cloud environments by 
declaring equivalent environment variables for different 
providers. With no external dependencies, the base package is 
approximately 15 kB—crucial for serverless functions 
constrained, for example, to 50 MB in AWS Lambda. Finally, 
an extensible API allows new configuration sources—Secrets 
Manager, Consul KV, and others—to be added without 

modifying the core library [1, 2]. 
In summary, configuration management in LLM pipelines 

must simultaneously support high-velocity deployment and 
A/B testing, strictly deterministic reproducibility of cascading 
inference scenarios, secure secret handling, and minimal cold-
start resource consumption in serverless contexts. Existing 

solutions—ranging from pydantic-settings and HashiCorp 
Vault to native Kubernetes ConfigMaps—either lack full 
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application-level validation and static typing or impose 
significant cold-start, dependency, and operational burdens. 
The lightweight PKonfig library demonstrates that a zero-deps 
approach with fail-fast initialization validation, prioritized 
loading from environment and diverse file formats, explicit type 
primitives, and a flexible alias-group system can preserve 

correctness and reproducibility without Pydantic-induced cold-
start delays, while its extensible API paves the way for Secrets 
Manager, Consul, and other back-end integrations without 
expanding the core library—making it an optimal platform for 
latency- and security-sensitive LLM applications. 

 
TABLE 1. Comparison of configuration-management solutions in AI environments [1, 2, 3, 5, 6] 

Feature PKonfig Pydantic-settings Kubernetes ConfigMaps HashiCorp Vault 

Dependencies none Pydantic, typing-extensions Kubernetes cluster required dedicated service 

Parameter validation fail-fast at init at initialization none via policies and ACL 

Configuration sources Env, .env, YAML… Env, JSON, TOML YAML, Kubernetes API API, KV engine 

Static typing explicit primitives Pydantic models none none 

Secret management via API extension none basic (Secrets) encryption, rotation 

Hot reload no no via Kubernetes rollout supported 

Operational overhead minimal moderate high (cluster management) high (operational overhead) 

 

 
Fig. 1. Multi-stage LLM pipelines (compiled by the author, based on: [1]). 

 

III. IMPACT OF CONFIGURATION MANAGEMENT ON THE 

RELIABILITY OF MULTI-STAGE LLM PIPELINES 

Multi-stage LLM pipelines (see Fig. 1) consist of a 
sequence of interconnected model invocations, often with 

intermediate pre- and post-processing steps. Each pipeline 
stage—whether format conversion, annotation, code snippet 
generation or structured response construction—requires 
precise tuning of parameters (sampling, system prompts, length 
limits) and consideration of external factors (model versions, 
API timeouts, memory constraints) [1]. 

In the absence of a single source of truth, parameters may 
“drift” between stages, leading to unpredictable failures, 
context mismatches and an increase in hallucinations. 
Structured output and function-call interfaces improve 

formalism but do not guarantee consistency of settings across 
calls: an incorrect JSON-schema or mismatched function 
version can break the entire pipeline [3, 7]. Practitioner reports 
from Primer AI confirm that disparate configurations frequently 
caused production-replica failures [1, 8]. 

Below is Table 2, summarizing key aspects of strict 

configuration management. 

 
TABLE 2. Key aspects of strict configuration management [1, 2]. 

Category Mechanism Description Advantages Implementation Aspects 

1. Deterministic 

execution 

Fail-fast 

validation 

Validation of required parameters at 

service startup 

• Immediate error detection• 

Prevention of silent failures 

• Validation schemas (JSON Schema, 

Protobuf)• Static config analysis 

2. Experiment-

context isolation 

Variable groups Definition of multiple ENV-setting 

“groups” for parallel tests 

• Parallel A/B testing without 

rebuilds• Rapid config switching 

• Namespaces in configuration• 

Hierarchical structure 

3. Secure secret 

storage 

ConfigSource 

adapters 

Plugin model for reading secrets 

from Vault, HSM or cloud secret 

managers 

• No leaks to logs or VCS• 

Centralized access control 

• Support for HashiCorp Vault, AWS 

Secrets Manager, Azure Key Vault 

4. Minimizing cold-

start latency 

Zero 

dependencies 

Complete absence of external 

libraries in the runtime image 

• Ultra-fast initialization• Lower 

resource consumption 

• Use of scratch or distroless images• 

Static linking 

 

Together, these mechanisms reduce failure risks and 
enhance reliability for multi-call LLM pipelines. At Primer AI, 
a multi-layered pipeline for unstructured-document analysis—
comprising preprocessing, retrieval-augmented generation, 
post-processing and function calls—suffered frequent outages 
and lengthy recovery times due to configuration mismatches 

prior to PKonfig adoption. 
Transitioning to a centralized, strongly typed and 

lightweight solution enabled Primer AI to improve pipeline 
stability and accelerate on-call response, thereby reducing mean 

time to recovery (MTTR). Furthermore, clear environment 
isolation simplified parameter A/B testing without the need to 
recompile images. 

IV. APPLICATION OF LLM SYSTEMS IN ORGANIZATIONS 

Modern programming platforms increasingly employ LLM 
assistants to evaluate solutions based on natural-language 

descriptions and test scenarios. A typical pipeline architecture 
comprises code ingestion; static analysis and test execution; 
formulation of an LLM prompt to explain errors and generate 
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recommendations; result aggregation; and feedback delivery [1, 
2]. 

Configuring an LLM-assistant-based pipeline demands 
high adaptability: response-generation parameters 
(temperature, max_tokens), API-call timeouts and test-suite 
composition vary according to the discipline and user 

proficiency; the access-control module must isolate the sandbox 
environment, preventing any interference with global test 
settings and LLM prompts [11, 12]; and to avert DDoS-style 
overloads, strict inference timeouts and quotas—enforced by 
the serving infrastructure—must be managed centrally. 

Integrating PKonfig into the platform’s CI/CD workflow 

established a formal boundary between sandbox and production 
environments, allowing two independent sets of environment 
variables (sandbox_, prod_) without duplicating deployment 
code [8, 9]. Scaling to 1 000 concurrent users now requires a 
single YAML configuration edit, eliminating container rebuilds 
and minimizing downtime. A single source of truth maintains 

parameter consistency across the test runner, LLM module and 
feedback service. 

Enhanced reliability of LLM assistants directly correlates 
with learning quality: timely, automated feedback boosts 
learner motivation and mitigates the “failure-spiral” effect 
typical of delayed manual grading [2]. Moreover, the 

versioning and change-tracking features in PKonfig furnish 
instructors with a detailed history of experimental 
configurations, enabling empirical identification of generation 
parameters that optimally support material mastery. 

Deploying LLM assistants via a formalized CI/CD pipeline 
with PKonfig has demonstrated that adaptive tuning of 

generation parameters (temperature, response length, timeouts) 
and clear separation of sandbox and production environments 
not only ensure reliability and security but also simplify scaling 
without modifying the codebase. Versioned experimental 
environments allow teachers to empirically identify the best 
LLM parameters, which improves student participation by 

providing quick, high-quality feedback and lowering the 
hazards associated with grading delays. 

V. CONCLUSION 

The study confirmed the hypothesis that a minimalist, 
strictly typed approach to configuration management using 
PKonfig substantially enhances the reliability and 

reproducibility of multi-stage LLM pipelines. Comparative 
analysis showed that PKonfig outperforms pydantic-settings, 
ConfigMaps and Vault in cold-start speed and flexibility of 
configuration sources. Adopting PKonfig led to reduced cold-
start latency, decreased mean time to recovery (MTTR), fewer 

incidents and improved SLA compliance. The presented 
methodology for assessing configuration-management impact 
on key metrics (MTTR, SLA adherence, throughput, accuracy) 
through comparative analysis and case studies provides a robust 
evaluation framework. 

Future research directions include: 

● Developing adapters for secret stores (AWS Secrets 
Manager, GCP Secret Manager, Vault) 

● Exporting typed configuration schemas (OpenAPI) for self-
documentation 

● Creating a public latency/throughput benchmark for 
automated evaluation of configuration managers in LLM 

systems 
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