
International Journal of Scientific Engineering and Science
Volume 9, Issue 5, pp. 178-181, 2025. ISSN (Online): 2456-7361

178

http://ijses.com/
All rights reserved

The Impact of Configuration Management on the

Reliability of LLM Pipelines

Nikita Gladkikh

Staff Software Engineer, Primer AI
Pittsburgh, Pennsylvania, USA

nikita.gladkikh@primer.ai

Abstract— The article examines the impact of configuration management on the reliability of multi-stage pipelines based on large language
models (LLM). A minimalistic approach using the PKonfig library, a "zero—deps" solution for strict validation, typing, and support of multiple

configuration sources, is proposed and justified. Through comparative analysis with pydantic -settings, Kubernetes ConfigMaps and HashiCorp
Vault, the advantage of lightweight management is shown to reduce startup time, increase reproducibili ty and security. The study is based on a
comparative analysis of other studies, which made it possible to broadly consider the impact of configuration management on the reliability of
LLM pipelines. The paper proposes a methodology for quantifying the impact of configuration management on LLM pipeline reliability metrics.

The value of the results presented in the article is obvious to researchers and developers who are engaged in scaling and supporting pipelines of
large language models, where strict version control of configurations directly correlates with the predictability and reproducibility of results. In
addition, the data will be in demand by software reliability specialists and system architects in large IT companies and research centers focused
on increased resilience and fault tolerance of critical AI infrastructures .

Keywords— Configuration management, reliability, multi-stage LLM pipelines, PKonfig, reproducibility, AI applications, minimalistic approach,
performance.

I. INTRODUCTION

The application of large language models (LLMs) to
monitoring, analysis of unstructured documents, and decision-
making automation imposes stringent requirements on the
configuration layer: rapid scalability, support for A/B
experiments, strict environment isolation, and robust secret

management [1]. At the same time, solutions based on
Kubernetes ConfigMaps and HashiCorp Vault introduce
operational overhead and complicate CI/CD workflows [4, 6,
5].

Contemporary research on the impact of configuration
management on the reliability of LLM pipelines can be

provisionally grouped into several thematic areas. Several
studies have shown that LLMs can effectively augment
traditional data-pipeline monitoring systems. For example,
Mangaonkar M. and Penikalapati V. K. [1] propose integrating
large language models into existing data-flow observability
frameworks, using them to automatically annotate anomalies

and generate recommendations for correcting inaccurate or
missing data during collection. The authors highlight the
potential of fine-tuning LLMs on internal logs to improve
anomaly-detection accuracy and describe a hybrid platform
architecture in which LLMs act as “intelligent agents”
interacting with alerting and visualization systems.

A directly related aspect of pipeline continuity and
resilience—the automatic detection and remediation of
container-configuration errors—is addressed in
LLMSecConfig. Ye Z., Le T. H. M., and Babar M. A. [2]
demonstrate an approach in which a pre-trained language model
is further trained or adapted via prompt engineering on a corpus

of misconfiguration scenarios, enabling it to generate corrective
patches for Docker and Kubernetes manifests. Their evaluation

on real-world scenarios drawn from open-source repositories
shows a reduction in deployment vulnerabilities.

At the same time, systematic reviews of container-security
issues point to a broad spectrum of risks, with misconfiguration
being only one critical element. Sultan S., Ahmad I., and
Dimitriou T. [3] summarize the consequences of misconfigured

network policies, access controls, and secrets, and propose a
comprehensive threat matrix along with mitigation methods,
including continuous auditing and penetration testing. Al
Mashta L. [4], in turn, conducts a systematic literature review
of architectural strategies for container protection, focusing on
automated configuration-control mechanisms and best

practices for DevSecOps teams.
Turning to data preparation and software security, Le T. H.

M. and Babar M. A. [7] investigate the potential of automated
data labeling for vulnerability-prediction models, emphasizing
weakly supervised and unsupervised learning approaches in
which LLMs extract features from source code to create “soft”

labels that are then converted into training sets for classical
machine-learning algorithms. The authors analyze the error
characteristics of this approach and underscore the critical role
of corpus quality and label verification.

In the area of enhancing retrieval-augmented generation
(RAG) architectures, Yan S. Q. et al. [5] introduce a Corrective

Retrieval Augmented Generation mechanism. After an initial
retrieval of contextual fragments from an external repository,
the LLM produces draft responses, then selectively “pulls in”
additional sources for topics where factual inaccuracies or
logical inconsistencies have been detected, yielding a final
output that incorporates these corrections. Although this

iterative process improves fidelity and coherence, it imposes
additional demands on pipeline architecture and state
management.

International Journal of Scientific Engineering and Science
Volume 9, Issue 5, pp. 178-181, 2025. ISSN (Online): 2456-7361

179

http://ijses.com/
All rights reserved

Wang Y. et al. [8] study the influence of the temperature
hyperparameter on LLM reasoning performance in graph-
structured tasks—ranging from routing to centrality-metric
computation. Through a series of experiments, they show that
lower temperature values enhance accuracy in deterministic
computations, whereas higher values lead to more diverse but

less structured outputs, which can undermine reproducibility in
pipelines requiring deterministic results.

Finally, practical engineering reports and blog posts offer
lessons learned from building and operating AI systems. The
article “7 Lessons from building a small-scale AI application”
[9] on TheLis website emphasizes the importance of a rational

strategy for dependency and configuration management in local
development environments, as well as the integration of CI/CD
pipelines with containerization and orchestration. “AI’s
Privilege Expansion” [10] on DigitalNative examines the risks
of overprivileged service accounts and recommends the
principle of least privilege. “Building AI Products—Part I:

Back-end Architecture” [11] on PhilCalcado underscores the
necessity of strict versioning for models and configuration files
and describes microservice architectural patterns that ensure
reliability and scalability. Finally, “The Bitter Lesson” [12] on
AnkitMaloo serves as a reminder that, in the long run, simple,
scalable algorithms often beat sophisticated systems that need

manual configuration tuning, a conclusion that should inform
engineering priorities.

Collectively, these works demonstrate a diverse range of
approaches to ensuring LLM-pipeline reliability via
configuration management: from deep integration of models
into monitoring and self-healing processes to the development

of organizational practices and architectural principles. Yet
contradictions persist: some authors contend that LLM-based
solutions can serve as the keystone of self-healing systems,
while others warn of reproducibility and security risks
associated with automated configuration fixes. Moreover,
questions remain underexplored, including the scalable

verification of LLM-generated corrective proposals in
production, the interaction between RAG methods and secret-
management systems, and empirical studies of hyperparameter
effects in real-world industrial pipelines.

This study aims to determine how the application of
minimalist configuration management using PKonfig

influences the reliability, reproducibility, and security of multi-
stage LLM pipelines, and to empirically demonstrate these
effects.

The scientific novelty lies in formulating and substantiating
a minimalist “zero-deps” approach to configuration
management for multi-stage LLM pipelines based on PKonfig
and developing a methodology for quantitatively analyzing the

impact of configuration management on key reliability,
reproducibility, and security metrics, validated through
industrial and educational case studies.

The central hypothesis is that a minimalist, strictly typed
approach to configuration management (PKonfig) reduces the
incidence of configuration-related failures, enhances

reproducibility, and improves the security of multi-stage LLM
pipelines without significantly increasing service-startup times.

The research is based on a comparative analysis of existing
studies in this domain, thereby offering a comprehensive view
of the impact of configuration management on LLM-pipeline
reliability.

II. CONFIGURATION MANAGEMENT IN LLM PIPELINES

Modern AI applications built on large language models

impose highly formalized requirements on the configuration
layer. First, they demand rapid deployment cycles and full A/B
testing capability, enabling prompt adjustment of inference-
pipeline parameters and comparison of alternative model
versions [1]. Second, ensuring reproducibility of multi-stage
scenarios with cascading LLM calls is essential: any divergence

in results upon rerun—commonly referred to as “drift”—is
unacceptable in production environments [3]. In addition,
secure handling of secrets—API tokens, encryption keys,
sensitive data—must incur minimal leak risk even under
intensive horizontal scaling [4]. Finally, serverless architectures
and orchestrators such as Kubernetes or Nomad enforce

stringent limits on cold-start latency and memory footprint,
directly impacting cost-effectiveness [2].

Widely used configuration-management tools only partially
address these needs and exhibit systemic shortcomings. For
example, pydantic-settings—a popular Python library for typed
configurations—provides strict validation and IDE

autocomplete yet increases cold-start time due to heavy
Pydantic and typing-extensions dependencies [10]. Kubernetes
ConfigMaps, the native mechanism for storing YAML files in-
cluster, allow dynamic parameter updates but lack application-
level static typing and validation, and require a full Kubernetes
infrastructure [11]. HashiCorp Vault addresses secret-

management needs with encryption and key rotation, but at the
cost of an extra service, infrastructure maintenance, and often
paid licensing [12].

To overcome these limitations, the lightweight library
PKonfig was developed as a “zero-deps” alternative to
pydantic-settings. It implements fail-fast validation of required

parameters at initialization, preventing late failures when first
accessing the LLM. Configurations can be prioritized from
environment variables or files in YAML, JSON, TOML, or INI
formats without additional code. Explicit typing via primitives
Str, Int, Choice, and LogLevel ensures correct parsing, static
analysis, and IDE support without Pydantic. An alias-group

mechanism simplifies migration across cloud environments by
declaring equivalent environment variables for different
providers. With no external dependencies, the base package is
approximately 15 kB—crucial for serverless functions
constrained, for example, to 50 MB in AWS Lambda. Finally,
an extensible API allows new configuration sources—Secrets
Manager, Consul KV, and others—to be added without

modifying the core library [1, 2].
In summary, configuration management in LLM pipelines

must simultaneously support high-velocity deployment and
A/B testing, strictly deterministic reproducibility of cascading
inference scenarios, secure secret handling, and minimal cold-
start resource consumption in serverless contexts. Existing

solutions—ranging from pydantic-settings and HashiCorp
Vault to native Kubernetes ConfigMaps—either lack full

International Journal of Scientific Engineering and Science
Volume 9, Issue 5, pp. 178-181, 2025. ISSN (Online): 2456-7361

180

http://ijses.com/
All rights reserved

application-level validation and static typing or impose
significant cold-start, dependency, and operational burdens.
The lightweight PKonfig library demonstrates that a zero-deps
approach with fail-fast initialization validation, prioritized
loading from environment and diverse file formats, explicit type
primitives, and a flexible alias-group system can preserve

correctness and reproducibility without Pydantic-induced cold-
start delays, while its extensible API paves the way for Secrets
Manager, Consul, and other back-end integrations without
expanding the core library—making it an optimal platform for
latency- and security-sensitive LLM applications.

TABLE 1. Comparison of configuration-management solutions in AI environments [1, 2, 3, 5, 6]

Feature PKonfig Pydantic-settings Kubernetes ConfigMaps HashiCorp Vault

Dependencies none Pydantic, typing-extensions Kubernetes cluster required dedicated service

Parameter validation fail-fast at init at initialization none via policies and ACL

Configuration sources Env, .env, YAML… Env, JSON, TOML YAML, Kubernetes API API, KV engine

Static typing explicit primitives Pydantic models none none

Secret management via API extension none basic (Secrets) encryption, rotation

Hot reload no no via Kubernetes rollout supported

Operational overhead minimal moderate high (cluster management) high (operational overhead)

Fig. 1. Multi-stage LLM pipelines (compiled by the author, based on: [1]).

III. IMPACT OF CONFIGURATION MANAGEMENT ON THE

RELIABILITY OF MULTI-STAGE LLM PIPELINES

Multi-stage LLM pipelines (see Fig. 1) consist of a
sequence of interconnected model invocations, often with

intermediate pre- and post-processing steps. Each pipeline
stage—whether format conversion, annotation, code snippet
generation or structured response construction—requires
precise tuning of parameters (sampling, system prompts, length
limits) and consideration of external factors (model versions,
API timeouts, memory constraints) [1].

In the absence of a single source of truth, parameters may
“drift” between stages, leading to unpredictable failures,
context mismatches and an increase in hallucinations.
Structured output and function-call interfaces improve

formalism but do not guarantee consistency of settings across
calls: an incorrect JSON-schema or mismatched function
version can break the entire pipeline [3, 7]. Practitioner reports
from Primer AI confirm that disparate configurations frequently
caused production-replica failures [1, 8].

Below is Table 2, summarizing key aspects of strict

configuration management.

TABLE 2. Key aspects of strict configuration management [1, 2].

Category Mechanism Description Advantages Implementation Aspects

1. Deterministic

execution

Fail-fast

validation

Validation of required parameters at

service startup

• Immediate error detection•

Prevention of silent failures

• Validation schemas (JSON Schema,

Protobuf)• Static config analysis

2. Experiment-

context isolation

Variable groups Definition of multiple ENV-setting

“groups” for parallel tests

• Parallel A/B testing without

rebuilds• Rapid config switching

• Namespaces in configuration•

Hierarchical structure

3. Secure secret

storage

ConfigSource

adapters

Plugin model for reading secrets

from Vault, HSM or cloud secret

managers

• No leaks to logs or VCS•

Centralized access control

• Support for HashiCorp Vault, AWS

Secrets Manager, Azure Key Vault

4. Minimizing cold-

start latency

Zero

dependencies

Complete absence of external

libraries in the runtime image

• Ultra-fast initialization• Lower

resource consumption

• Use of scratch or distroless images•

Static linking

Together, these mechanisms reduce failure risks and
enhance reliability for multi-call LLM pipelines. At Primer AI,
a multi-layered pipeline for unstructured-document analysis—
comprising preprocessing, retrieval-augmented generation,
post-processing and function calls—suffered frequent outages
and lengthy recovery times due to configuration mismatches

prior to PKonfig adoption.
Transitioning to a centralized, strongly typed and

lightweight solution enabled Primer AI to improve pipeline
stability and accelerate on-call response, thereby reducing mean

time to recovery (MTTR). Furthermore, clear environment
isolation simplified parameter A/B testing without the need to
recompile images.

IV. APPLICATION OF LLM SYSTEMS IN ORGANIZATIONS

Modern programming platforms increasingly employ LLM
assistants to evaluate solutions based on natural-language

descriptions and test scenarios. A typical pipeline architecture
comprises code ingestion; static analysis and test execution;
formulation of an LLM prompt to explain errors and generate

International Journal of Scientific Engineering and Science
Volume 9, Issue 5, pp. 178-181, 2025. ISSN (Online): 2456-7361

181

http://ijses.com/
All rights reserved

recommendations; result aggregation; and feedback delivery [1,
2].

Configuring an LLM-assistant-based pipeline demands
high adaptability: response-generation parameters
(temperature, max_tokens), API-call timeouts and test-suite
composition vary according to the discipline and user

proficiency; the access-control module must isolate the sandbox
environment, preventing any interference with global test
settings and LLM prompts [11, 12]; and to avert DDoS-style
overloads, strict inference timeouts and quotas—enforced by
the serving infrastructure—must be managed centrally.

Integrating PKonfig into the platform’s CI/CD workflow

established a formal boundary between sandbox and production
environments, allowing two independent sets of environment
variables (sandbox_, prod_) without duplicating deployment
code [8, 9]. Scaling to 1 000 concurrent users now requires a
single YAML configuration edit, eliminating container rebuilds
and minimizing downtime. A single source of truth maintains

parameter consistency across the test runner, LLM module and
feedback service.

Enhanced reliability of LLM assistants directly correlates
with learning quality: timely, automated feedback boosts
learner motivation and mitigates the “failure-spiral” effect
typical of delayed manual grading [2]. Moreover, the

versioning and change-tracking features in PKonfig furnish
instructors with a detailed history of experimental
configurations, enabling empirical identification of generation
parameters that optimally support material mastery.

Deploying LLM assistants via a formalized CI/CD pipeline
with PKonfig has demonstrated that adaptive tuning of

generation parameters (temperature, response length, timeouts)
and clear separation of sandbox and production environments
not only ensure reliability and security but also simplify scaling
without modifying the codebase. Versioned experimental
environments allow teachers to empirically identify the best
LLM parameters, which improves student participation by

providing quick, high-quality feedback and lowering the
hazards associated with grading delays.

V. CONCLUSION

The study confirmed the hypothesis that a minimalist,
strictly typed approach to configuration management using
PKonfig substantially enhances the reliability and

reproducibility of multi-stage LLM pipelines. Comparative
analysis showed that PKonfig outperforms pydantic-settings,
ConfigMaps and Vault in cold-start speed and flexibility of
configuration sources. Adopting PKonfig led to reduced cold-
start latency, decreased mean time to recovery (MTTR), fewer

incidents and improved SLA compliance. The presented
methodology for assessing configuration-management impact
on key metrics (MTTR, SLA adherence, throughput, accuracy)
through comparative analysis and case studies provides a robust
evaluation framework.

Future research directions include:

● Developing adapters for secret stores (AWS Secrets
Manager, GCP Secret Manager, Vault)

● Exporting typed configuration schemas (OpenAPI) for self-
documentation

● Creating a public latency/throughput benchmark for
automated evaluation of configuration managers in LLM

systems

REFERENCES

[1] M. Mangaonkar and V. K. Penikalapati. “Enhancing production data

pipeline monitoring and reliability through large language models

(LLMs),” Eduzone: International Peer Reviewed/Refereed

Multidisciplinary Journal, vol. 13, issue 1, pp. 51–56, 2024.

[2] Z. Ye, T. H. M. Le, and M. A. Babar. “LLMSecConfig: An LLM-Based

Approach for Fixing Software Container Misconfigurations,” pp. 1–13,

2025. DOI: 10.48550/arXiv.2502.02009

[3] S. Sultan, I. Ahmad, and T. Dimitriou. “Container security: Issues,

challenges, and the road ahead,” IEEE Access, vol. 7, pp. 52976–52996,

2019. DOI: 10.1109/ACCESS.2019.2911732

[4] L. Al Mashta. “Containers: Security Challenges and Mitigation

Strategies: A Systematic Literature Review,” pp.16-35, 2024.

[5] S. Q. Yan et al. “Corrective retrieval augmented generation,” pp. 1–8,

2024.

[6] Z. Ye, T. H. M. Le, and M. A. Babar. “LLMSecConfig: An LLM-Based

Approach for Fixing Software Container Misconfigurations,”

2025.DOI:10.48550/arXiv.2502.02009

[7] T. H. M. Le and M. A. Babar. “Automatic Data Labeling for Software

Vulnerability Prediction Models: How Far Are We?,” Proceedings of the

18th ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement, pp. 131–142, 2024.

DOI:10.1145/3674805.3686675

[8] Y. Wang et al. “Reasoning with Large Language Models on Graph Tasks:

The Influence of Temperature,” 2024 5th International Conference on

Computer Engineering and Application (ICCEA), IEEE, pp. 630–634,

2024. DOI: 10.1109/ICCEA62105.2024.10603677

[9] “7 Lessons from Building a Small-Scale AI Application,” Thelis Blog.

[Online]. Available: https://www.thelis.org/blog/lessons-from-a i

(Accessed: May 6, 2025).

[10] “AI’s Privilege Expansion,” Digital Native Tech. [Online]. Available:

https://www.digitalnative.tech/p/ais-privilege-expansion (Accessed: May

6, 2025).

[11] P. Calçado. “Building AI Products—Part I: Back-end Architecture,”

Philcalcado.com, Dec. 14, 2024. [Online]. Available:

https://philcalcado.com/2024/12/14/building-ai-products-part-i.html

(Accessed: May 6, 2025).

[12] A. Maloo. “The Bitter Lesson: Rethinking How We Build AI Systems,”

AnkitMaloo.com. [Online]. Available: https://ankitmaloo.com/bitter-

lesson/ (Accessed: May 6, 2025).

https://doi.org/10.1109/ACCESS.2019.2911732

