
International Journal of Scientific Engineering and Science 
Volume 9, Issue 5, pp. 120-127, 2025. ISSN (Online): 2456-7361 

 
 

120 

http://ijses.com/ 
All rights reserved 

The Application of Python to Business Data Analysis 

using Basic Machine Learning Models 
 

Hoang Thi Thu Ha 
 Department of Digital Economy, Faculty of Mathematical Economics, Thuongmai University   

Email address: hoangha.math@tmu.edu.vn 
 
 
Abstract— This study aims to equip students with a foundational understanding of the business data analysis process. By utilizing Python and 

widely used libraries such as pandas, scikit-learn, matplotlib, and seaborn, it demonstrates key steps including data preprocessing, exploration, 
feature transformation, and the development and evaluation of machine learning models. The dataset, obtained from Kaggle, comprises 200,000 
records related to marketing campaigns with variables such as campaign type, customer segment, cost, and impressions. Through  the 
implementation of regression models—Linear Regression, Decision Tree, and Random Forest—the study helps learners grasp practical data 

analysis workflows and strengthens their ability to apply Python to real-world business challenges. 
 
Keywords— Business data analysis, Python, linear regression, decision tree, random forest. 

 

I. INTRODUCTION  

In the context of the rapid development of the digital economy, 
data-driven decision-making has become an inevitable trend for 
modern businesses. Business data analysis not only enables 
companies to better understand customer behavior and market 
trends but also provides a scientific foundation for optimizing 

operations, refining marketing strategies, and forecasting 
business outcomes. As a result, equipping students with 
knowledge and skills in data analysis has become a vital 
component of training programs in economics, management, 
and finance. 

Currently, machine learning models are increasingly widely 

applied in data analysis due to their ability to uncover hidden 
patterns and provide highly accurate forecasts. Among these, 
many basic and accessible models that still deliver significant 
analytical efficiency are often preferred for business and 
research problems. However, selecting the appropriate model 
depends on the analysis objectives as well as the characteristics 

of the dataset. 
Specifically, the Linear Regression model is frequently used 

to forecast continuous variables such as revenue, cost, or profit, 
based on a linear relationship between dependent and 
independent variables. The Decision Tree model is commonly 
applied to classification or regression tasks, offering advantages 

such as ease of interpretation and intuitiveness, making it 
especially suitable for scenarios where understanding the 
decision-making logic is crucial. Meanwhile, the Random 
Forest model is a powerful machine learning technique that 
combines multiple decision trees to improve accuracy and 
reduce overfitting, leveraging information from multiple 

subsamples. 
To effectively implement machine learning models in 

business data analysis, Python has established itself as one of 
the most popular and powerful programming tools today. With 
its simple and accessible syntax, along with a rich ecosystem of 
libraries such as scikit-learn, pandas, and matplotlib, Python 

enables users to quickly build, train, and evaluate machine 
learning models. Additionally, a large user community and 

diverse learning resources have helped promote Python as the 
preferred choice in data science and artificial intelligence. 
Currently, Python is widely taught in university programs 
worldwide as a foundational programming language for data 
science and machine learning. 

This article aims to provide a detailed hands-on guide for 

college students, helping them engage with the process of 
analyzing business data in Python using three basic machine 
learning models: linear regression, decision trees, and random 
forests. By illustrating real data and offering step-by-step 
instructions, the article not only enhances students' data 
processing and analytical skills but also fosters quantitative 

thinking—an essential competency in the era of data-driven 
business. 

II. THEORETICAL FRAMEWORK AND LITERATURE REVIEW 

2.1. Theoretical framework 

All three models - Linear Regression, Decision Tree 
Regressor, and Random Forest Regressor - belong to the 

category of supervised learning algorithms. However, each 
model has its own fundamental concept, operating mechanism, 
as well as distinct advantages and disadvantages. 
Linear Regression 

Linear regression is a statistical method used to model the 

linear relationship between a dependent variable 𝑌 and one or 
more independent variables, with the goal of predicting the 
dependent variable’s outcome. The multivariate linear 

regression model is expressed by the formula: 𝑌, 𝑋1 , 𝑋2 ,… , 𝑋𝑘 
𝑌 = 𝛽0   + 𝛽1𝑋1  + 𝛽2𝑋2  + ⋯ + 𝛽𝑘𝑋𝑘  + 𝑈,  (1) 

In this model, 𝛽0 is the intercept (also known as the blocking 
coefficient), and 𝛽𝑗  is the slope (angular coefficient), 

representing the degree and direction of the impact of the 

variable 𝑋𝑗 on the dependent variable 𝑌, for (𝑗 = 1, 2, … , 𝑘) ;  𝑈 

denotes the random error term. 
In the sample, these coefficients are estimated and 

referred to as sample regression coefficients, denoted as 

�̂�0 , �̂�1 ,… , �̂�𝑘 , which serve as estimates of the population 



International Journal of Scientific Engineering and Science 
Volume 9, Issue 5, pp. 120-127, 2025. ISSN (Online): 2456-7361 

 
 

121 

http://ijses.com/ 
All rights reserved 

regression coefficients 𝛽0 , 𝛽1 ,… , 𝛽𝑘. Therefore, the estimated 
regression model is expressed as: 

𝑌 = �̂�0   + �̂�1𝑋1  + �̂�2𝑋2  + ⋯ + �̂�𝑘𝑋𝑘 + 𝜀   (2) 

with the so-called surplus, 𝜀, which is the estimate of  𝑈 
One of the most common methods for estimating model (2) 

is the Ordinary Least Squares (OLS) method. The regression 
coefficients are calculated in this manner by minimizing the 
sum of the squared errors (residuals). However, to apply OLS 

effectively, model (1) must satisfy several basic assumptions, 
including: a linear relationship between the dependent and 
independent variables; uncorrelated random errors; normally 
distributed random errors; constant variance of the errors 
(homoscedasticity); and no severe multicollinearity among the 
independent variables. 

Decision Tree Regressor 
The Decision Tree Regressor is a supervised machine 

learning model used to predict continuous values in regression 
problems. It works by partitioning the feature space into regions 
based on decision rules and assigning a prediction value—
typically the average of the data points in each region—to each 

region. The model constructs a tree structure where:  

• the root node represents the entire dataset, 

• internal nodes apply conditions based on feature 
values (e.g., "marketing costs > $1000"), 

• leaf nodes contain the predicted value (usually the 
average or median of the data points in that region). 

One of the core principles in building a decision tree is 
selecting the attribute for data partitioning that maximizes the 
ability to distinguish between classes. To achieve this, two 

important concepts are used: Entropy and Information Gain. 
Entropy measures the degree of heterogeneity (or disorder) 

in a dataset and was introduced in Shannon’s (1948) 
information theory. It reflects the uncertainty of information in 
a random variable. For a dataset with classification classes, 
entropy is calculated using the following formula: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = − ∑ 𝑝𝑖. ln (𝑝𝑖)

𝑛

𝑖=1

 

In which, is 𝑝𝑖 the probability of the appearance of the class 
in the dataset 𝑆. When all the elements in belong to the same 
class, the entropy reaches a value of 0. In contrast, entropy 
reaches its maximum value when the layers are evenly 

distributed, signifying maximum uncertainty.𝑆 
Information Gain (IG) is calculated through Entropy. This 

metric indicates how much entropy is reduced when dividing 
the dataset by a specific attribute. The IG of the attribute for the 

dataset is defined as follows:Type equation here. 

𝐼𝐺(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑
|𝑆𝑣|

|𝑆|
𝑣∈𝑉𝑎𝑙𝑢𝑒𝑠(𝐴)

. 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣) 

in which: 

• 𝑉𝑎𝑙𝑢𝑒𝑠(𝐴) is the set of possible values of attribute A, 

• 𝑆𝑣 is a subset of containing valuable elements,𝑆𝐴 = 𝑣 

• |𝑆|, |𝑆𝑣| is the size of the corresponding set.𝑆, 𝑆𝑣 
Information Gain (IG) measures the improvement in the 

“purity” of the data after a split. In the ID3 algorithm, the 

attribute with the highest Information Gain is selected to 

partition the dataset at each node, optimizing the classification 
performance of the decision tree.  

Decision tree models offer several significant advantages, 
including easy and intuitive interpretation when represented as 
a tree, efficient handling of nonlinear relationships between 
input and output variables, and no requirement for data 

normalization or linearity assumptions. However, the model 
also has limitations. If not carefully fine-tuned, the tree can 
grow too deep, leading to overfitting. Additionally, compared to 
ensemble models such as Random Forest or Gradient Boosting, 
the accuracy of a single decision tree is generally lower and 
more sensitive to noise in the data. 

In practice, decision tree models are widely applied to various 
forecasting problems, such as predicting sales, marketing costs, 
or marketing campaign performance indicators, based on input 
features like advertising spend, number of customers, or 
communication channels used. 
Random Forest Regressor 

The Random Forest Regressor is a supervised machine 
learning model commonly used for regression tasks to predict 
continuous values. It is an ensemble method based on the 
bagging technique (Bootstrap Aggregating), which combines 
multiple independently trained decision trees built on randomly 
selected subsets of data and features. The final prediction is 

obtained by averaging the outputs from all individual trees. 
One of the key advantages of the Random Forest is its 

ability to efficiently handle nonlinear relationships and complex 
data, while reducing the risk of overfitting through its ensemble 
learning mechanism and averaging of results. The model also 
provides insights into feature importance, which aids data 

analysis and interpretation. 
However, Random Forest has some limitations. Compared 

to simpler models like linear regression or single decision trees, 
it requires more computational resources and is harder to 
interpret due to its complexity. In certain cases—especially with 
very large datasets or when extremely high accuracy is 

needed—deep learning models may prove more effective. 
In practice, the Random Forest Regressor is widely used in 

forecasting tasks such as predicting sales, click-through rates 
(CTR), conversion rates, and other marketing performance 
indicators based on features like advertising costs, media 
channels used, and consumer behavior. 

2.2. Literature review 

In recent years, alongside the rapid development of machine 
learning, there has been a growing number of empirical studies 
applying these models to business data analysis. A notable 
example is the study by Zhou et al. (2021), which used linear 
regression analysis to evaluate the effectiveness of YouTube 
advertising on sales revenue. The dataset included a company’s 

advertising budget and sales figures, sourced from the Business 
of Apps website, with advertising costs ranging from $8.79 to 
$352.75. The entire analysis was conducted using R. Similarly, 
Takale et al. (2022) applied a linear regression model to predict 
sales revenue based on advertising costs. Their study utilized 
historical data from a public advertising dataset on the Kaggle 

platform, including variables such as advertising expenses on 
TV, radio, newspapers, and corresponding revenue. The 



International Journal of Scientific Engineering and Science 
Volume 9, Issue 5, pp. 120-127, 2025. ISSN (Online): 2456-7361 

 
 

122 

http://ijses.com/ 
All rights reserved 

analysis and model development were performed entirely using 
Python, supported by popular libraries such as scikit-learn, 
pandas, and matplotlib. 

Meanwhile, Gkikas and Theodoridis (2024) applied a 
decision tree model to classify users into three interaction 
levels: low, medium, and high. The study utilized data collected 

from Google Analytics of an online fashion retailer in Greece 
over a six-month period (June 26, 2023, to December 25, 2023). 
The metrics included sessions, number of events, purchase 
revenue, number of transactions, conversion rate, and bounce 
rate. The entire analysis was conducted using Python, supported 
by libraries such as scikit-learn, pandas, matplotlib, seaborn, 

and NumPy. This research provides an empirical foundation for 
optimizing digital marketing strategies through user behavior 
analysis. 

The Random Forest model is also commonly used in 
business analysis. For example, Pes (2021) applied this model 
to predict high-value customer segments in the e-commerce 

context. The data, collected from an online retailer’s CRM 
system between 2018 and 2020, included purchase history, 
average order value, shopping frequency, and demographic 
characteristics such as age, gender, and region. The study not 
only focused on building predictive models but also addressed 
the issue of imbalanced data using sample balancing techniques 

and evaluated the importance of features influencing customer 
segmentation. The entire process was conducted in Python with 
support from libraries such as scikit-learn, pandas, matplotlib, 
and seaborn. 

III. DATA AND METHODOLOGY 

3.1 Data 

The illustrative data for the Python commands in this study 
were sourced from the Kaggle platform 
(https://www.kaggle.com/). The dataset contains 200,000 
observations of marketing campaigns with 15 variables. For this 
analysis, the author uses the output variable 'Conversion_Rate' 
and the input variables: 'Campaign_Type', 'Target_Audience', 

'Duration', 'Channel_Used', 'Acquisition_Cost', 'Impressions', 
and 'Customer_Segment'. The variables are described in Table 
1. 

 
Table 1. List of variables used in the analysis 

Variables Description Type 

Conversion 

Rate 

The percentage of leads or impressions that 

converted into desired actions, indicating 

campaign effectiveness. 

Float 

Campaign 

Type 

The type of campaign employed, including 

email, social media, influencer, display, or 

search. 

Object 

Target 

Audience 

The specific audience segment targeted by the 

campaign, such as women aged 25-34, men 

aged 18-24, or all age groups. 

object 

Duration 
The duration of the campaign, expressed in 

days. 
int 

Channels 

Used 

The channels utilized to promote the 

campaign, which may include email, social 

media platforms, YouTube, websites, or 

Google Ads. 

object 

Acquisition 

Cost 

The cost incurred by the company to acquire 

customers, presented in monetary format. 
int 

Impressions 
The total number of times the campaign was 

displayed or viewed by the target audience. 
int 

Customer 

Segment 

The specific customer segment or audience 

category that the campaign was tailored for, 

such as tech enthusiasts, fashionistas, health 

and wellness enthusiasts, foodies, or outdoor 

adventurers. 

object 

Source: https://www.kaggle.com/ 

3.2 Methodology 

This paper employs a practical research approach using 

simulated data from Kaggle to demonstrate the process of 
applying Python in business data analysis with three 
fundamental machine learning models: Linear Regression, 
Decision Tree, and Random Forest. 

The research process encompasses key steps including data 
preprocessing, exploratory data analysis, and the development 

and evaluation of machine learning models. The selected 
dataset includes input variables related to marketing campaigns 
and the output variable, Conversion Rate. 

The models are implemented and assessed using popular 
Python libraries such as pandas, scikit-learn, and matplotlib, 
ensuring the approach is practical, easy to understand, and 

suitable for college students engaged in learning and research. 

IV. RESEARCH RESULTS 

The following presents the business data analysis process 
carried out using Python software. 

4.1. Import Required Libraries 

To perform data analysis, we first need to import the 

necessary libraries. These libraries provide tools for data 
processing, machine learning model development, result 
visualization, and model performance evaluation. 

!pip install python-docx 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 

import seaborn as sns 
from sklearn.model_selection import train_test_split  
from sklearn.linear_model import LinearRegression  
from sklearn.tree import DecisionTreeRegressor, plot_tree  
from sklearn.ensemble import RandomForestRegressor  
from sklearn.preprocessing import StandardScaler, 

LabelEncoder 
from sklearn.metrics import mean_absolute_error, 
mean_squared_error, r2_score 
import warnings 
warnings.filterwarnings('ignore') 

 
After importing the required libraries, the next step is to load 

the data into the working environment for processing and 
analysis. 

4.2. Reading Data  

In this study, the data is stored on Google Drive. Therefore, 
the first step is to connect Google Drive to the working 
environment in Google Colab. Once the connection is 
established, the data file can be read from the specified path for 

use in the analysis process. 
 
 

https://www.kaggle.com/


International Journal of Scientific Engineering and Science 
Volume 9, Issue 5, pp. 120-127, 2025. ISSN (Online): 2456-7361 

 
 

123 

http://ijses.com/ 
All rights reserved 

from google.colab import drive 

drive.mount('/content/drive') 
df = pd.read_csv('/content/drive/My 
Drive/Journal/marketing_campaign_dataset.csv')  

4.3. Data Discovery 

The purpose of this step is to provide an initial overview of 
the dataset to better understand the characteristics of each 
variable, the data structure, and potential anomalies. 

Specifically, the data exploration includes: 
(1) Looking at summary data such the number of variables, the 
data types in each column, and the count of missing values (if 
any). 

print(df.info())  

 
(2) Descriptive statistics for quantitative variables include the 
mean, standard deviation, minimum and maximum values, as 

well as percentiles. 

# Variable Separation 
df.describe() 
# Separation of classification variables 
df.describe(include='object')  
 
from docx import Document 

doc = Document() 
# Variable description statistics 
doc.add_heading("Statistics describing variables", level=1)  
desc_num = df.describe() 
doc.add_paragraph(desc_num.to_string())  
# Classification variable description statistics  

doc.add_heading("Statistics describing taxonomic 
variables", level=1) 
desc_cat = df.describe(include='object') 
doc.add_paragraph(desc_cat.to_string())  
 
doc.save("/content/drive/My 

Drive/Journal/thong_ke_mo_ta.docx") 

 
(3) Detect anomalies in the data—such as outliers, 
misformatted entries, and missing values—to develop 
appropriate strategies for the subsequent preprocessing step. 

# Missing Data Detection 
df.isnull().sum() 
# Foreign Data Detection 

df.hist(figsize=(12,8)) 
plt.tight_layout() 
plt.show() 

 
This step is essential to ensure the quality of input data for 

machine learning models and to support the selection of 
appropriate variables, which will guide subsequent data 
processing and analysis. 

4.4. Data pre-processing 

If, during the data discovery step, missing values or 
extraneous observations are found, they need to be properly 
handled. 
 

# Handling Missing Observations 

df = df.dropna()   
# Exotic Processing by IQR 
for col in ['Conversion_Rate', 'Acquisition_Cost', 
'Impressions', 'Duration']: 
    Q1 = df[col].quantile(0.25) 
    Q3 = df[col].quantile(0.75) 

    IQR = Q3 - Q1 
    df = df[(df[col] >= Q1 - 1.5 * IQR) & (df[col] <= Q3 + 
1.5 * IQR)] 

 
In addition, to ensure that the data is fed into the model in 

the correct format and scale, it is sometimes necessary to 
perform two important operations: standardizing the variables 

and encoding categorical variables. Quantitative variables often 
have different units of measurement and value scales (e.g., costs 
in hundreds of dollars, time in days, percentages, etc.). Without 
standardization, machine learning models such as linear 
regression or k-NN may be biased toward variables with larger 
values, affecting prediction accuracy. Therefore, normalization 

helps bring variables to the same scale, usually with a mean of 
0 and a standard deviation of 1 (z-score normalization), making 
the learning model more effective. Additionally, machine 
learning models cannot directly process categorical data (such 
as campaign names, communication channels, customer 
segments). Thus, categorical variables need to be encoded into 

numerical form. Common methods include one-hot encoding 
(creating binary columns for each category, suitable for 
variables with a limited number of levels) and label encoding 
(assigning numeric values to categories, used when the variable 
has a natural order). 
 

from sklearn.preprocessing import StandardScaler, 

LabelEncoder 
# Normalize variables 
scaler = StandardScaler() 
df[['Conversion_Rate', 'Acquisition_Cost', 'Impressions', 
'Duration']] = scaler.fit_transform( 
df[['Conversion_Rate', 'Acquisition_Cost', 'Impressions', 

'Duration']]) 
 
# Encoding of grouping variables 
label_enc = LabelEncoder() 
for col in ['Campaign_Type', 'Target_Audience', 
'Channel_Used', 'Customer_Segment']: 

df[col] = label_enc.fit_transform(df[col]) 
 
# Display descriptive information for all processed variables 
print("\nDescription information of normalized and encoded 
variables:") 
print(df[['Conversion_Rate', 'Acquisition_Cost', 
'Impressions', 'Duration',  

'Campaign_Type', 'Target_Audience', 'Channel_Used', 
'Customer_Segment']].describe()) 
 
#Hiển more detailed information for each variable  
for col in ['Conversion_Rate', 'Acquisition_Cost', 
'Impressions', 'Duration',  



International Journal of Scientific Engineering and Science 
Volume 9, Issue 5, pp. 120-127, 2025. ISSN (Online): 2456-7361 

 
 

124 

http://ijses.com/ 
All rights reserved 

'Campaign_Type', 'Target_Audience', 'Channel_Used', 

'Customer_Segment']: 
print(f"\nStats for {col}:") 
print(df[col].describe()) 

4.5. Identify linear relationships between variables  

In data analysis and predictive model building, 
understanding the relationships between input and output 
variables plays a crucial role in feature selection, result 

interpretation, and improving model performance. One useful 
tool for this purpose is the correlation matrix. The goal of this 
step is to determine whether there are strong or weak linear 
relationships among independent variables as well as between 
independent variables and the dependent variable (target 
variable—in this case, Conversion_Rate). If two input variables 

are highly correlated (multi-collinear), one of them should be 
removed to avoid redundancy. At the same time, priority should 
be given to including variables that show a strong correlation 
with the target variable when building the forecasting model. A 
popular visualization tool for this is a heatmap, which helps 
analysts easily identify relationships between variables through 

color coding. 
 

# – Correlation Matrix: 
 
cols_to_drop = ['Company', 'Location', 'Language', 'Date', 
'dtype'] 
cols_to_drop_existing = [col for col in cols_to_drop if col in 

df.columns] 
 
if cols_to_drop_existing: 
df_numeric = df.drop(columns=cols_to_drop_existing)  
else: 
df_numeric = df.copy() # If no columns to drop, work on a 

copy 
 
corr = df_numeric.corr() 
 
sns.heatmap(corr, annot=True, cmap='coolwarm') 
plt.show() 

 

4.6. Feature transformation and feature engineering 
In the process of data analysis and predictive model 

building, feature transformation and feature engineering are 
essential steps to improve model performance and enhance data 
interpretability. Specifically: 

• Logarithmic transform 
Applying logarithms to variables such as impressions helps 

reduce the influence of outliers by smoothing right-skewed 
distributions, making them closer to normal distribution. This 
aligns better with the assumptions of regression models and can 
also help linearize relationships between input and output 

variables. 

• Inverse transformation 
This transformation is often applied when a variable 

exhibits a nonlinear relationship with the target variable. Taking 
the inverse highlights inverse relationships and also reduces the 

impact of large values, similar to the logarithmic transform, but 
it suits some specific types of distributions better. 

• Interaction features 
Creating new features by combining two or more input 

variables can capture complex relationships that simple linear 

models might miss. Moreover, interaction features improve 
model predictability when variables jointly affect the target 
variable. 
 

# Get logarithms 
df['log_Impressions'] = np.log1p(df['Impressions'])  
# Take the inverse 

df['inv_Duration'] = 1 / (df['Duration'] + 1e-5) 
# Create Interactive Variables 
df['Cost_Impressions'] = df['Acquisition_Cost'] * 
df['Impressions'] 

 
7. Split the dataset into trains and test  

An important step in creating machine learning models is 

dividing the dataset into training and testing sets. The training 
set is used to "teach" the model to identify connections in the 
data, which enables the model to fine-tune its parameters to best 
match the data's features. Meanwhile, the testing set evaluates 
the model’s performance on new, unseen data, thereby 
measuring its generalization and predictive ability in practice. 

Additionally, this division helps to avoid overfitting, which 
is a situation in which the model fits the training data too well 
but does not do well on fresh data. By splitting the data into 
training and testing subsets, we ensure that evaluation results 
more accurately reflect the model’s true effectiveness. 
Typically, the common split ratio is 70:30 or 80:20. In this step, 

the data is randomly divided to maintain representativeness in 
both sets. 
 

# Definition of input variable y and output variable X 
X = df.drop('Conversion_Rate', axis=1) 
y = df['Conversion_Rate'] 
# Split the dataset 

X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size=0.2, random_state=42) 

 

8. Some machine learning models used in business data 
analysis 

In this section, we will present the application of three 
machine learning models—linear regression, decision trees, 

and random forests—to analyze business data. The process 
consists of three main steps: 
Step 1. Model Training 

Create the model using the training dataset so that it may 
learn key correlations and trends in the data. 
Step 2. Model Evaluation 

Evaluate the model's performance on the test dataset to 
assess its predictability and generalization ability. Common 
evaluation metrics include accuracy, mean squared error, or 
confusion matrix, depending on the type of problem. 
Step 3. Visualize the Results 

Display the analysis outcomes, predictions, and model 

performance through charts and graphs. Visualization helps 



International Journal of Scientific Engineering and Science 
Volume 9, Issue 5, pp. 120-127, 2025. ISSN (Online): 2456-7361 

 
 

125 

http://ijses.com/ 
All rights reserved 

identify trends, compare results effectively, and communicate 
insights clearly. 
8.1 Linear Regression Model 
Step 1. Model Training  

from sklearn.linear_model import LinearRegression  
 
# Initialization and training of linear regression models  

model = LinearRegression() 
model.fit(X_train, y_train) 
 
# Extraction of blocking and regression coefficients  
intercept = model.intercept_ 
Coefficients = model.coef_ 

 
print("\nIntercept:", intercept) 
print("Coefficients:") 
for feature, coef in zip(X.columns, coefficients):  
    print(f"{feature}: {coef:.4f}") 

 

Step 2. Model Evaluation 

from sklearn.metrics import mean_absolute_error, 

mean_squared_error, r2_score 
import numpy as np 
 
# Predict the output value on the test set 
y_pred = model.predict(X_test) 
 

# Calculation of evaluation indicators 
is = mean_absolute_error(y_test, y_pred) 
mse = mean_squared_error(y_test, y_pred) 
rmse = np.sqrt(mse) 
r2 = r2_score(y_test, y_pred) 
 

# Display of assessment results 
print("\nLinear Regression Model Evaluation Results:")  
print(f"Mean Absolute Error (MAE): {mae:.4f}") 
print(f"Mean Squared Error (MSE): {mse:.4f}") 
print(f"Root Mean Squared Error (RMSE): {rmse:.4f}")  
print(f"R² Score: {r2:.4f}") 

 

Step 3.Visualize the results 

!pip install statsmodels 
import statsmodels.api as sm 
 
# Add constants to X_train to match statsmodels  
X_train_sm = sm.add_constant(X_train) 
 

# Building OLS models using statsmodels 
model_sm = sm. OLS(y_train, X_train_sm).fit() 
 
# Show detailed regression statistics table  
print("\nLinear Regression Results Table (statsmodels):")  
print(model_sm.summary()) 

 

8.2 Decision Tree Model 

Step 1. Model Training  

from sklearn.tree import DecisionTreeRegressor  
 

# Initialize a Decision Tree model with a maximum depth 

of 5 (adjustable) 
model = DecisionTreeRegressor(max_depth=5, 
random_state=42) 
model.fit(X_train, y_train) 
 
# Check the importance of input variables 

Importance = model.feature_importances_  
feature_names = X.columns 
 
# Include results in a DataFrame for easy observation  
importance_df = pd. DataFrame({ 
    'Feature': feature_names, 

    'Importance': Importance 
}).sort_values(by='Importance', ascending=False)  
 
print("\nFeature Importances:") 
print(importance_df) 

 

Step 2. Model Evaluation 

from sklearn.metrics import mean_absolute_error, 

mean_squared_error, r2_score 
import numpy as np 
 
# Forecast on the test set 
y_pred = model.predict(X_test) 
 

# Calculation of model performance evaluation indicators  
is = mean_absolute_error(y_test, y_pred) 
rmse = np.sqrt(mean_squared_error(y_test, y_pred))  
r2 = r2_score(y_test, y_pred) 
 
# Show Results 

print("\n Decision Tree Model Evaluation Results:") 
print(f"Mean Absolute Error (MAE): {mae:.2f}") 
print(f"Root Mean Squared Error (RMSE): {rmse:.2f}")  
print(f"R² Score: {r2:.2f}") 
 
# Compare actual and forecast values for the first 10 lines  

comparison_df = pd. DataFrame({ 
    'Actual': y_test.values[:10], 
    'Predicted': y_pred[:10] 
}) 
print("\n Compare actual and forecast values (first 10 
lines):") 

print(comparison_df) 

 
Step 3.Visualize the results 

import matplotlib.pyplot as plt 
 
# Draw a line chart to compare Actual vs Predicted 
plt.figure(figsize=(10, 6)) 
plt.plot(range(len(comparison_df)), 
comparison_df['Actual'], marker='o', color='black', 

label='Actual') 
plt.plot(range(len(comparison_df)), 
comparison_df['Predicted'], marker='x', color='red', 
label='Predicted') 



International Journal of Scientific Engineering and Science 
Volume 9, Issue 5, pp. 120-127, 2025. ISSN (Online): 2456-7361 

 
 

126 

http://ijses.com/ 
All rights reserved 

plt.title('Actual vs Predicted ROI (Decision Tree)')  

plt.xlabel('Sample Index') 
plt.ylabel('ROI') 
plt.legend() 
plt.grid(True, linestyle='--', alpha=0.5) 
plt.tight_layout() 
plt.show() 

 

8.3 Random Forest Model 
Step 1. Model Training  

from sklearn.ensemble import RandomForestRegressor  
 
# Random Forest model initialization 
model = RandomForestRegressor(n_estimators=100, 
max_depth=7, random_state=42) 

model.fit(X_train, y_train) 
 
# Importance of Input Variables 
Importance = model.feature_importances_ 
feature_names = X.columns 
 

# Inserting into a DataFrame 
importance_df = pd. DataFrame({ 
    'Feature': feature_names, 
    'Importance': Importance 
}).sort_values(by='Importance', ascending=False)  
 

print("\nFeature Importances - Random Forest:") 
print(importance_df) 

 
Step 2. Model Evaluation 

from sklearn.metrics import mean_absolute_error, 
mean_squared_error, r2_score 
import numpy as np 
 

# Forecast on the test set 
y_pred = model.predict(X_test) 
 
# Calculation of evaluation indicators 
is = mean_absolute_error(y_test, y_pred) 
rmse = np.sqrt(mean_squared_error(y_test, y_pred))  

r2 = r2_score(y_test, y_pred) 
 
print("\n Random Forest Model Evaluation Results:")  
print(f"Mean Absolute Error (MAE): {mae:.2f}") 
print(f"Root Mean Squared Error (RMSE): {rmse:.2f}")  
print(f"R² Score: {r2:.2f}") 

 
# Comparison of forecast and reality for the top 10 lines  
comparison_df = pd. DataFrame({ 
    'Actual': y_test.values[:10], 
    'Predicted': y_pred[:10] 
}) 
print("\n Compare actual and forecast values (first 10 

lines):") 
print(comparison_df) 

 
Step 3.Visualize the results 

import matplotlib.pyplot as plt 

 
# Draw a line chart comparing forecasted and actual values  
plt.figure(figsize=(10, 6)) 
plt.plot(range(len(comparison_df)), 
comparison_df['Actual'], marker='o', color='black', 
label='Actual') 

plt.plot(range(len(comparison_df)), 
comparison_df['Predicted'], marker='x', color='green', 
label='Predicted') 
plt.title('Actual vs Predicted ROI (Random Forest)')  
plt.xlabel('Sample Index') 
plt.ylabel('ROI') 

plt.legend() 
plt.grid(True, linestyle='--', alpha=0.5) 
plt.tight_layout() 
plt.show() 

V. CONCLUSION 

This study presented a fundamental process for business 
data analysis using the Python programming language, 

covering key stages such as data preprocessing, exploratory 
data analysis, machine learning model development, and 
performance evaluation. By illustrating the process with real-
world datasets and accessible Python code snippets, the paper 
offers both foundational knowledge in data analytics and 
practical guidance for students and learners in the fields of data 

science and digital business. 
The application of three widely used regression models—

Linear Regression, Decision Tree, and Random Forest—
enables learners to understand how to select and assess suitable 
models within a business data context. Furthermore, the study 
highlights the critical role of preprocessing steps, including 

normalization, encoding, and feature transformation, which 
directly influence model performance and predictive accuracy. 
It is hoped that this document will serve as a valuable practical 
resource, helping students strengthen their data analysis 
competencies and enhance their ability to apply Python to real-
world problems in business and management. 

Acknowledgements  
Financial support received from Thuongmai University is 
acknowledged. 
Disclosure 
Declaration of AI Assistance in Language Editing: The authors 
used ChatGPT to improve language clarity and correct minor 

errors in grammar and style. They reviewed all suggestions and 
are fully responsible for the content of this publication. 
Conflicts of Interest 

The authors declare no conflicts of interest. 

REFERENCES 

[1]. Chen, B., & Kling, G. (2025). Business analytics with Python: Essential 

skills for business students. Kogan Page. 

[2]. Gkikas, D. C., & Theodoridis, P. K. (2024). Predicting online shopping 

behavior: Using machine learning and Google Analytics to classify user 

engagement. Applied Sciences, 14(23), 11403. 

https://doi.org/10.3390/app142311403  

[3]. Hodeghatta, U. R., & Nayak, U. (2023). Practical business analytics 

using R and Python: Solve business problems using a data -driven 

approach (2nd ed.). Apress. 

https://doi.org/10.3390/app142311403


International Journal of Scientific Engineering and Science 
Volume 9, Issue 5, pp. 120-127, 2025. ISSN (Online): 2456-7361 

 
 

127 

http://ijses.com/ 
All rights reserved 

[4]. Pes, B. (2021). Learning from high-dimensional and class-imbalanced 

datasets using random forests. Information, 12(8), 286. 

https://doi.org/10.3390/info12080286  

[5]. Takale, S., Bhong, T., Dethe, U., & Gandhi, P. (2022). Sales prediction 

using linear regression. Journal of Electronics, Computer Networking and 

Applied Mathematics, 2(5), 62–71. 

https://doi.org/10.55529/jecnam.25.62.71  

[6]. Zhou, Y., Ahmad, Z., Alsuhabi, H., Yusuf, M., Alkhairy, I., & Sharawy, A. 

M. (2021). Impact of YouTube advertising on sales with regression 

analysis and statistical modeling: Usefulness of online media in business. 

Computational Intelligence and Neuroscience, 2021 , Article ID 9863155. 

https://doi.org/10.1155/2021/9863155  

 

 


