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Abstract – This research investigates the efficacy of two innovative meta-heuristic algorithms, the Newton-Raphson-based optimizer (NRBA) and 
the Starfish optimization algorithm (SFOA), in solving the Economic Load Dispatch (ELD) and Renewable -Based Economic Load Dispatch (RB-
ELD), with the main objective function of minimizing the overall electricity production cost. Initially, both algorithms were  deployed to optimize 
the power output of a 20-thermal Generator (ThG) system under a 2500 MW load demand. A comparative analysis of their performance on a 

variety of aspects revealed the superior performance of SFOA over NRBA across all evaluated aspects, particularly in its rapid convergence, 
ability to secure the best OEPC, and consistent stability while dealing with the ELD problem. Based on that, SFOA was then applied to the more 
complex RB-ELD problem, integrating a 200 MW Renewable-Based Generation Source (RBGS). The findings underscore the significant 
engineering and economic advantages of incorporating renewable energy, evidenced by a substantial reduction in the power output from the 

majority of ThGs, leading to decreased fuel consumption and a consequent lowering of the overall OEPC. The successful applica tion of SFOA to 
this larger-scale, integrated problem further validates its capability in handling complex scenarios, establishing it as a highly effective and 
recommended search methodology for resolving intricate RB-ELD problems. 
 

Keywords: Economic load dispatch, renewable-based economic load dispatch, thermal generators, renewable-based generating source, power 
loss, meta-heuristic algorithms, Newton-Raphson-based optimizer, Starfish optimization algorithm. 

 

I. INTRODUCTION  

A fundamental problem that must be addressed early in power 

system operation is the economic load dispatch (ELD) [1]. The 
primary focus of solving the ELD problem is typically 
optimizing the allocation of power output among all the thermal 
generators within a given power system. This aims to meet the 
load demand while minimizing the overall electricity 
production cost (OEPC) [2-3]. Traditionally, thermal generators 

were the main sources of electricity, and their operation, which 
involved burning fossil fuels, caused environmental damage. 
Nowadays, fossil fuels have become more expensive and are 
nearing depletion. Coupled with increasing environmental 
concerns, the incorporation of renewable-based generating 
sources (RBGSs) has garnered significant attention and focus. 

In this context, the original ELD problem has also been 
modified to include the integration of various types of RBGSs, 
primarily wind and solar, leading to what is known as the 
Renewable-Based Economic Load Dispatch (RB-ELD) 
problem [4-5]. 

Recognizing the significant importance of tackling both the 
economic load dispatch (ELD) and the renewable-based 

economic load dispatch (RB-ELD) problem, a large number of 
publications have been proposed to solve both the mentioned 
problems using different approaches and methods. Among the 
applied methods, meta-heuristic algorithms have frequently 
been the chosen approach for addressing ELD and CE-ELD 
problems. For instance, various meta-heuristic techniques have 

been employed, including Growth Optimizer Algorithm (GOA) 

[6], Dandelion optimizer (DO) [7], improved fireworks 
algorithm (IFA) [8], One-to-One Optimization Algorithm 

(OOOA) [9], Modified Firefly Algorithm (MFA) [10], 
Modified Directional Bat Algorithm (MDBA) [11], Zebra 
optimization algorithm (ZOA) [12], War Strategy Optimization 
Algorithm (WSO) [13], moth-flame algorithm (MFA) [14], 
particle swarm optimization (PSO) [15], improved bacteria 
foraging optimization (IBFO) [16], Improved Harmony Search 

Algorithm (IHSA) [17], modified artificial bee colony 
algorithm (MABC) [18], hybrid salp swarm algorithm (HSSA) 
[19], Multi-swarm statistical particle swarm optimization 
(MSPSO) [20]. 

 In this research, two novel meta-heuristic algorithms, the 
Newton-Raphson-based optimization algorithm (NRBA) [21] 

and the Starfish optimization algorithm (SFOA) [22], are 
applied to solve both the ELD (Economic Load Dispatch) and 
RB-ELD (Renewable-Based Economic Load Dispatch) 
problems for a 20-ThG (Thermal Generator) power system, 
with the primary objective of minimizing the overall electricity 
production cost (OEPC). In solving the RB-ELD problem, a 
200 MW renewable-based generating source (RBGS) will be 

connected to the given system, maintaining the same objective 
function. Furthermore, the power loss in solving these two 
problems is also taken into account. Regarding the applied 
algorithms, SFOA is proposed based on simulating the foraging 
behavior of starfish in the ocean, while NRBA is developed 
based on the Newton-Raphson approach. Both NRBA and 

SFOA have undergone a variety of different tests, including 
theoretical and practical optimization problems. 
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The main novelties and contributions of this research are 
summarized as follows: 

- Successfully applying two novel meta-heuristic 
algorithms to solve the original Economic Load Dispatch 
(ELD) problem and the Renewable-Based Economic 
Load Dispatch (RB-ELD) problem. 

- Identifying the superior applied algorithm between the 
two using different criteria, including convergence speed, 
stability, and the minimum, average, and maximum OEPC 
values. 

- Clearly demonstrating the impact of integrating the RBGS 
into the given power system in reducing the OEPC value 
when solving the RB-ELD problem. 

- Providing a framework for implementing novel meta-
heuristic algorithms to solve the RB-ELD problem and 
evaluating the role of renewable energy. 

II. PROBLEM DESCRIPTION 

2.1. The main objective function 

The main focus of this study is to minimize the overall 
electricity production cost (OEPC) to all the thermal generators 

(ThGs) in the system by using the following mathematical 
model: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑂𝐸𝑃𝐶 =  ∑ 𝛾1,𝑛𝑃𝑇ℎ𝐺,𝑛
2 + 𝛾2,𝑛𝑃𝑇ℎ𝐺,𝑛 + 𝛾3,𝑛

𝑁𝑇ℎ𝐺𝑠

𝑛=1

 

𝑤𝑖𝑡ℎ 𝑖 = 1, … , 𝑁𝑇ℎ𝐺𝑠 

(1) 

Where 𝑂𝐸𝑃𝐶 is the overall electricity production cost 

synthesized by all the existing ThGs in the power system; 𝛾1,𝑛, 

𝛾2,𝑛, and 𝛾3,𝑛 are, the fuel utilization factor of the ThGs 𝑛; 

𝑃𝑇ℎ𝐺,𝑛 is the power output of the ThG n with n = 1, 2, … 𝑁𝑇ℎ𝐺𝑠 

and 𝑁𝑇ℎ𝐺𝑠 is the number of ThGs in the power system. 

2.2 The involved constraints 

• The power balance constraints:  
The power balance constraint is employed to ensure the 

equilibrium between the overall power provided by all 
generation sources and the level of power required by the load 
plus the quantity of losses, as illustrated below: 

∑ 𝑃𝑇ℎ𝑆,𝑖

𝑁𝑇ℎ𝐺

𝑛=1

+ ∑ 𝑃𝑅𝐵𝐺𝑆,𝑚

𝑐

𝑚=1

 = 𝑃𝑑𝑚 + 𝑃𝑙𝑜 (2) 

Where, ∑ 𝑃𝑇ℎ𝐺,𝑖
𝑁𝑇ℎ𝐺
𝑛=1  is the total power output of all ThGs in 

the system  ; ∑ 𝑃𝑅𝐵𝐺𝑆,𝑚
𝑁𝑅𝐵𝐺𝑆
𝑚=1  is the power output of all the 

renewable based generating source (RBGS) m with m = 1, 2, 

…, 𝑁𝑅𝐵𝐺𝑆 and 𝑁𝑅𝐵𝐺𝑆 is the number of RBGSs in the system; 
𝑃𝑑𝑚 and 𝑃𝑙𝑜 are the amount of demand and the loss power.  

The value of power loss in  Eq. (2) is determined 

using the following mathematical expression: 

𝑃𝑙𝑜 = ∑ ∑ 𝑃𝑇ℎ𝐺,𝑛𝐿𝐹𝑛𝑞 𝑃𝑇ℎ𝐺,𝑞

𝑁𝑇ℎ𝐺

𝑞=1,𝑞≠𝑛

𝑁𝑇ℎ𝐺

𝑛=1

+ ∑ 𝐿𝐹0𝑛𝑃𝑇ℎ𝐺,𝑛

𝑁𝑇ℎ𝐺

𝑛=1

+ 𝐿𝐹00 

(3) 

Where, 𝜔𝑛𝑞, 𝜔0𝑛, and 𝜔00 are the loss factors. 

• The operational constraint of ThGs 
This constraint is imposed to ensure that each of ThG in 

the system will be run safely and effectively as their design: 

𝑃𝑇ℎ𝐺,𝑛
𝑀𝑖𝑛 ≤ 𝑃𝑇ℎ𝐺,𝑛 ≤ 𝑃𝑇ℎ𝐺,𝑛

𝑀𝑎𝑥  (4) 

Where, 𝑃𝑇ℎ𝐺,𝑛
𝑀𝑖𝑛  and 𝑃𝑇ℎ𝐺,𝑛

𝑀𝑎𝑥  are the lowest and highest power 

output generated by ThG 𝑛. 

• The operational constraint of RBGSs 
The power output generated by each RBGS in the system 

is also limited within their design capabilities as the ThGs: 

𝑃𝑅𝐵𝐺𝑆,𝑚
𝑀𝑖𝑛 ≤ 𝑃𝑅𝐵𝐺𝑆,𝑚 ≤ 𝑃𝑅𝐵𝐺𝑆,𝑚

𝑀𝑎𝑥  (5) 

Where, 𝑃𝑅𝐵𝐺𝑆,𝑚
𝑀𝑖𝑛  and 𝑃𝑅𝐵𝐺𝑆,𝑚

𝑀𝑎𝑥  are the lowest and highest power 

output possibly generated by RBGS m; 

III. APPLIED ALGORITHMS 

This section will shortly present the mathematical model of 
the Starfish optimization algorithm (SFOA). Note that SFOA is 
a meta-heuristic algorithm; therefore, the algorithm shares the 
same structure as many others in the same class. The only thing 
that differentiates SFOA from others is its update procedure, 
which will be presented in two phases as follows: 

a. The exploration phase 

In this first phase, the new solutions will be updated using 
the following model: 

𝑋𝑞
𝑛𝑒𝑤1

= {
{

𝑋𝑞 + 𝐴𝑀𝐹 × (𝑋𝐵𝑒𝑠𝑡 − 𝑋𝑞 ) × 𝑐𝑜𝑠𝛿, 𝑖𝑓   𝑟𝑑𝑛 ≤ 0.5

𝑋𝑞 + 𝐴𝑀𝐹 × (𝑋𝐵𝑒𝑠𝑡 − 𝑋𝑞 ) × 𝑠𝑖𝑛𝛿,              otherwise
,      if 𝑑𝑖𝑚 > 5

𝑁𝐹 × 𝑋𝑞 + 𝑟𝑑𝑛1 × (𝑋𝑅1 − 𝑋𝑞 ) + 𝑟𝑑𝑛2 × (𝑋𝑅2 − 𝑋𝑞 ), 𝑖𝑓 𝑑𝑖𝑚 ≤ 5

 

(6
) 

With  

𝑁𝐹 =  
𝑀𝐼𝑚𝑎𝑥 − 𝐶𝐼

𝑀𝐼𝑚𝑎𝑥
× 𝑐𝑜𝑠𝛿 (7) 

In Equations (6) and (7), 𝑋𝑞
𝑛𝑒𝑤1 is the new solution updated 

in phase 1 with q = 1, 2, … NP and NP is the population size; 

𝑋𝑞 is the current solution q; 𝐴𝑀𝐹 is the amplifying factor; 𝑋𝐵𝑒𝑠𝑡 

is the best solution among the at current; 𝛿 is the phase angle of 
the current solution to the best solution; 𝑁𝐹 is the navigating 

factor; 𝑟𝑑𝑛1, 𝑟𝑑𝑛2 and 𝑟𝑑𝑛 are the random factors between 
zero and one; 𝑋𝑅1 and 𝑋𝑅2 are the two random solution picked 
up from the population at given time. 

b. The exploration phase 

In this section, the new solutions are updated using 
the following expression: 

𝑋𝑞
𝑛𝑒𝑤2

= {

𝑋𝑞 + 𝑟𝑑𝑛1 × 𝑑𝑡1 + 𝑟𝑑𝑛2 × 𝑑𝑡2, if 𝑞 ≠ 𝑁𝑃

𝑒𝑥𝑝 (
−𝑀𝐼𝑚𝑎𝑥 × 𝑁𝑃

𝑀𝐼𝑚𝑎𝑥 ) × 𝑋𝑞 , if 𝑞 = 𝑁𝑃
 

(8) 

Where, 𝑋𝑞
𝑛𝑒𝑤2 is the new solution q updated in phase 2; 𝑑𝑡1 and 

𝑑𝑡2 are the distance from the random two random solutions to 
the best solution.  

IV. RESULTS 

Initially, in this section, the Starfish optimization algorithm 
(SFOA) and the Newton-Raphson-based optimizer (NRBA) are 
employed to address the traditional Economic Load Dispatch 
(ELD) problem. The primary goal is to minimize the Overall 

Electricity Production Cost (OEPC) within a 20-Thermal 
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Generator (ThG) power system operating under a load demand 
of 2500 MW. Subsequently, the more effective of these two 
algorithms will be utilized again to tackle the Renewable-Based 
Economic Load Dispatch (RB-ELD) problem, aiming to 
highlight the impact of Renewable-based Generating Sources 
(RBGSs) on the system. The outcomes generated by both 

algorithms will be assessed using various metrics to determine 
which algorithm performs better. To ensure a fair comparison, 
both SFOA and NRBA are configured with identical control 
parameters across all experiments, specifically a population 
size of 100 and a maximum iteration count of 300. Furthermore, 
to ensure the reliability of the comparison, both SFOA and 

NRBA are executed for 50 independent trials to identify their 
respective best solutions before being compared. 

The entire work was conducted on a personal computer that 
included an 8GB random access memory (RAM) and a central 
processing unit (CPU) with a clock frequency of 2.6 GHz. 
MATLAB programming language, version R2019a is the main 

platform supporting all the coding and necessary simulation. 

a. The results of solving the original ELD problem 

Figure 1 presents the OEPC values achieved by SFOA and 
NRBA after 50 trial runs. The observation from the figure 
indicates that the fluctuation of OEPC values obtained by SFOA 
across the 50 trial runs is significantly less than that of NRBA. 
This suggests that SFOA offers better stability than NRBA 

across all the trial runs when addressing the considered 
problem. 

Figure 2 presents a comparison between SFOA) and NRBA 
across different criteria, including the Minimum OEPC, the 
Average OEPC, the Maximum OEPC, and the standard 
deviation (STD). Quantitatively, SFOA outperforms NRBA in 

all comparison criteria. Specifically, the application of SFOA 
can lead to savings of $4.987 for the minimum OEPC, $17.198 
for the average OEPC, and $35.496 for the maximum OEPC 
compared to NRBA. Furthermore, SFOA demonstrates greater 
stability than NRBA by 92.768% based on the STD. 

 

 
Figure 1. The OEPC values obtained by SFOA and NRBA after 50 trial runs. 

 

 
Figure 2. Three convergences were obtained by the two applied algorithms for their best -run. 

 

Figure 3 illustrates the convergence behavior achieved by 
the two algorithms in their best runs across three metrics: 
minimum convergence, average convergence, and maximum 
convergence. Evidently, SFOA (Squirrel Fuzzy Optimization 

Algorithm) exhibits a faster convergence speed compared to 
NRBA in all three types of convergence. Specifically, SFOA 
reached the best OEPC value after approximately 250 iterations 
in its best run, a performance that NRBA could not match. 
Regarding the average and maximum convergence, SFOA also 

demonstrates a faster convergence speed than NRBA, 
particularly in the case of maximum convergence. 

Figures 4 and 5 illustrate the power output and the 
corresponding EPC (Energy Production Cost) value for each 

ThG optimized by SFOA and NRBA. Additionally, Figure 5 
displays the cost savings achieved for each ThG when driven 
by the power output optimized by SFOA compared to NRBA, 
represented by the green bars. The value of these green bars is 
calculated by subtracting the EPC obtained with SFOA from the 
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EPC obtained with NRBA, denoted as “EPC_Diff”. Upward-
pointing green bars indicate that the EPC value resulting from 
the SFOA-optimized power output is better (lower) than that of 

NRBA. Conversely, downward-pointing green bars would 
signify that NRBA yields a better (lower) EPC value than 
SFOA.    

 
Figure 3. Three types of convergences obtained by the two applied algorithms for their best run . 

 

 
Figure 4. The optimal power output of each ThG optimized by the two applied algorithms. 

 

 
Figure 5. The difference on the EPC value of each ThG obtained by the two applied algorithms. 
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b. The results of solving the RB-ELD problem 

In this section, SFOA (Squirrel Fuzzy Optimization 
Algorithm), the superior algorithm identified in the previous 
section, will be reapplied to optimize the allocation of power 
output among all the ThGs when solving the RB-ELD problem 
for a system connected to a 200 MW RBGS. Figure 6 illustrates 

the difference in power output for each ThG in the system with 
and without the RBGS connection. Furthermore, the specific 
power output reduction for each ThG is also determined. 
Generally, the presence of an RBGS leads to a noticeable 
reduction in the power output of almost all ThGs in the system, 
with the exception of the 11th ThG. As previously mentioned, 

lower power output from the ThGs corresponds to minimal 
environmental damage. It's important to note that all the values 
presented in Figure 6 represent the results obtained by SFOA 
for only 1 hour of operation. When considering a larger 

operational timeframe, such as a day, a month, a year, or even 
20 years, this power reduction will amount to a significant 
quantity.  

Figure 7 illustrates the cost savings for each ThG in the 
scenario with and without an RBGS. In this figure, the savings 
for each ThG are represented by the blue bars. Evidently, the 

integration of an RBGS noticeably reduces the EPC values for 
almost every ThG, with the exception of the 11th ThG, which 
aligns with the data presented in Figure 6. Specifically, the 11th 
ThG is the only ThG that experiences an increase in power 
output when an RBGS is present, while all other ThGs show a 
reduction in their power output. It's important to note that the 

EPC values for the scenario without an RBGS are derived from 
the previous section's application of SFOA for 1 hour only As 
mentioned previously, considering a large operational 
timeframe highlights the significant role of incorporating an 
RBGS in both engineering and economic aspects. 

 

 
Figure 6. The power output of all the ThGs for the case with/without RBGS and the corresponding power output reduction . 

 

 
Figure 7. The savings cost for each ThG of the case with RBGS compared to the case with no RBGS connection. 
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V. CONCLUSIONS 

In this study, two novel meta-heuristic algorithms, the 
Newton-Raphson-based optimizer (NRBA) and the Starfish 
optimization algorithm (SFOA), are successfully applied to 

solve the ELD (Economic Load Dispatch) and RB-ELD 
(Renewable-Based Economic Load Dispatch) problems, with 
the primary objective of minimizing the overall electricity 
production cost. Initially, these two algorithms are used to 
optimize the power output for a 20-ThG (Thermal Generator) 
power system with a load demand of 2500 MW. The results 

obtained by both algorithms are evaluated across various 
aspects, including the convergence speed towards the optimal 
OEPC (Overall Electricity Production Cost) values, and 
quantitative criteria such as the Minimum OEPC, the average 
OEPC, the Maximum OEPC, and the standard deviation (STD). 
The analysis of these results indicates that SFOA outperforms 

NRBA in all considered aspects and comparison criteria, 
particularly in convergence speed, the ability to achieve the best 
OEPC, and stability when addressing the ELD problem. 
Consequently, SFOA is reapplied to solve the RB-ELD 
problem, incorporating a 200 MW RBGS (Renewable-Based 
Generation Source). The results demonstrate that the 

integration of the RBGS offers benefits in both engineering and 
economic terms. Specifically, the presence of an RBGS leads to 
a noticeable reduction in power output from almost all ThGs in 
the system, resulting in less fuel utilization and, consequently, 
a lower overall OEPC. After successfully solving the RB-ELD 
problem, SFOA further proves its capability to handle large-

scale and complex problems. Therefore, SFOA is considered an 
effective search method and is highly recommended for 
resolving such RB-ELD problems. 
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