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Abstract— What has become apparent therefore, is the need to pay special attention to the utilization of advanced optimized procedures in the 

charging of Electric Vehicles (EVs) and the determination of the lifespan because of the rise of the usage of renewable energy. Proper battery 

characterization and SoC prediction are crucial to guarantee the high efficiency, dependability, and durability of EV batteries in various, often 

challenging, and different scenarios. This review systematically reviews the state-of-art approaches for the prognosis of E-BEH and SoC 

estimation, the techniques based on traditional physics-based, empiricism-based, ECM and their Machine learning and hybrid techniques’ 

breakthrough. The findings of the research cover parameter tuning and its correlation with machine learning, conventional and neural networks, 

the impact of proper parameter tuning on accuracy, and reinforcement learning of energy management. The synthesis of different data inputs and 

the combination of different techniques that can be applied to the nonlinear characteristics of EV batteries are deemed potential to enhance and 

surpass traditional techniques including enhanced Kalman filter kinds. These sophisticated approaches are illustrated through studies in actual 

conditions proving their efficiency in making better charging choices, increasing the life cycle of batteries, and ensuring the battery’s good state 

in harsh environments. The major technology trends emerging for the next level of EV battery management are stated as digital twin models and 

data-centric learning, the standard benchmarking for such systems, data protection through blockchain technology, convergence of edge 

computing, and high computation ability cloud for EV battery management. Issues like the presence of abnormal data, interpretability of developed 

models, restrictions in real-time processing, and scalability are contemplated on somewhat extreme, which gives the reader a balanced perspective 

of state of the art. This review shall present the key findings with an outlook toward the future of EV battery resolution and SoC management 

highlighting that there remains much more to explore and achieve via practical innovation coupled with the leading-edge technologies requisite 

for sustainable and adaptive automotive electrification. 
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I. INTRODUCTION  

a. Overview of Electric Vehicles (EVs) and the importance of 

state-of-charge (SoC) estimation 

What has become apparent therefore is the need to pay 

special attention to the utilization of advanced optimized 

procedures in the charging of Electric Vehicles (EVs) and the 

determination of the lifespan given the rise of the usage of 

renewable energy [1]. Proper battery characterization and SoC 

prediction are crucial to guarantee the high efficiency, 

dependability, and durability of EV batteries in scenarios that 

are often challenging [2]. This review systematically reviews 

the state-of-art approaches for the prognosis of E-BEH and SoC 

estimation, the techniques based on traditional physics-based, 

empiricism-based, ECM and their Machine learning and hybrid 

techniques breakthrough. The findings of the research cover 

parameter tuning and its correlation with machine learning, 

conventional and neural networks, the impact of proper 

parameter tuning on accuracy, and reinforcement learning of 

energy management. The synthesis of different data inputs and 

the combination of various techniques that can be applied to the 

nonlinear characteristics of EV batteries are deemed potential 

to enhance and surpass traditional techniques including 

enhanced Kalman filter kinds [3]–[6]. 

These sophisticated approaches are illustrated through 

studies in actual conditions proving their efficiency in making 

better charging choices, increasing the life cycle of batteries, 

and ensuring the battery’s good state in harsh environments. 

The major technology trends emerging for the next level of EV 

battery management are stated as digital twin models and data-

centric learning, the standard benchmarking for such systems, 

data protection through blockchain technology, convergence of 

edge computing, and high computation ability cloud for EV 

battery management [7]. Issues like the presence of abnormal 

data, interpretability of developed models, restrictions in real-

time processing, and scalability are contemplated on somewhat 

extreme, which gives the reader a balanced perspective of state 

of the art. This review shall present the key findings with an 

outlook toward the future of EV battery resolution and SoC 

management highlighting that there remains much more to 

explore and achieve via practical innovation coupled with the 

leading-edge technologies requisite for sustainable and 

adaptive automotive electrification. 

b. Objectives of the review article 

The review paper has the following objectives: 

• Compare high–level machine learning and hybrid models 

for SoC and lifespan forecast of the battery in EVs. 

• Explore state-of-the-art real-time estimation techniques to 

improve battery performance under varying operations. 

• Assess the implementation of machine learning algorithms 

for efficient energy storage and expected long battery 

lifespan. 

• Analyze traditional methods, emergent opportunities 

difficulties, and gaps in knowledge about the estimation and 

management of battery resources for EVs. 
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• Distinguish the scaling gap between academic and industrial 

models of appropriate and feasible technology solutions for 

EVs in EV batteries. 

c. Brief description of the methodologies covered 

This review discusses different techniques for SoC and life 

estimation of EV batteries based on the application of artificial 

intelligence, namely ML and hybrid models. The conventional 

physics approaches are mentioned as a starting point based on 

which their drawbacks in dealing with complex battery 

dynamics and degradation phenomena are elaborated. The more 

advanced computational techniques discussed include the SVM 

and deep learning modeling for data processing capability, and 

real-time accuracy in prediction. It also features blended 

approaches that use a few algorithms to promote accuracy and 

flexibility in the results. Most attention is paid to the models 

sensitive to real-world features such as temperature or road 

conditions, as well as gaining an effect of age. Other 

applications such as MATLAB simulation and real-time 

estimation methods are also discussed to illustrate their 

applicability in real-life practice. 

II. LITERATURE REVIEW 

Model-based KF techniques track the state of charge (SoC) 

in electric vehicles (EVs). These techniques enable control of 

system noise, uncertainties, and real-time fluctuations making 

them ideal for application in dynamic batteries. Among all the 

derived Kalman filters, the Extended Kalman Filter (EKF) and 

Unscented Kalman Filter (UKF) are applied more frequently to 

cope with nonlinear battery characteristics [8]–[10]. The EKF 

uses modifications to the standard Kalman filter for non-linear 

systems by adopting a linear model around the present 

operating mode. This approach has been used in several studies, 

including developing improved SoC estimation algorithms for 

lithium-ion batteries as described in [11]. Nonetheless, 

linearization leads to errors, and hence, researchers started 

using UKF which uses a deterministic scheme to capture system 

nonlinearity [12]. Furthermore, improvements to the initial 

framework have been made by integrating adaptive filters such 

as the Adaptive Unscented Kalman Filter, as shown in 

interactions about an assessment of the movement of assets and 

hybrid models based on machine learning algorithms like the 

support vector machine [13]. These integrations enhance the 

SoC prediction reliability concerning various operating 

conditions, especially when there is high variation, including 

temperature changes and the effects of aging [14]. 

Furthermore, there is evident implementation of the 

sophisticated Hybrid approach for enhanced prediction 

proficiency. The integration of EKF and LSTM-NN was 

presented for accurate and efficient predictions of battery 

conditions while seamlessly preventing the drawbacks of either 

a model-based or a data-based approach [15]. Another 

interesting addition is the use of two adaptive filters within the 

system, which tunes the Kalman filter coefficients to reflect 

current battery conditions [16]. These improvements enhance 

the estimation of SoC and retain computational algorithms to a 

very great extent. There is a broad appreciation of Kalman 

filtering techniques including their robustness and their ability 

to perform in real-time, yet the application of these techniques 

in lithium-ion batteries is constrained by the nonlinearity of the 

system. For example, conventional EKF approaches are based 

upon linear extrapolations of nonlinear transformations and 

therefore can be off, especially in unusual situations, such as 

when a battery is weak or strong, or if the battery is aged  [8], 

[9], [17], [18]. Such errors may accumulate from iteration to 

iteration leading to unreliable SoC estimation [14]. 

Thus, the battery behavior is nonlinear due to certain factors 

such as the temperature characteristic of the battery, the 

electrochemical reactions that occur in the battery, and capacity 

fade due to battery aging. Depending on the ever-changing 

parameters of the battery, such challenges can be dealt with by 

techniques that are dynamic, and adaptable. For instance, when 

it comes to SoC estimation, sensor drift and bias errors in 

voltage as well as current measurements can be highly 

destructive. This problem has been addressed by researchers 

suggesting the use of extended Kalman filters with sensor bias 

compensation as adopted in studies on enhanced SoC prediction 

accuracy [19], [20]. 

Another source of weakness is that modern sophisticated 

filtering techniques, like UKF and adaptive dual filters, have a 

high computational load. These methods set several initial 

parameters and demand a great number of calculations, which, 

at times, cannot be implemented in the embedded systems used 

in EVs [21]. To overcome these potential challenges simplified 

models such as the Dynamic Linear Model (DLM) used by [22] 

provide efficient though reasonable accuracy. 

Still, real-time adaptability is an essential problem that has 

not been resolved even under these advancements. This was 

achieved through the development of a grey wolf-optimized 

dual extended Kalman filter which self-adapts the filter 

parameters for non-linearities and aging [23]. As for the control 

approaches/features handling the difficulties in terms of 

nonlinear behaviors, it can also refer to the integration between 

machine learning and model-based techniques, for example, 

integrating Kalman filters with deep learning. These 

improvements show the continuing attempts to solve the 

problems of the effective implementation of the traditional 

Kalman filtering model. This has been made possible through 

comparative studies of model-based adaptive algorithms that 

have given insights into different Kalman filtering techniques 

for SoC estimation in EVs [24], [25]. For example, Tian, C, and 

B discussed two model-based adaptive algorithms and 

investigated their effectiveness in real-world EV conditions. 

Peculiarities of the study also accentuated the relationship 

between computational complexity and estimation accuracy 

indicating the importance of developing algorithms that are 

optimal in both of these aspects [26]. 

In [27], an introduction to a simple method to estimate SoC 

using a dynamic linear model where they found the best balance 

between time and accuracy. This approach is most beneficial 

for real-time systems processing, such as embedded systems 

with low computational capabilities. In the same year, Peng et 

al. proposed an adaptive dual unscented Kalman filter which 

possesses the characteristics of adjusting the filter parameters 

during the process of real-time application and hence has 

enhanced performance in dynamic environments. In summary, 
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all these works point to the fact that flexibility in the SoC 

estimation methodologies is desirable. Moreover, there is the 

development of combined methods as another major theme of 

the field. For instance, [28] combined EKF with LSTM 

networks to expound the dynamic battery behaviors avoiding 

the drawbacks of solely adopting the model-based or machine-

learning solution. Following this approach, Qian et al. advanced 

the integration of the dual extended Kalman filters by joining 

them with optimization strategies, a grey wolf optimizer. 

Besides these, there has been some work done on the techniques 

for parameter identification and real-time application of the 

system. Despite efforts made in this area, [29] accomplished 

experimental work in an attempt to establish data-based 

identification parameter techniques that can help to model the 

batteries accurately thus improving the Kalman filtering. Such 

efforts support the fact that future work should consider not 

only theoretical developments but also concerns of real 

applications to derive reliable and accurate SoC estimators for 

EVs. 

a. Machine Learning Approaches 

The new emerging techniques of ML have been 

instrumental in offering novel solutions for improving the 

predictability of battery characteristics, which is a significant 

component of current BMS. SoC, SoH, and temperature 

management of batteries are critical to achieving optimal 

performance, safety, and life of energy storage systems, 

especially EVs [30]. Conventional approaches to predicting 

battery parameters tend to use crude models or assume that 

some influential factors are constant, both of which can grossly 

underestimate the true operating characteristics of a battery 

[31]. This has led to a growing concern in the utilization of ML 

approaches since these enable dynamic changes to be made 

based on actual time data besides enhancing the precision of the 

predictions. 

The ANN, LSTM, and LSTM coupled with RL schemes 

showed a remarkable performance in Battery parameters’ 

prediction [32]. Many of these techniques can capture non-

linear interactions within datasets and hence capture features 

that ordinary models cannot. For example, the LSTM networks, 

which are considered RNNs, are highly suitable for all kinds of 

series data, which allows it to recognize the future states of the 

battery based on various data histories including current, 

voltage, and temperature [33]. 

This shows that ML models can incorporate many input 

variables of cascading effects due to driving conditions, 

charging cycles, and environmental conditions to establish 

complete battery performance [34]. They are always updated 

with new data collected and improve the accuracy of predicting 

the SoC and SoH in even dynamic states. This characteristic is 

important for EVs as battery conditions will likely change with 

the operating conditions. 

Moreover, learning based on the parameters of batteries 

allows the early detection of changes in battery state, increasing 

the charge/discharge cycle, avoiding battery deactivation, and 

extending battery life [35]. As ML techniques advance, they 

provide more reliable and accurate predictions and the 

foundation for creating Generation 2 BMS that operates 

batteries at optimal capacity and dependability. 

These systems integrate ML into conventional SoC 

techniques to boost estimation precision and reduce uncertainty 

in battery systems. These methods are designed to benefit from 

both models' features and avoid the inherent restrictions in each 

of the procedures used individually. Below are some key hybrid 

approaches: 

b. Machine Learning with Kalman Filtering (KF) 

The Kalman filter is a conventional stochastic technique 

that is widely adopted for the prediction of the state of a system 

under uncertain measurements. In battery SoC estimation, 

Kalman filters are adopted since the models enable relating with 

noise as experienced in real-life batteries. Nevertheless, their 

work for optimal control can be with low effectiveness when 

the system dynamics are non-linear or very complex. 

Modifying the conventional filters such as the Kalman 

filters through the integration of machine learning optimizes 

their accuracy by including constant data-based corrections. 

Updating of the KF’s state prediction can be done using an 

NN since it is capable of capturing the non-linear relations 

between input variables (voltage, current, and temperature) and 

the state of the battery and uncertainties inherent in real-world 

battery data [36]. However, their performance can be limited 

when the system dynamics are non-linear or highly complex. 

Hybridizing Kalman filters with machine learning 

techniques enhances accuracy by incorporating real-time data-

driven corrections. For example: 

A neural network (NN) can be used to model the non-linear 

relationships between the input variables (voltage, current, 

temperature) and the battery state, which is then used to update 

the Kalman filter’s state prediction [37]. This makes it easier 

for the Kalman filter to eliminate noise while the neural network 

addresses non-linearity issues. 

c. Machine Learning with Extended Kalman Filtering (EKF) 

The Extended Kalman Filter is a modification of the 

standard Kalman filter for data processing involving systems 

with nonlinear characteristics. Although EKF is effective for 

SOC estimation, it encounters problems if the system's behavior 

is nonlinear as assumed above. 

In a hybrid approach, post-processing/feedback control is 

incorporated wherein neural nets like Support Vector Machines 

(SVM) or Recurrent Neural Networks (RNN) can fine-tune 

EKF-based model parameters or recalibrate the EFK-based 

predicted data as and when real-time data measured is available 

[38]. A deep learning model might be trained to learn the 

battery’s dynamic behavior in real-time and correct the 

estimates made by EKF for the SoC, enhancing SoC estimate 

precision, especially during charge or discharge cycles with 

linearity. The SoC estimation accuracy benefits from an 

improved Thevenin equivalent circuit model alongside Kalman 

filtering because they provide efficient noise reduction to 

identify parameters dependably [39]. 

In hybrid approaches, machine learning models such as 

Support Vector Machines (SVM) or Recurrent Neural 

Networks (RNN) are used to adjust the EKF’s model 

parameters or correct its predictions based on observed data. 
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For example, A deep learning model might be trained to learn 

the battery’s dynamic behavior in real-time and provide 

corrections to the estimates made by EKF, improving SoC 

prediction accuracy, especially under dynamic charging and 

discharging conditions. 

d. Machine Learning with Recursive Least Squares (RLS) 

Recursive least squares are an example of an adaptive 

filtration technique that finds uses in estimating parameters in 

linear systems. When jointly used with ML, the RLS method is 

capable of even modifying for non-linearity and variations in 

the system in real-time [40]. 

For instance, SVM can be applied to the identification of a 

non-linear dependency between the input current and voltage 

with the SoC. The output of the machine learning model is then 

fed to update the RLS filter leading to the ability of the system 

to rapidly update when changes are detected in the battery 

behavior regarding SoC accuracy. It is useful in systems where 

the battery’s behavior does vary over time because of factors 

such as aging or modification in temperature and the use of RLS 

in combination with the ML algorithm enhances the results. 

e. Neural Networks with Traditional Charge Models 

In certain applications, conventional battery charge models 

including the Thevenin equivalent circuit model or Peuker’s 

law are used to derive SoC using voltage and current properties. 

However, these models involve having some parameters that, 

do not capture the dynamic nature of lithium-ion batteries, 

especially in dynamic loading situations. 

An application of the machine learning concept is in using 

neural networks to update the parameters of the charge models 

traditionally used. For example, a neural network can acquire 

the dependency between the battery charge/discharge cycles 

and SoC, which will then modify the values of the charge model 

parameters for better performance. Such an approach can lead 

to a stronger and more correct estimation of SoC, specifically 

in applications that include correct chemistry types of batteries 

or various routines [41]. 

In the previous sections, authors have produced and used 

many real-world cases to show that machine learning can 

enhance the precision and credibility of SoC estimation. These 

studies show how ML algorithms can be used across various 

battery systems and functional parameters, and how they 

provide a better performance than conventional models in some 

instances. Below are some detailed case studies [42]–[45]: 

f. Battery SoC Estimation using Recurrent Neural Networks 

(RNNs) 

A case study performed for the SoC estimation of lithium-

ion batteries in EVs employed Recurrent Neural Networks 

(RNNs). The RNN was chosen because it is capable of 

monitoring temporal dependency in the data which is especially 

crucial in the context of SoC detection as both the battery 

voltage and current strongly depend on the previous 

measurements [46]. 

The presented model utilized the training data derived from 

realistic driving scenarios, which expose different behaviors 

related to electric vehicles such as acceleration, braking, and 

idling time. Compared with the research and traditional 

methods like Coulomb counting which is a straight sum of the 

current through time, the result depicted that the RNN had a 

significant improvement. The proposed in Figure 1 RNN-based 

approach gave even better results and was able to reduce the 

SoC estimation errors by more than 10% in a dynamic driving 

cycle. This case study shows the importance of RNNs when 

modeling intricate, chronologically evolving battery 

characteristics. The diagram outlines a comprehensive 

framework for battery modeling to predict lifetime parameters 

such as State of Health (SOH), Remaining Useful Life (RUL), 

and End of Life (EOL). Key processes include data collection 

and preprocessing, where parameters like voltage (V), current 

(I), and temperature (T) are gathered and cleaned to remove 

noise or missing values. Feature selection focuses on critical 

metrics, such as charge-discharge cycles, to capture degradation 

trends accurately [47]. 

Modeling is divided into empirical, electrochemical, and 

equivalent circuit approaches. Empirical models rely on 

equations like the capacity degradation model, Q(t)=Q0(1−ktn), 

where Q0 is the initial capacity and t is time. Electrochemical 

models simulate physical processes at the electrode level, while 

equivalent circuit models use components like resistors (R1, 

R2) and capacitors (C0) to mimic battery dynamics. Noise can 

be removed for robust predictions by using selective filtering 

algorithms like a Kalman filter; future capacity trends are 

estimated from historical data to arrive At RUL and EOL. 

g. Gradient Boosting Machines (GBM) for SoC Prediction in 

Electric Vehicles 

A case study performed for the SoC estimation of lithium-

ion batteries in EVs employed Recurrent Neural Networks 

(RNNs). The RNN was chosen because it can monitor temporal 

dependency in the data which is especially crucial in the context 

of SoC detection as both the battery voltage and current 

strongly depend on the previous measurements [48]. 

The presented model utilized the training data derived from 

realistic driving scenarios, which expose different behaviors 

related to electric vehicles such as acceleration, braking, and 

idling time. Compared with the research and traditional 

methods like Coulomb counting which is a straight sum of the 

current through time, the result depicted that the RNN had a 

significant improvement. The proposed approach based on 

RNN was found to give even better results and it could reduce 

the estimation errors of SoC by more than 10% in dynamic 

driving cycle. This case study shows how vital RNNs are when 

modeling intricate, chronologically evolving battery 

characteristics. 

h. ML-Enhanced Equivalent Circuit Model for SoC 

Estimation 

In a study that combined machine learning analysis with 

finite-element-based equivalent circuit modeling of the battery, 

an artificial neural network (ANN) was incorporated with the 

common circuit model of a battery [49]. The static parameters 

given by the measurements of the voltage and the current were 

used to dynamically compute the equivalent circuit model using 

the ANN. 
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Figure 1: To estimate the health and lifetime of batteries, modeling is carried out, which can be categorized as the following steps: (a) First, the so-called battery 

metrics that are used for analyzing the state of the battery voltage, current, and temperature are gathered, and then the data are preprocessed to correct the errors 
which can be due to abnormalities, noise, missing values for optimal feature selection; (b) Deploy the battery model with the help of empirical, electrochemical, 

and equivalent circuit models; (c) Use the filtering algorithms to polish test outcomes; (d) Create and display predictive results from the model.[47] 

 

The results of the study also showed that the clock indicated 

by the predictive SoC using the machine learning model was 

reliable, regardless of noise, change in temperatures, device 

aging, etc. Compared to the traditional electrical circuit with a 

similar computation structure alone, the hybrid model improved 

SoC prediction accuracy by 15-20%. This approach is 

especially important when the dynamics of a system are too 

complex to be explainable using classical models of battery 

operations. 

i. Support Vector Regression (SVR) for SoC Estimation in 

Grid-Scale Batteries 

SVR was employed for predicting the SoC of grid-scaled 

batteries employed for energy storage applications. The 

batteries herein were exposed to a high number of cyclic 

chargings and discharging, and their load and temperature 

levels variably and extently shifted. Since these power 

conversion systems exhibit high variability, techniques such as 

Coulomb counting and basic models based on voltage proved 

to be inadequate [50]. 

Using SVR, the system could learn a non-linear relationship 

between the operation conditions of the battery and the SoC. 

The study demonstrated that there was enhanced SoC 

estimation, which in turn improved the existing energy storage 

system for the grid scale. Finally, the investigators found 

evidence to support the applicability of SVR for highly complex 

contexts, where this algorithm can offer a robust means of 

handling vast energy storage. 

III. METHODOLOGY COMPARISON 

SoC has paramount importance for efficient and long-

lasting battery usage in any application, starting with electric 

vehicles and continuing with renewable energy storage stations. 

Two general techniques that have been proposed for addressing 

this problem are Kalman-based methods and machine learning 

(ML) techniques. The following tables are the full comparison 

of the two algorithms and their efficiency insights from studies 

and experiments while also including their advantages and 

drawbacks [51]. 

a. Comparison between Kalman-based methods and machine 

learning approaches. 

Table 1 describes the comparison between the Kalman and 

machine learning-based approaches in terms of different 

methodologies. 

Among the Kalman-based methods, EKF is most commonly 

used in the estimation of SoC because of its efficiency in linear 

systems. These methods use battery ECM to estimate and 

compensate the SoC by reducing the difference between 

computed and actual states. Nonlinearities are managed in the 

EKF using linearization of the battery model at each step in the 

control process and to the modern developments of its better 

versions such as the Unscented Kalman Filter (UKF) and the 
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Constrained Ensemble Kalman Filter (CEKF) to work on 

highly nonlinear systems. The recent research asserts that EKF 

has been as accurate as CKF and works well for steady state as 

well as moderate dynamic variation. Better variants such as 

UKF have been used to increase real-time adjustability and 

minimize computational complexity. UKF has been applied to 

enhance real-time adaptability and reduce computational 

demands. 

 
TABLE 1: Methodology Comparison b/w Kalman-based Methods and 

Machine Learning Approaches 

Aspect 
Kalman-Based Methods 

[52]–[57] 

Machine Learning 

Approaches [55], [58]–

[61] 

Principle 

Relies on mathematical 

modeling and state 

estimation. 

Utilizes data-driven 

models to learn patterns 

from data. 

Input Requirements 

Requires a detailed system 
model (e.g., battery 

dynamics, noise 

characteristics). 

Requires large datasets 
for training but minimal 

prior knowledge of the 

system. 

Adaptability 

Limited to the modeled 

dynamics; struggles with non-
linear or time-varying 

systems. 

Highly adaptable to 

non-linear, dynamic, 
and complex systems. 

Real-Time 

Application 

Performs well in real-time 

due to lower computational 
requirements. 

May face challenges in 

real-time applications 
due to high 

computational demands, 

depending on the 
model. 

Robustness

 

to Noise 

Handles noise effectively, 

especially in systems with 

Gaussian noise. 

Performance depends 

on the quality and 

representativeness of 
the training data. 

Accuracy 

Accuracy depends on the 
quality of the underlying 

model. 

Often more accurate, 
especially in complex, 

non-linear scenarios. 

Scalability 

Scales poorly with system 

complexity as the state space 
grows. 

Scales well with 

increased complexity 
and data availability. 

Implementation 

Straight-forward 
implementation but requires 

expertise in system modeling. 

Implementation can be 
challenging due to the 

need for large datasets 

and model training. 

 

There are other approaches to solve the problem which 

come under the category of Machine learning (ML) methods 

like Recurrent Neural Networks (RNNs), Long Short-Term 

Memory (LSTM) networks, Support Vector Machines (SVMs), 

etc. They use past and current data to incorporate non-linear 

dynamics into the SoC estimation process. Recurrent variants 

of an ML model, such as LSTMs, perform better in identifying 

LT dependencies as well as in working successfully under the 

constantly changing environment, giving better results where 

battery behavior might be extremely nonlinear [62]. It has been 

established that, under variable conditions, while using RNNs 

or hybrid models that incorporate other techniques including 

SVMs with more traditional approaches, the accuracy is 

between 20-30% higher than that of Kalman-based techniques 

[63]. ML models, combining techniques such as SVMs with 

traditional methods, have demonstrated a 20-30% improvement 

in accuracy over traditional Kalman-based methods under 

varying conditions. 

b. Strengths and weaknesses of each methodology. Kalman 

and Machine Learning-Based Methods 

The strengths of Kalman based Methods are as follows 

[64]–[66]: 

(i) Linearizing Transformations: 

(ii) Applicable to systems with extreme nonlinearity are 

applicable 

(iii) Easy to implement: linear or moderately complex 

systems. 

(iv) Particularly useful in applications that require ‘real-

time’ performance compared to other techniques to 

relatively low computational complexity near systems. 

The weaknesses of Kalman-based Methods are as follows 

[65], [67], [68]: 

(i) Sensitive to highly nonlinear and dynamic battery 

behaviors have to be recalibrated often or the model 

has to be improved. 

(ii) Watches for perturbations such as changes due to 

aging of the battery affecting many of the model 

parameters recalibration or model enhancements 

(iii)  Sensitive to model inaccuracies, such as parameter 

changes due to battery aging. 

The strengths of Machine Learning Approaches are as 

follows [69]–[71]: 

(i) Good working capacity in terms of dynamic and 

nonlinear work patterns owing to flexibility gained 

through learning. 

(ii) Allows the incorporation of many more parameters 

than previous methods including temperature and load 

profiles for a more accurate estimation of SoC. 

(iii) A better performance in counteracting the effects of 

battery aging and degradation.Capable of 

incorporating a wide range of features, including 

temperature and load profiles, for more holistic SoC 

estimation. 

(iv) Superior performance in handling battery aging and 

degradation effects. 

The weaknesses of Machine Learning based Approaches are 

[71]–[73] : 

(i) NeEds large training datasets and computational 

power especially when training the model. 

(ii) Sensitive to over-fitting and issues of data quality that 

inevitably threaten the generality of the results 

(iii) Model development phase 

(iv) Vulnerable to overfitting and data quality issues, 

which can compromise generalization. 
(v) Performance analysis based on recent studies and 

experimental results. 
Some experiments on the use of the UKF show incredibly 

high accuracy for real-time SoC estimation under relatively 

dynamic loads. Nevertheless, they deteriorate with nonlinear 

battery systems or when the aging effect comes into play. The 

battery SoC real-time tests revealed estimation errors of up to 

15% when using the Kalman filter on degraded batteries that 

have not been recalibrated. Decreases as battery systems 

become more nonlinear or experience aging effects. Real-time 

tests have shown up to a 15% deviation in SoC estimates when 
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Kalman filters are applied to degraded batteries without 

recalibration. 

Experiments by LSTM networks demonstrated a possibility 

of achieving up to 92% accuracy in SoC estimation, which is 

always higher compared to the nonlinear case of EKF. A 

comparison of the RNN-based models proved that there is a 

25.35% saving in battery degradation utilizing a 5-year 

simulation, which works as an indication of the capability of 

proposed models to include the aging factor into SoC estimation 

[74]. Techniques that supplemented UKF with SVMs or other 

conventional methods were up to 30% more accurate for 

estimating SoC than Kalman techniques alone. Terry 

degradation over a 5-year simulation, emphasizing their 

capability to incorporate aging factors into SoC predictions. 

Hybrid approaches combining ML with traditional methods, 

such as integrating UKF with SVMs, achieved up to a 30% 

reduction in SoC estimation errors compared to standalone 

Kalman methods. 

c. Kalman-Based Methods: 

The following are the Kalman-based methods and case 

studies for the SoC of EVs: 

(i) Experiments by LSTM networks demonstrated a 

possibility of achieving up to 92% accuracy in SoC 

estimation, which is always higher compared to the 

nonlinear case of EKF. 

(ii) A comparison of the RNN-based models proved that 

there is a 25.35% saving in battery degradation 

utilizing a 5-year simulation, which works as an 

indication of the capability of proposed models to 

include the aging factor into SoC estimation [75]. 

(iii) Techniques that supplemented UKF with SVMs or 

other conventional methods were up to 30% more 

accurate for estimating SoC than Kalman techniques 

alone. The degradation over a 5-year simulation, 

emphasizes their capability to incorporate aging 

factors into SoC predictions [75]. 

(iv) Hybrid approaches combining ML with traditional 

methods, such as integrating UKF with SVMs, 

achieved up to a 30% reduction in SoC estimation 

errors compared to standalone Kalman methods [76]. 

d. Machine Learning Approaches: 

Below are the case studies and experimental analysis of 

machine learning-based approaches for SoC of EVs: 

(i) Case Study 1: In the case of utilizing Recurrent Neural 

Networks (RNNs) to determine SoC in electric 

vehicles, the dependent application demonstrates 

enhancements in the estimation mistake by over 10 % 

compared to the traditional approach [77]. RNN 

showed excellent results in terms of temporal 

dependencies making it easy for the navigation system 

to deal with dynamic aspects of driving conditions. 

(ii) Case Study 2: For grid-scale battery systems, the 

outstanding technique that was used was known as 

Gradient Boosting Machines (GBMs). Concerning 

load variability, equivalent circuit models were 

deemed to be inadequate, but GBMs improved SoC 

estimate accuracy by 5% and eliminated errors of up to 

8% [78]. 

(iii) Strengths in Real-World Applications: Nonlinear and 

time-varying behaviors were also well accommodated 

in machine learning models, whereas some of the 

mixed models obtained error rates of 1-2% [79]. 

(iv) Challenges: Analyses pointed out that scarce rich data 

sets and the resource-intensive nature of training 

massive models would hold back the usage of ML in 

several real-time use cases. 

(v)  EV charging management has expanded substantially 

in respected academic publications while integrating 

methods like SoC estimation with advanced machine 

learning approaches (ANN and Deep Learning) for 

predictive and optimization functions. various tools 

are used for EV charging management, with C++, 

MATLAB, and Python being the most commonly 

used to enhance the efficiency of charging 

management and optimization.[80]. 

e. Hybrid Methods: 

The Kalman filters, specifically the Extended Kalman 

Filtering (EKF) and the Unscented Kalman Filtering (UKF) 

technique have been the fundamental blocks for the SoC 

estimation. However, to overcome their limitations in highly 

nonlinear systems, the following novel adaptations have been 

introduced: 

(i)    Dual Unscented Kalman Filters (DUKF): These 

algorithms address not only the identification of 

parameters in real time but also the estimation of the 

system state in real time. Peng et al. showed that 

DUKF adaptively estimates battery behaviors well in 

practice and therefore can adapt to new battery 

behaviors when observed. 

(ii) Modified Extended Kalman Filters (MEKF): These 

filters also implement corrections for the sensor bias 

and the environmental effect thus martialing the 

resilience in various situations. 

(iii) Constrained Ensemble Kalman Filter (CEKF): 

Developed by [81], CEKF utilizes various distributed 

electrochemical models for estimating SoC, which has 

better scalability when applied in a large system. 

IV. RECENT INNOVATIONS 

a. Overview of novel algorithms developed for SoC 

estimation. 

(i)   Kalman-Based Adaptive Algorithms 

The SoC estimation has been mainly founded on Kalman 

filters such as the Extended Kalman Filter (EKF) and 

Unscented Kalman Filter (UKF). However, to overcome their 

limitations in highly nonlinear systems, the following novel 

adaptations have been introduced: 

• Dual Unscented Kalman Filters (DUKF): These algorithms 

are used for the identification of parameters in real-time as 

well as state estimation in real-time. In Peng et al.’s study, 

the authors proved that the DUKF can work well in response 

to changes in battery behaviors. 

• Modified Extended Kalman Filters (MEKF): These filters 
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include compensation for the sensor bias and environmental 

factors in order to provide higher immunity in different 

conditions. 

• Constrained Ensemble Kalman Filter (CEKF): Originally 

suggested by Li et al., CEKF utilizes distributed 

electrochemical models for SoC estimation, and is suitable 

for large-scale applications. 

(ii) Machine Learning Algorithms 

Machine learning models have introduced a data-driven 

approach to SoC estimation, leveraging their capacity to model 

complex, nonlinear behaviors: 

• Support Vector Machines (SVM): As used for regression 

problems, SVMs have been found to yield better results in 

situations where other approaches fail, for instance when the 

input data has large dimensionality. 

• Recurrent Neural Networks (RNN): These models are 

particularly good at modeling temporal dependencies and 

thus are able to provide dynamic SoC estimations that are 

sensitive to the operating conditions. Huang et al. claimed 

that RNN-based models helped to reduce the errors in SoC 

prediction by 12.58% [82]. 

• Long Short-Term Memory (LSTM): LSTMs expand RNN 

capabilities by solving the vanishing gradient issue, which 

is crucial for monitoring battery degradation and minor 

performance changes over time. 

(iii) Hybrid Deep Learning Algorithms 

• A multiple-algorithm deep learning prediction model with 

improved performance achieved a high convergence rate 

and fewer error numbers in SoC estimation. 

• [83] Proposed the use of a less complex dynamic linear 

model along with corrections through machine learning 

while lessening the computational loaded learning 

prediction model integrating multiple algorithms provided a 

fast convergence rate and reduced error numbers in SoC 

estimation. 

• [83] Also introduced a simplified dynamic linear model 

paired with machine learning corrections, streamlining 

computational requirements without compromising 

accuracy. 

b. Hybrid methods combining adaptive filtering and machine 

learning techniques for enhanced accuracy 

Adaptive filtering and machine learning are combined in 

hybrid methods to eliminate their weaknesses while keeping the 

benefits of both. These techniques are used extensively for 

handling nonlinearities as well as noise that is inherent to 

battery systems and their dynamic behavior. 

(i)-   Adaptive Filtering Techniques 

Filters such as EKF, UKF, and their modifications are more 

suitable for real-time applications, but accurate models are 

required and can perform poorly when confronted with highly 

nonlinear systems. To overcome these limitations, they have 

integrated them with machine learning solutions. 

(ii)-  Integration with Machine Learning 

• EKF with Support Vector Machines (SVM): When 

extending the EKF with SVMs, the parameters of the filter 

can be adjusted in real-time, thereby enhancing the 

performance of the filter for non-linear dynamics. 

• UKF with Neural Networks (NN): However, in situations 

where standard filters do not work well UKF’s state 

predictions are corrected by neural networks. 

• Dual Adaptive Filters and ML Models: [84] developed a 

grey wolf optimization fused with two simplified EKFs for 

the parameters' dynamic selection, making the method more 

adaptive and efficient. 

• Enhanced Kalman Filters with LSTM: The Combination of 

LSTMs with EKF, which enabled the model to use both the 

historic data and the correct real-time data for SoC 

estimation, and this gave a high level of accuracy for Li–

NiCoMnO₂/graphite batteries. 

(iii)-  Benefits of Hybrid Methods 

• Increased ability to resist sensor noise and changes in 

environment. 

• Improved capability to deal with calendar and cycle aging 

of batteries and other operating conditions. 

• Enhanced adaptability in nonlinear and dynamic settings 

that can be illustrated by up to 30% error decrease in 

contrast to standalone approaches at operating conditions. 

• Increased accuracy in nonlinear and dynamic scenarios, 

with error reductions of up to 30% compared to standalone 

methods. 

c. Insights into real-time prediction models and their 

implications in practical applications. 

Real-time SoC prediction models are crucial for accurate 

battery performance, safety, and durability to meet demanding 

requirements of use cases such as EVs where conditions vary 

frequently. The embedded system uses Kalman-based real-time 

models to predict SoC requirements. Their speed-led 

calculations work efficiently enough for electric vehicle 

systems. The evidence shows both UKF and CEKF generate 

reliable predictions during rapid speed changes and dynamic 

vehicle load demands allowing for quick updates, making them 

suitable for EV applications. For example, UKF and CEKF 

have demonstrated the ability to maintain accurate predictions 

even under high-speed variations and dynamic loads. 

The use of machine learning models RNNs and LSTMs 

improves real-time SoC predictions by learning from actual 

data operations. Key applications include: Dynamic Adaptation 

ML models continuously revise their prediction results as new 

datasets arrive which proves valuable in many live driving 

environments. RNNs reach 92% effective performance when 

used in real-time systems [85]. Battery Aging Mitigation 

LSTM-based models use aging information to provide reliable 

battery state of charge estimates from start to end of battery life. 

The use of LSTM and EKF by Xu et al.in Step-of-charge 

prediction delivered real-time results 15- 20% more precise 

than earlier approaches. Engineers use adaptive filters together 

with machine learning enhancements to produce precise and 

dependable predictions in different operating environments 

with real-time SoC prediction with a 15-20% improvement in 

accuracy over traditional models [86]. Dual adaptive filtering 

with machine learning corrections has been employed to 

optimize predictions in varying conditions, ensuring robustness 

and reliability. Research assesses the application of Tensor 

Flow NN models for real-time Remaining Useful Life (RUL) 
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prediction that reaches 93% accuracy as well as their 

operational efficiency within restricted resource settings 

through features optimization combined with performance 

evaluations [87]. 

d. Practical Implications 

Real-time prediction models have critical implications for 

battery management systems: 

• Improved Energy Efficiency: Battery efficiency increases 

when we use real-time calculations to manage energy 

usage and extend driving distances. 

• Enhanced Safety: Real-time SoC measurement stops 

battery issues before they create safety hazards. 

• Prolonged Battery Lifespan: Accurate SoC and aging 

measurements help users maintain perfect battery upkeep 

for better battery life. 

Scientists make important progress in SoC estimation by 

developing innovative prediction tools that use multiple 

techniques in real time. Researchers enhance SoC estimation by 

combining machine learning and adaptive filtering techniques 

to solve battery nonlinearity issues while predicting dynamic 

changes and monitoring aging patterns. Better battery control 

systems are helping electricity storage become standard for 

electric vehicle adoption. 

IV. POTENTIAL CHALLENGES AND CONSTRAINTS 

a. Current limitations in SoC estimation methodologies 

SoC estimation methodologies face several challenges that 

impact their accuracy, adaptability, and scalability: 

1. Dynamic Non-linear Behavior: Traditional battery 

monitoring approaches are unable to handle the system's 

rapid shifting behavior that results from temperature 

changes, loading variations, and the natural degradation 

process. The methods produce poor estimates when 

batteries experience fast changes in speeds or when electric 

vehicles brake to charge the battery. 

2. Computational Complexity: The systems yield very precise 

outcomes yet need substantial computing systems to work. 

The complexity of these processes reduces reactiveness 

when used on embedded systems that have restricted 

computational power. 

3. Data and Model Uncertainties: Most techniques learn from 

old data sets that might have measurement errors or miss 

important environmental changes. Such inconsistencies in 

training data lower the confidence level of our prediction 

systems. 

4. Calibration Challenges: The task of getting exact battery 

charging status measurements presents challenges because 

of calibration requirements when facing different usage 

scenarios. The need for regular battery calibration grows 

because battery materials, temperature, and daily usage 

patterns keep changing. 

5. Real-Time Implementation: The slow processing speed of 

complex models makes it hard to perform accurate power 

state estimation in real-time. The processing delay makes it 

hard to respond quickly when making energy decisions. 

Electric vehicle SoC estimation benefits from machine 

learning since it improves accuracy rates and operational 

speed along with battery life duration and handles issues 

regarding available data and real-time processing 

requirements [3].  

b. Future research areas and potential advancements in the 

field. 

Future advancements in SoC estimation are geared toward 

addressing these limitations through innovative techniques: 

1. Hybrid Models: Conducting joint operations between 

machine learning techniques and physics-based models 

shows real potential. By uniting knowledge from data 

analysis with basic physical laws we get high-accuracy 

results at a reasonable processing speed. 

2. AI Hardware Acceleration: Real-time SoC estimation 

becomes possible through GPU and TPU hardware systems 

that speed up complex models. 

3. Transfer Learning: Applying learnings from similar subject 

areas makes models adaptable to many conditions and 

speeds up their modification process. 

4. Data Augmentation and Quality Improvement: Synthetic 

data creation plus enhanced preprocessing techniques help 

train models well when real training data is limited. 

5. Integration with Edge Computing: By using edge 

computing platforms for real-time SoC estimation we 

decrease our reliance on cloud infrastructure and make 

processing faster. 

c. Emphasis on the need for robust uncertainty handling and 

real-time applications. 

1. Quantification of Uncertainties: Machine learning systems 

give battery status forecasts with reliable probability scores 

to express prediction confidence levels. The approach 

supports clear decisions under conditions where the 

outcome is not clear. 

2. Dynamic Adaptation: The models automatically track 

shifting battery conditions and user activity patterns through 

self-learning algorithms to preserve their accuracy levels. 

3. Scalable Real-Time Solutions: The EKF and adaptive 

neural networks help produce reliable SoC predictions at 

fast speeds through efficient calculation methods. 

4. Integration with IoT and Big Data: The pairing of IoT 

sensors and big data tools lets us track and refine battery 

models to work better in any situation. 

5. Resilience to Noise and Anomalies: Leading-edge data 

cleaning methods combined with effective error handling 

systems protect battery state of charge estimations from 

unpredictable input data problems. 

V. CONCLUSION 

The study reveals important progress in electric vehicle SoC 

estimation as new technologies advance including machine 

learning and combined methods. Research shows that both the 

Extended Kalman Filter (EKF) and Unscented Kalman Filter 

(UKF) are effective tools for State-of-Charge (SoC) estimation 

because they excel at dealing with noise and uncertainty. 

Battery models need precise accuracy while the non-linear 

nature of systems poses challenges to their expanded use. At 

their core Equivalent Circuit Models and electrochemical 

models excel in SoC estimation yet these solutions prove less 
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effective in scaling and handling dynamic battery behavior in 

real time. Recurrent Neural Networks (RNNs) and Long Short-

Term Memory (LSTM) models detect patterns in time 

sequences and understand non-linear connections to create 

better estimates for dynamic circumstances. Support Vector 

Machines (SVMs) prove useful because they work well with 

high-dimensional and noisy data across different operating 

conditions. Hybrid machine learning models enhance 

prediction results by improving accuracy and quick 

performance when dealing with batteries and changing 

environments. Machine learning approaches that merge AI 

methods with conventional techniques deliver superior SoC 

estimation results compared to single-system solutions relying 

on machine learning (ML) techniques and hybrid approaches.  

Kalman filters, particularly the Extended Kalman Filter (EKF) 

and Unscented Kalman Filter (UKF) have been extensively 

used for SoC estimation due to their robustness in handling 

noise and uncertainties. However, their dependence on accurate 

battery models and limitations in non-linear systems restrict 

their adaptability. Equivalent Circuit Models (ECMs) and 

electrochemical models provide a strong foundation for SoC 

estimation but struggle with scalability and real-time 

implementation under dynamic conditions. RNNs and LSTM 

models excel in capturing sequential dependencies and non-

linear relationships, significantly improving SoC estimation 

accuracy in dynamic and complex scenarios. SVMs have 

demonstrated robustness in handling high-dimensional and 

noisy data, making them effective in diverse operating 

conditions. The performance of SVM surpasses Decision Tree 

when used to forecast SoC and Battery Voltage and Cabin 

Temperature during summer travel because it generates lower 

Mean Squared Error ratings [88]. By combining multiple 

machine learning techniques, hybrid models improve 

generalizability, convergence speed, and accuracy, especially in 

cases involving battery aging and environmental variability. 

Hybrid methods that combine machine learning with traditional 

techniques, such as EKF-SVM or RNN-UKF, have proven to 

address the limitations of standalone models. The methods use 

Kalman filters' signal processing strength alongside ML's 

adaptability and precision features. Machine learning 

algorithms now keep real-time SOC estimates up to date by 

learning how drivers use their batteries and how these batteries 

perform. The connection to IoT/edge technology improves 

immediate system functionality. Adding battery aging models 

to state-of-charge systems helps predict battery life more 

precisely to extend battery life and decrease wear. Predicting 

the battery state of charge remains difficult due to demanding 

processing needs and strict requirements for accurate high-

quality data inputs that affect all ML methods and battery 

behaviors. Integration with IoT and edge computing further 

enhances real-time capabilities. Incorporating aging models 

into SoC estimation frameworks allows for accurate predictions 

over the battery’s lifecycle, reducing degradation and 

prolonging lifespan. SoC estimation methodologies face 

challenges such as high computational complexity, dependency 

on large datasets for ML models, and sensitivity to data quality 

and noise. Real-time application on embedded devices 

continues to limit system performance. This study looks at the 

development of EV State-of-Charge estimation through 

Machine Learning applications while identifying the main 

obstacles in this field.  The EKF and UKF-based Kalman filters 

have become essential tools for SoC estimation due to their 

superior ability to handle uncertain data. Their accuracy and 

non-linear capabilities limit their ability to work with imperfect 

battery models. The foundation of state-of-charge estimation by 

Equivalent Circuit Models and electrochemical models proves 

useful but both systems have limitations in quick response and 

adapting to changing battery behavior. When battery aging 

models are included in SoC estimation tools they track battery 

health accurately across all usage stages to improve lifespan. 

SoC prediction algorithms confront problems related to time-

consuming processing and require large amounts of clean data 

to work properly stations for standalone models. These methods 

leverage the noise-handling capabilities of Kalman filters while 

incorporating ML's adaptability and precision. Advances in 

real-time SoC estimation have been driven by ML algorithms 

capable of instantaneous adaptation to changing driving 

patterns and battery behaviors. Integration with IoT and edge 

computing further enhances real-time capabilities. 

Incorporating aging models into SoC estimation frameworks 

allows for accurate predictions over the battery’s lifecycle, 

reducing degradation and prolonging lifespan. SoC estimation 

methodologies face challenges such as high computational 

complexity, dependency on large datasets for ML models, and 

sensitivity to data quality and noise. The integration of real-time 

sensors within embedded systems faces performance limits. 

Final thoughts on the evolution of SoC estimation methods and 

their impact on the EV industry. SoC estimation technology has 

progressed from basic physical modeling to data-based and 

blended estimation methods. The rise in EV system complexity 

requires precise real-time energy management tools to fulfill 

current requirements. Enhanced Performance and Efficiency: 

EVs achieve better efficiency and extended range by using 

accurate estimates of their battery power level. Improved 

Battery Longevity: Battery lifetime increases and replacement 

costs decrease when we use aging-aware prediction models. 

Accurate battery status monitoring reduces range fears which 

creates a better EV adoption rate. The EV sector can meet its 

sustainability targets more effectively when new battery 

monitoring methods deliver enhanced efficiency and waste 

reduction. Hybrid methods fix SoC estimation problems by 

joining proven techniques with machine learning technology. 

The pairing enables systems to handle challenging processes 

that change rapidly in batteries across multiple chemistry types. 

SoC estimation systems become more flexible and work in real-

time through cloud-edge platforms that combine big data 

analysis and Internet of Things technology. Emerging models 

need to perform efficiently while maintaining quick response 

times for integration into embedded systems. The combination 

of AI analysis with blockchain protection will boost SoC 

estimation system trustworthiness and visibility. The industry 

can better adopt new methods when we create universal testing 

requirements and measuring standards for fair comparison. The 

battery industry builds progressive methods by combining 

Kalman filters with hybrid machine learning to enhance battery 

performance standards as new techniques emerge. These 
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improvements boost EV performance while helping them 

become more popular and supporting worldwide efforts to 

make the world more sustainable. Technology progress will 

bring improved energy storage solutions through advanced 

methods that will make SoC estimation essential for future 

electric vehicle development. 
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