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Abstract— This paper presents a dual-band patch antenna optimized using reinforcement learning (RL) for V2X communication in automotive 

systems. Designed for the 24 GHz and 28 GHz bands, the antenna uses Rogers RT5880 substrate with a 0.787 mm thickness and maintains a 

compact form factor of 20 mm x 20 mm. RL-based optimization improves return loss and radiation efficiency under automotive deployment 

constraints. HFSS simulation results confirm effective S11 performance, radiation pattern, and efficiency. This work demonstrates how AI-based 

design can accelerate next-generation vehicular antenna development. 
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I. INTRODUCTION  

The rapid advancement of intelligent transportation systems has 

fueled the development of Vehicle-to-Everything (V2X) 

communication, a critical component enabling real-time data 

exchange between vehicles, infrastructure, pedestrians, and 

networks. As vehicles evolve into connected nodes within a 

broader ecosystem, the demand for reliable, high-speed, and 

low-latency communication continues to grow. The emergence 

of 5G technology—particularly in the millimeter-wave 

(mmWave) frequency bands such as 24 GHz and 28 GHz—

offers promising solutions for meeting these communication 

requirements. However, leveraging these high-frequency bands 

in dynamic automotive environments presents several 

challenges, including antenna miniaturization, high gain, wide 

bandwidth, and robust directional performance. 

Patch antennas are highly favored in automotive systems 

due to their compact size, ease of fabrication, and compatibility 

with planar and conformal structures. Yet, traditional design 

approaches struggle to efficiently optimize antenna parameters 

for dual-band performance under size and environmental 

constraints. To address this, artificial intelligence (AI), 

particularly reinforcement learning (RL), is increasingly being 

adopted to enhance the antenna design process. Reinforcement 

learning algorithms can iteratively explore vast design spaces, 

learning optimal geometric and feed configurations based on 

performance feedback from electromagnetic simulation tools 

such as HFSS. 

This paper introduces a compact, AI-optimized, dual-band 

patch antenna designed specifically for V2X communication at 

24 GHz and 28 GHz. Using Rogers RT5880 as the substrate, 

the antenna maintains a small footprint of 20 mm × 20 mm 

while achieving high return loss, radiation efficiency, and gain 

in both target bands. A reinforcement learning agent is 

implemented to guide the design process, optimizing structural 

parameters to meet automotive communication demands. The 

proposed design is validated using full-wave simulations, and 

fabrication considerations are presented for practical 

deployment in vehicle-mounted systems. This research 

demonstrates the synergy between AI and electromagnetics in 

developing next-generation automotive antenna systems. 

II. ANTENNA DESIGN AND METHODOLOGY  

The design of the proposed antenna targets dual-band 

operation at 24 GHz and 28 GHz for 5G-based V2X 

communication, with a strict form factor constraint of 20 mm × 

20 mm, suitable for integration in automotive systems. A 

rectangular microstrip patch antenna topology is chosen due to 

its simplicity, low profile, and planar nature, making it ideal for 

vehicle surfaces such as rooftops or bumpers. 

Fig. 1: AI Enhanced Dual Band Patch Antenna 
 

The antenna is built on a Rogers RT5880 substrate, which 

offers excellent high-frequency performance due to its low 

dielectric constant (εr = 2.2) and low loss tangent (tanδ = 

0.0009). The substrate thickness is selected as 0.787 mm to 

balance between mechanical stability and electrical 

performance at millimeter-wave frequencies. 

To achieve dual-band resonance, two techniques are 

employed. First, the patch is designed with two precision-

etched slots that enable mode coupling and generate separate 

resonances around 24 GHz and 28 GHz. The slots modify the 

surface current distribution, allowing control over multiple 

resonant frequencies without significantly increasing the 

antenna size. Second, the feed line is carefully tuned to match 
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the impedance and bandwidth requirements using a microstrip 

inset feed technique. 

The dimensions of the patch and slots are initially estimated 

using classical transmission line models and resonant frequency 

equations: 

𝑓𝑟  = 
𝐶

2𝐿√𝜀𝑒𝑓𝑓
 

Where 𝑓𝑟 is the resonant frequency, C is the speed of light, L is 

the effective length of the patch, and eff is the effective 

dielectric constant. 

These initial values are then refined through full-wave 

electromagnetic simulation in HFSS and further optimized 

using a reinforcement learning (RL) algorithm. The RL agent 

explores the antenna design space by iteratively modifying 

parameters such as slot dimensions, patch length, and feed 

position. It receives a reward based on return loss (S11 < –10 

dB), gain, and efficiency over the target frequency bands. 

This hybrid approach of model-based initialization followed 

by AI-driven optimization allows for a compact, high-

performance antenna design tailored for real-world V2X use 

cases. 

III. AI OPTIMIZATION USING REINFORCEMENT LEARNING 

Reinforcement Learning (RL) is a powerful branch of 

artificial intelligence where an agent learns to make decisions 

by interacting with an environment and receiving feedback in 

the form of rewards or penalties. In this work, RL is employed 

to optimize the patch antenna design for dual-band operation at 

24 GHz and 28 GHz under strict size constraints, ensuring 

optimal performance for V2X communication systems. 

The optimization process treats the antenna’s geometrical 

parameters—such as patch length, slot width, slot position, and 

feed point location—as the agent’s actions. The environment is 

a full-wave electromagnetic simulator (HFSS), which returns 

performance metrics like return loss (S11), gain, and efficiency. 

The RL agent iteratively modifies the design, receives 

feedback, and updates its strategy to maximize a cumulative 

reward function. 

The reward function is defined to prioritize designs where: 

● S11 < –10 dB at both target frequencies 

● Radiation efficiency > 75% 

● Compact size maintained under 20 mm × 20 mm 

The learning process continues until convergence is 

achieved, meaning no significant improvements are observed 

over several iterations. 

This AI-driven approach drastically reduces manual trial-

and-error design time while exploring a broader design space 

more efficiently. It also adapts better to multi-objective 

optimization scenarios, where several performance criteria 

must be balanced simultaneously. 

Below is the flow diagram showing the reinforcement 

learning-based optimization loop: 

Reinforcement Learning Optimization Flow 

 
Fig. 2: RL-based antenna design optimization cycle, involving geometry 

selection, HFSS simulation, reward evaluation 

 

The below tabular form summarizes the key mathematical 

components involved in optimizing a dual-band patch antenna 

using reinforcement learning (RL). At the core of the process is 

the state vector s_t, which captures the antenna’s geometrical 

and material parameters, such as patch dimensions, feed 

positions, substrate permittivity, and target frequencies (24 

GHz and 28 GHz). The action vector a_t represents design 

modifications applied to the current state, guiding the agent in 

exploring the design space. 

Once an action is selected, the updated design is evaluated 

using electromagnetic simulation software like HFSS, yielding 

a new state s_{t+1} and performance metrics. These metrics—

such as gain (G_t), efficiency (\eta_t), and reflection 

coefficients (|S_{11}|)—are combined in a reward function 

R_t, which quantifies the effectiveness of the current design. 

The reward guides the agent’s learning process. 

The policy function \pi_\theta(a_t|s_t) maps states to 

actions, and is optimized using policy gradient methods. The 

advantage function A_t refines this learning by comparing the 

current reward with a baseline, helping the agent focus on 

meaningful improvements. Together, these mathematical 
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elements form a closed-loop optimization system tailored for 

intelligent antenna design. 

 
TABLE 1: Mathematical expression 

Component Mathematical Expression Description 

State Vector 
s_t 

[L_p^t, W_p^t, x_f^t, y_f^t, 
f_1, f_2, \epsilon_r, h] 

Antenna design 
parameters at time step 

t 

Action 
Vector a_t 

[\Delta L_p, \Delta W_p, \Delta 
x_f, \Delta y_f] 

Design changes to 
patch and feed position 

State 
Transition 

s_{t+1} = \text{Simulate}(s_t + 
a_t) 

HFSS simulation 

generates new state 
after applying design 

change 

Reward 

Function 
R_t 

$begin:math:text$w_1 G_t + 

w_2 \eta_t - w_3 
S_{11}(f_1) 

Policy 

Function 
$begin:math:text$\pi_\theta(a_t s_t)$end:math:text$ 

Policy 

Gradient 

$begin:math:text$\nabla_\theta 
J(\pi_\theta) = \mathbb{E} \left[ 

\sum \nabla_\theta \log 

\pi_\theta(a_t 

s_t) \cdot A_t 

\right]$end:math:text$ 

Advantage 
Function 

A_t 

A_t = R_t - b(s_t) 

Measures how much 

better an action is 

compared to average 
(baseline) 

IV. SIMULATION AND AI OPTIMIZATION RESULTS 

The simulation and optimization results validate the 

effectiveness of the reinforcement learning (RL)-driven design 

process in enhancing the performance of the dual-band patch 

antenna. The antenna was modeled and simulated using Ansys 

HFSS, and the RL agent iteratively optimized key geometrical 

parameters to achieve desired performance metrics at 24 GHz 

and 28 GHz. 

After multiple training episodes, the optimized antenna 

design achieved resonance at 24.1 GHz and 27.9 GHz with 

return loss (S11) values of –23.4 dB and –25.6 dB, 

respectively—well below the –10 dB threshold, indicating 

excellent impedance matching at both bands. The bandwidths 

for each band also exceeded 1 GHz, offering reliable 

communication within the 5G mmWave spectrum.  

 
Fig-3: Return loss (S11) values of –23.4 dB @24GHz and –25.6 dB @28GHz, 

respectively 

 

The simulated radiation patterns confirmed broadside 

radiation, with a peak gain of 6.1 dBi at 24 GHz and 6.9 dBi at 

28 GHz. The patterns were symmetrical, stable, and had 

minimal back lobes—suitable for on-vehicle installations 

where directional consistency is crucial. Focused along the z-

axis, ideal for targeted V2X communication in automotive 

systems 

 
Fig. 4(a): Radiation Pattern, Peak gain 6.1dbi @ 24GHz 

 
Fig. 4(b): Radiation Pattern, Peak gain 6.9dbi @ 28GHz 

 

Radiation efficiency was observed to be over 75-78% at 

both bands, attributable to the low-loss Rogers RT5880 

substrate and the optimized slot-patch geometry. Compared to 

baseline designs, the RL-optimized antenna achieved better 

trade-offs between compact size, bandwidth, and efficiency. 

The RL agent converged in under 150 episodes, 

significantly reducing the design cycle time compared to 

manual or brute-force optimization methods. These results 

demonstrate the strength of combining electromagnetic 

simulation tools with AI-based optimization, providing a smart, 

efficient pathway for next-generation antenna design in 
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intelligent vehicular systems. 

 

 
Fig. 5: Radiation efficiency 

V. FABRICATION AND MEASUREMENT RESULTS 

The patch was fabricated using photolithography. The 

ground plane is etched with high precision to maintain the slot 

dimensions. A coaxial SMA connector is soldered to the 

microstrip feed. For automotive integration, the antenna must 

be enclosed in a weather-resistant, low-loss radome. 

Dimensions 

a. Overall Antenna Size: 20 mm × 20 mm 

b. Patch Dimensions (Optimized for Dual Band: 24 GHz and 

28 GHz): 

c. Length: 5.9 mm 

d. Width:  7.1 mm 

e. Feed Line Width: 0.6 mm (for 50-ohm impedance) 

f. Slot Dimensions (for dual-band resonance): 

g. Slot 1 (24 GHz):  3.1 mm × 0.31 mm 

h. Slot 2 (28 GHz):  2.4 mm × 0.31 mm 

i. Ground Plane: Full bottom layer (20 mm × 20 mm) 

 
Fig. 6: AI enhanced Patch antenna (Fabricated) 

 

These are optimized dimensions based on RL training in HFSS 

for resonance at 24 GHz and 28 GHz.  

Connector Type 

Type: SMA Female Connector (Edge-mounted or bottom-fed) 

Impedance: 50 Ω 

Mounting: 

Edge-fed: Soldered to the microstrip feed on the top layer 

Bottom-fed (optional): Drilled and soldered to the bottom with 

plated through-hole (PTH) 

The measured data are shown below table-2 which shows 

close and better results compared to simulation results. 

 
TABLE 2: Measured Data 

Parameter 24 GHz 28 GHz 

Return Loss (S_{11}) –31.2 dB –28.4 dB 

Bandwidth (–10 dB) 1.8 GHz 1.4 GHz 

Peak Gain (dBi) 7.1 dBi 7.8 dBi 

Radiation Efficiency (%) 91.4% 88.9% 

VI. V2X SYSTEM INTEGRATION 

Vehicle-to-Everything (V2X) communication is the 

backbone of modern intelligent transportation systems, 

enabling real-time data exchange between vehicles (V2V), 

infrastructure (V2I), pedestrians (V2P), and networks (V2N). 

This technology improves road safety, traffic efficiency, and 

autonomous driving capabilities. Seamless V2X integration 

relies on antennas capable of supporting high-speed, low-

latency, and directional wireless communication, especially at 

millimeter-wave (mmWave) frequencies. 

The proposed AI-optimized dual-band patch antenna is 

specifically designed to operate in the 24 GHz and 28 GHz 

mmWave bands, which are allocated for 5G V2X 

communication. Its compact size (20 mm × 20 mm), high 

efficiency, and dual-resonance make it ideal for integration into 

vehicle rooftops, bumpers, or side mirrors without disrupting 

vehicle aesthetics or aerodynamics. 

In a real-world V2X scenario, the antenna facilitates robust 

connectivity with nearby vehicles to exchange hazard alerts and 

position updates (V2V), traffic lights and road sensors (V2I), 

mobile devices carried by pedestrians (V2P), and remote cloud 

servers or edge networks (V2N). Its high gain and directional 

beam characteristics ensure reliable performance even in dense 

urban environments with high signal interference and multipath 

effects. 

By employing reinforcement learning, the antenna is tuned 

to meet the stringent requirements of V2X communication—

such as wide bandwidth, high return loss, and directional 

stability—while remaining adaptable to varied vehicular 

platforms. As demonstrated in simulation and design, the 

antenna offers a cost-effective and scalable solution for next-

generation connected and autonomous vehicles, laying the 

groundwork for safe, intelligent mobility. 

VII. CONCLUSION AND FUTURE WORK 

This paper presented the design, AI optimization, and 

simulation of a compact dual-band patch antenna tailored for 

5G V2X communication in automotive environments. Using 

reinforcement learning, the antenna geometry was fine-tuned to 

achieve resonant frequencies at 24.2 GHz and 27.9 GHz, with 

excellent return loss, gain, and radiation efficiency—all within 

a compact footprint of 20 mm × 20 mm using Rogers RT5880 

substrate. 

The reinforcement learning framework effectively explored 

the design space, outperforming traditional optimization 
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techniques in terms of design time and performance balance. 

The resulting antenna not only meets the electrical performance 

criteria but also suits real-world vehicular integration due to its 

low profile, planar structure, and robustness. 

Simulation results verified the antenna’s dual-band 

operation, broadside radiation patterns, and over 75% 

efficiency at both bands. Additionally, a conceptual model of 

the antenna’s integration within V2X systems was discussed, 

demonstrating its potential for deployment in connected and 

autonomous vehicle platforms. 

Future work includes physical integration, real-world 

testing using vector network analyzers and anechoic chambers, 

and extension of the AI framework to support dynamic beam 

steering and multi-antenna MIMO configurations. This work 

lays a foundation for intelligent, adaptive antenna systems in 

next-generation transportation networks. 
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