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Abstract– This study investigates the application of two meta-heuristic algorithms, Frilled Lizard Optimization (FLO) and Greylag Goose 

Optimization (GGO), to solve the Green Energy-based Economic Load Dispatch (GE-ELD) problem. The primary objective is to optimize power 

output allocation across all Thermal Power Generators (TPGs) within a large-scale power system, incorporating renewable energy generation, 

to minimize the total fuel consumption (TFC) of the TPGs. FLO and GGO were employed to determine the optimal power output distribution. The 

performance of these algorithms was rigorously evaluated and compared using four key criteria: Minimum TFC, Mean TFC, Maximum TFC, and 

Standard Deviation (STD). The results consistently demonstrate a clear and significant superiority of GGO over FLO. GGO exhibited a notably 

faster convergence rate, reaching optimal solutions within fewer iterations, indicating a more efficient search mechanism. Furthermore, GGO 

displayed superior solution stability, evidenced by a significantly lower standard deviation, suggesting a more consistent performance across 

multiple runs. Quantitatively, GGO achieved a 0.0132% reduction in Minimum TFC, indicating a better ability to find the absolute best solution. 

The 0.0280% reduction in Mean TFC and the 0.0407% reduction in Maximum TFC highlight GGO's consistent ability to generate lower average 

and worst-case fuel consumption. Most significantly, the 26.81% reduction in STD compared to FLO indicates a substantial improvement in 

solution consistency and reliability. These findings conclusively indicate that GGO is a robust and highly effective search method for addressing 

complex GE-ELD optimization challenges, demonstrating a clear advantage in convergence speed, solution stability, and overall performance. 

 

Keywords— Economic Load Dispatch; total fuel consumption; power loss, thermal power generators; wind power generators; meta-heuristic 

algorithms; Frilled Lizard Optimization; Greylag Goose Optimization. 

 

I. INTRODUCTION  

A fundamental task in running a power grid is figuring out how 

to allocate electricity production across all the thermal power 

generators (TPGs) in the given system, known as the Economic 

Load Dispatch (ELD) [1]. The main objective of solving the 

ELD problem is to reduce the total fuel consumption of all the 

TPGs as much as possible while ensuring electricity demand 

and adhering to operational limits [2]. Historically, this was 

solely done with traditional TPGs. However, the pollution they 

generate poses significant health and environmental risks. To 

address this, integrating renewable energy sources (RES) like 

solar and wind has become essential, offering both financial and 

environmental benefits. The challenge becomes the Green 

Energy-Economic Load Dispatch (GE-ELD) when renewables 

are included. 

GE-ELD presents a complex, large-scale optimization 

puzzle, particularly in systems with numerous TPGss and 

intricate non-linear constraints. Older computational methods, 

such as Gauss-Siedel [3] and Jacobian [4], struggle with this 

scale of complexity. Fortunately, the last couple of decades have 

seen the emergence of advanced computational techniques. 

These methods generally fall into two categories: those that 

mimic brain functions, such as Artificial Neural Networks 

(ANNs), and those inspired by natural processes. Nature-

inspired techniques, often referred to as meta-heuristic 

algorithms, have proven exceptionally effective in solving 

complex problems like GE-ELD. A wide range of meta-

heuristic algorithms have been successfully applied to ELD and 

GE-ELD, including approaches like the multi-objective multi-

verse optimization (MOMVO) [5], Rain Optimization 

Algorithm (ROA) [6], Adaptive cuckoo search algorithm 

(ACSA) [7], Grasshopper optimization algorithm (GROA) [8], 

one rank cuckoo search algorithm (ORCSA) [9], adaptive 

simulated annealing (ASA) [10], Niching Penalized Chimp 

Optimization [11], Slime Mould algorithm (SMA) [12], chaotic 

teaching–learning-based optimization with Lévy flight 

(CTLBO) [13], interior search algorithm (ISA)[14], JAYA 

algorithm [15], turbulent flow of water optimization 

(TFWO)[16]. Modified moth swarm algorithm (MMSA) [17], 

search and rescue optimization algorithm (SARO) [18], astute 

black widow optimization (ABWO) [19], ameliorated 

dragonfly algorithm (ADA) [20], Krill Herd Algorithm 

(MKHA) [21], Firework algorithm (FWA) [22],  artificial bee 

colony algorithm (ABCA) [23], memetic sine cosine algorithm 

(MSCA) [24], multiswarm statistical particle swarm 

optimization (MSPSO) [25], Dragonfly algorithm (DA) [26], 

Chameleon Swarm Algorithm (CSA) [27], Stochastic Shaking 

Algorithm (SSA) [28], Growth Optimizer Algorithm (GOA) 

[29], and split-compete optimization (SCO) [30]. 

In this study, two novel meta-heuristic algorithms, including 

the Frilled Lizard Optimization (FLO) [31] and Greylag Goose 

Optimization (GGO) [32], are applied to determine the optimal 

allocation of power output to all the TPGs besides the 
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renewable-based generators in the power system for total fuel 

consumption minimization. About FLO, this is a novel 

metaheuristic inspired by the hunting behavior of frilled lizards. 

It utilizes a sit-and-wait strategy, modeled in two phases: 

exploration (attack towards prey) and exploitation (retreat to a 

tree). FLO demonstrated superior performance in benchmark 

and real-world engineering problems compared to other 

algorithms. Regarding GGO, this is also a new swarm-based 

method inspired by the "V" formation flight of Greylag Geese, 

using this formation to improve search efficiency by reducing 

resistance. The algorithm is extensively tested in the developing 

phase conducted by the author and results in superior 

optimization performance. 

The main novelties and contributions of the whole 

study are listed as follows: 

- Two novel meta-heuristic algorithms were successfully 

applied to solve the GE-ELD for the main objective function 

of minimizing the total fuel consumption by all the TPGs in 

the given system. 

- Successfully integrating the presence of both wind and 

photovoltaic power generators besides the existing TPGs in 

the given power system, along with the consideration of 

power loss. 

- Provide a detailed analysis of the performance of the two 

applied algorithms and indicate the better one based on 

particular criteria. 

- Offer a general framework for solving the large-scale green 

energy–economic load dispatch using novel searching tools, 

which are meta-heuristic algorithms. 

II. PROBLEM DESCRIPTION 

A. Objective function 

The main goal of this research is to lower the total fuel 

consumption (TFC) of all the TPGs in the given power system. 

The fuel cost model for all TPGs is detailed as follows:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝐹𝐶 =  ∑ 𝑎𝑛 + 𝑏𝑛𝑃𝑇𝑃𝐺,𝑛 + 𝑐𝑛𝑃𝑇𝑃𝐺,𝑛
2

𝑁𝑇𝑃𝐺𝑠

𝑛=1

 (1) 

Where  𝑇𝐹𝐶 is the total fuel consumption of  all the TPGs in the 

given system; 𝑎𝑛, 𝑏𝑛, and 𝑐𝑛 are the fuel coefficient 

corresponding to the TPG n; 𝑃𝑇𝑃𝐺,𝑛 is the amount of power 

generated by the TPG n; and 𝑁𝑇𝑃𝐺𝑠  is the quantity of TPGs in 

the given system. 

B. The involved constraints 

• The power balance constraints: This constraint is 

imposed to ensure the balance between the total amount 

of power supplied by all existing generating sources and 

the amount consumed by load plus the amount of loss: 

∑ 𝑃𝑇𝑃𝐺,𝑛

𝑁𝑇𝑃𝐺

𝑛=1

+ 𝑃𝑊𝑃𝐺 + 𝑃𝑆𝑃𝐺 −  𝑃𝐷 − 𝑃𝐿𝑜𝑠𝑠  = 0 (2) 

Where ∑ 𝑃𝑇𝑃𝐺,𝑛
𝑁𝑇𝑃𝐺
𝑛=1  is the total amount of power output 

generated by all the TPGs in the given power system; 𝑃𝑊𝑃𝐺  and 

𝑃𝑆𝑃𝐺  are the amount of power supplied by the WPG and SPG ; 

𝑃𝐿𝐷 and 𝑃𝐿𝑜𝑠𝑠 are the power required by load and the amount of 

power loss.  The power loss in Equation (2) is determined using 

the following expression: 

𝑃𝐿𝑜𝑠𝑠 = ∑ ∑ 𝑃𝑇𝑃𝐺,𝑛𝐵𝑛𝑚𝑃𝐺𝑇𝑃𝐺,𝑚

𝑁𝑇𝑃𝐺

𝑚=1,𝑛≠𝑚

𝑁𝑇𝑃𝐺

𝑛=1

+ ∑ 𝐵0𝑛𝑃𝐺𝑇𝑃𝐺,𝑛

𝑁𝑇𝑃𝐺

𝑛=1

+ 𝐵00 

(3) 

Where, 𝐵𝑛𝑚, 𝐵0𝑛, and 𝐵00 are the loss coefficients. 

• The the operational constraints of TPGs: This constraint 

is applied to ensure that the power supplied by all the 

TPGs in the given system can only change within their 

physical limits as designed: 

𝑃𝑇𝑃𝐺,𝑛
𝑀𝑖𝑛 ≤ 𝑃𝑇𝑃𝐺,𝑛 ≤ 𝑃𝑇𝑃𝐺,𝑛

𝑀𝑎𝑥  (4) 

Where 𝑃𝑇𝑃𝐺,𝑛
𝑀𝑖𝑛  and 𝑃𝑇𝑃𝐺,𝑛

𝑀𝑎𝑥  are the minimum and maximum 

power output supplied by the TPG j in its physical design, 

𝑃𝑇𝑃𝐺,𝑛 is power output supplied by TPG n. 

• The operational constraint of WPG and SPG: This 

constraint means that the amount of power supplied by 

both WPG and SPG must be varied within their design 

capability as follows: 

𝑃𝑊𝑃𝐺
𝑀𝑖𝑛 ≤ 𝑃𝑊𝑃𝐺 ≤ 𝑃𝑊𝑃𝐺

𝑀𝑎𝑥  (5) 

𝑃𝑆𝑃𝐺
𝑀𝑖𝑛 ≤ 𝑃𝑆𝑃𝐺 ≤ 𝑃𝑆𝑃𝐺

𝑀𝑎𝑥  (6) 

Where PGWP
lw  and 𝑃𝐺𝑊𝑃

ℎ𝑔
 are the lowest and the highest power 

generated by WPG, 𝑃𝐺𝑆𝑃
𝑙𝑤 and 𝑃𝐺𝑆𝑃

ℎ𝑔
 are the lowest and the 

highest power generated by SPG, 𝑃𝐺𝑊𝑃 and 𝑃𝐺𝑆𝑃 are, 

respectively, the power generated by the WPG and SPG. 

C. The Greylag Goose Optimization 

As previously mentioned, Greylag Goose Optimization 

(GGO) is a population-based meta-heuristic algorithm that 

shares common characteristics with other algorithms. The 

distinguishing feature of GGO lies in its unique solution update 

method. This method comprises two distinct phases, the 

mathematical models of which are detailed in the subsequent 

subsections:  

a. Phase 1 

In this phase, all the solutions are updated using the 

following mathematical model: 

𝑋𝑖
𝑛𝑒𝑤

= {
𝑤4 × |𝑋𝐵 −  𝑋𝑖| × 𝑒𝑏 𝑐𝑜𝑠(2𝜋𝑙)  +  [2𝑙𝑤1 × (𝑟𝑛3  +  𝑟𝑛4)] × 𝑋𝐵 ,                                      if 𝐴𝐹 = 1

{
𝑋𝐵  −  𝐴𝐹 × |𝐵𝐹 × 𝑋𝐵  −  𝑋𝑖|, if 𝑟𝑛 < 0.5

𝑤1 × 𝑋𝑅1 + 𝑧 × 𝑤2 × (𝑋𝑅2 − 𝑋𝑅3) + (1 − 𝐻𝐼 × 𝑃𝑆) × 𝑤3 × (𝑋𝑖 − 𝑋𝑅1), otherwise
,       otherwise

 

(

7

) 

With  

𝐴𝐹 = 2𝑘 × 𝑟𝑛1 − 𝑘 (8) 

𝐵𝐹 = 2 × 𝑟𝑛2 (9) 

In the Equations 7 – 9, 𝑋𝑖
𝑛𝑒𝑤 and 𝑋𝑖 arethe new and the 

current solution with i = 1, 2, …, PS; 𝑋𝐵 is the best solution in 

the whole population;  𝑤1, 𝑤2, 𝑤3, 𝑤4 are the secondary control 

parameters set up initially; 𝑟𝑛, 𝑟𝑛1,  𝑟𝑛2, 𝑟𝑛3, 𝑟𝑛4, and 𝑙 are the 

random values between zero and one; ; HI is the highest index 

of iteration; 𝐴𝐹 and 𝐵𝐹 the multiflying factors; 𝑋𝑅1, 𝑋𝑅2, and 

𝑋𝑅1 are the random solutions picked up from the initial 
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population; k is the random value that linearly varies between 2 

and 0 according to the authors 

b. Phase 2 

In this exploitation phase, all the solutions are updated by 

applying the following model: 

𝑋𝑖
𝑛𝑒𝑤

= { (∑ 𝑋𝑇𝑖

3

𝑖=1

)

3

, if 𝑟𝑛 = 0

𝑋𝑖  +  𝑋𝑆𝑅 × (1 +  𝐻𝐼 × 𝑃𝑆) × 𝑤4 × (𝑋𝑖  −  𝑋𝑁𝑒𝑖𝑏), otherwise

 

(10

) 

Where  

𝑋𝑇1 =  𝐴𝐹1 × |𝐵𝐹1 × 𝑋𝑆1 −  𝑋𝑖|;  𝑋𝑇2 𝐴𝐹2

× |𝐵𝐹2 × 𝑋𝑆2 − 𝑋𝑖|;  𝑋𝑇3

= 𝐴𝐹3 × |𝐵𝐹3 × 𝑋𝑆3 −  𝑋𝑖| 
(11) 

And 

𝑋𝑆𝑅 =  [𝑋𝑆1;  𝑋𝑆2;  𝑋𝑆3] (12) 

In Equations 10 – 12, 𝑋𝑇1, 𝑋𝑇2, and 𝑋𝑇3 are the guiding 

solutions; 𝑋𝑆1, 𝑋𝑆2, and 𝑋𝑆3 are the top three best solutions in 

the population; 𝑋𝑆𝑅 is randomly picked from the top three best 

solutions; 𝑋𝑁𝑒𝑖𝑏 is is the neighborhood solution, which is 

acknowledged to be close to the best solution. 

III. RESULTS 

In this section, FLO and GGO are applied to optimize the 

allocation of power output to the 20-TPG power system with a 

load demand of 2500 MW for the main objective function of 

minimizing the TFC. Wind and solar power generators with 

rated power of 120MW and 60MW are also integrated with the 

given power system. FLO and GGO are set by the same initial 

control parameters regarding population size (PS) and Highest 

index of iteration (HI). These parameters for the two applied 

algorithms are set by 50 and 200, respectively. Besides, each 

applied algorithm is executed for 50 independent runs to find 

the best solution before making any comparisons. 

All the works and related simulations for the study are 

conducted in a computer with 2.6 GHz of the central processing 

unit (CPU) clock speed and 16GB of Random accessing 

memory (RAM). MATLAB software version R2019a has been 

selected as the main foundation for implementing two applied 

algorithms. 

Figure 1 presents the TFC values achieved by FLO and 

GGO after 50 independent runs. The TFC values in the figure 

indicate that GGO offers a better capability in reaching the 

optimal value of the main objective functions, and the method 

also provides better stability throughout all the independent 

runs due to its TFC values being less fluctuating than those 

obtained by FLO. 

 

 
Figure 1. The values of TFC achieved after 50 independent runs of the two applied algorithms 

 

 
Figure 2. The summary of the results achieved by the two algorithm on different criteria 

 

5
8

,7
1

6
.0

2
5

5
8

,7
0

8
.2

7
6

5
8

,7
3

6
.4

4
8

5
8

,7
1

9
.9

7
6

5
8

,7
5

7
.7

6
7

5
8

,7
3

3
.8

8
5

8.538

6.249

0

1

2

3

4

5

6

7

8

9

58680

58690

58700

58710

58720

58730

58740

58750

58760

58770

FLO GGO

S
T

D

T
F

C
 (

$
) Minimum TFC ($/h)

Mean TFC ($/h)

Maximum TFC ($/h)

STD



International Journal of Scientific Engineering and Science 
Volume 9, Issue 4, pp. 44-49, 2025. ISSN (Online): 2456-7361 

 

 

47 

http://ijses.com/ 

All rights reserved 

Figure 2 presents a comparative analysis of FLO and GGO 

across four key performance indicators: Minimum Total Flow 

Cost (TFC), Mean TFC, Maximum TFC, and Standard 

Deviation (STD). The numerical data clearly demonstrates the 

superior performance of GGO over FLO in all evaluated 

metrics. Specifically, GGO achieved the following results: 

Minimum TFC of $58,708.276, Mean TFC of $58,719.976, 

Maximum TFC of $58,733.885, and an STD of 6.249. In 

contrast, FLO exhibited the following performance: Minimum 

TFC of $58,716.025, Mean TFC of $58,736.448, Maximum 

TFC of $58,757.767, and an STD of 8.538. Quantitatively, 

GGO demonstrated improvements over FLO as follows: a 

0.0132% reduction in Minimum TFC, a 0.0280% reduction in 

Mean TFC, a 0.0407% reduction in Maximum TFC, and a 

26.81% reduction in STD. These results consistently indicate a 

significant performance enhancement by GGO compared to 

FLO. 

Figure 3 illustrates the convergence behavior of the two 

algorithms, FLO and GGO, corresponding to the Minimum, 

Mean, and Maximum Total Flow Cost (TFC) values presented 

in Figure 2. Specifically, subfigure (a) depicts the convergence 

curves for the minimum TFC achieved by each algorithm 

during their optimal runs. Subfigures (b) and (c) display the 

convergence trends for the mean and maximum TFC values, 

respectively. 

As shown in subfigure (a), GGO exhibits both a superior 

ability to achieve the optimal objective function value and a 

faster convergence rate compared to FLO. Furthermore, 

subfigures (b) and (c) reinforce GGO's superiority. GGO 

consistently converges to its optimal values within fewer than 

50 iterations, a performance FLO fails to replicate in terms of 

both convergence speed and final solution quality. 

 
Figure 3. The minimum, mean, and maximum convergences achieved the two algorithms. 

 

 
Figure 4. The correspondence between the power output supplied by each TPG achieved by FLO and GGO 

 

Figure 4 illustrates the power output of each Thermal Power 

Generator (TPG) in the system, as determined by FLO and 

GGO. The data reveals that GGO yielded higher power output 

values for TPGs 2, 5, 12, 15, and 19. Conversely, the remaining 

TPGs exhibited lower power output values when optimized by 

GGO compared to FLO. Consequently, the reduced power 

output in these TPGs contributed to the lower Total Flow Cost 

(TFC) observed previously. 

Figure 5 illustrates the fuel cost (FC) associated with the 

power output of each TPG, as presented in Figure 4. 

Additionally, the difference in fuel cost (Diff_Cost) between 

FLO and GGO for each TPG is depicted. The Diff_Cost, 
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represented by the yellow bars, is calculated by subtracting the 

FC obtained by GGO from the FC obtained by FLO. The 

downward-pointing yellow bars indicate that FLO resulted in a 

lower fuel cost for that specific TPG compared to GGO. 

Conversely, the upward-pointing yellow bars signify that GGO 

achieved a more economical fuel cost for that TPG. 

 

 
Figure 5. The illustration of fuel cost of each TPG in the system achieved by FLO and GGO 

 

IV. CONCLUSIONS 

This study successfully applies two meta-heuristic 

algorithms, Frilled Lizard Optimization (FLO) and Greylag 

Goose Optimizatio (GGO), to optimize power output allocation 

within a 20-TPG system integrated with wind and photovoltaic 

power generation. The objective was to minimize the total fuel 

consumption of the TPGs while meeting a 2500 MW load 

demand, accounting for transmission losses. Both algorithms 

were employed to determine the optimal power output for each 

of the 20 TPGs. The performance of the algorithms was 

evaluated using four key criteria: Minimum TFC, Mean TFC, 

Maximum TFC, and Standard Deviation (STD). The results 

demonstrate a clear superiority of GGO over FLO across all 

criteria, particularly in convergence speed and solution stability. 

Specifically, GGO exhibited the following improvements over 

FLO: a 0.0132% reduction in Minimum TFC, a 0.0280% 

reduction in Mean TFC, a 0.0407% reduction in Maximum 

TFC, and a 26.81% reduction in STD. These findings suggest 

that GGO is a robust and effective search method for addressing 

large-scale and complex optimization problems, such as the 

Generation Economic Load Dispatch (GE-ELD) problem. 
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