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Abstract— This study investigates the application of two novel meta-heuristic algorithms, Sand Cat Swarm Optimization (SCSO) and Starfish 

Optimization Algorithm (SFOA), to address the Renewable Energy-based Economic Load Dispatch (REB-ELD) problem. The primary objective 

is to minimize the overall fuel expense (OFE) of a 10-Thermal Power Unit (TPU) system by optimizing power allocation for load demands of 2500 

MW and 2600 MW, considering renewable energy integration and multiple fuel options. Results demonstrate that SCSO consistently outperformed 

SFOA, exhibiting superior performance in minimizing objective function evaluations (OFE), achieving faster convergence, and demonstrating 

greater stability. Specifically, SCSO showed lower OFE value fluctuations across 50 trials and achieved optimal OFE values more rapidly than 

SFOA for both load demand levels. Furthermore, the average and maximum OFE values obtained by SCSO were lower than those of SFOA, 

indicating higher efficiency. These findings suggest that SCSO provides a more efficient and effective solution for optimizing power allocation in 

REB-ELD problems. 
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I. INTRODUCTION  

The distribution of power generation for optimal cost, known 

as Economic Load Dispatch (ELD), continues to be a vital 

function in power system operations [1]. Solving the ELD 

challenge involves strategically assigning power output to 

thermal power units (TPUs) to achieve the lowest possible fuel 

expenditure while meeting load demand and system limitations 

[2]. Additionally, efficient ELD solutions offer environmental 

advantages by lessening emissions from fossil fuel power plants 

[3]. As renewable energy sources like solar and wind become 

more prevalent, the traditional focus on TPUs has shifted to 

include Renewable Energy Based-Economic Load Dispatch 

(REB-ELD) [4-5]. This evolving method integrates 

conventional and renewable resources to provide both cost-

effective and environmentally conscious power delivery. 

Recognizing the significance of addressing both ELD and 

RE-ELD, numerous studies have explored solutions to these 

challenges. Notably, meta-heuristic algorithms have emerged as 

the dominant approach. Among the meta-heuristic techniques 

applied to solve these problems are the search and rescue 

optimization algorithm (SROA) [6], five phases algorithm 

(FPA) [7], the improved whale optimization algorithm (IWOA) 

[8], Performance of turbulent flow of water optimization 

(TFWO) [9], Ant Lion Optimizer (ALO) [10], Artificial Rabbits 

Optimization Algorithm (AROA) [11], Modified Krill Herd 

Algorithm (MKHA) [12], Squirrel Search Optimizer (SSO) 

[13], Gravitational Search Algorithm (GSA) [14], genetic 

algorithm (GA) [15], crow search algorithm (CRA)[16], 

grasshopper optimization algorithm (GOA) [17], Dynamic 

differential annealed optimization (DDAO) [18], multi-

objective Salp Swarm Algorithm (MSSA) [19], Harmony 

search algorithm (HSA) [20]. 

In this study, two recently proposed meta-heuristic 

algorithms, Sand Cat Swarm Optimization (SCSO) [21] and 

Starfish Optimization Algorithm (SFOA) [22], are used to 

determine the optimal solution to the Renewable Energy-based 

Economic Load Dispatch (REB-ELD) problem. Specifically, 

both SCSO and SFOA will determine the optimal power 

allocation among all Thermal Power Units (TPUs) in the 

considered system to minimize the Overall Fuel Expense 

(OFE). Additionally, the contributions of renewable energy-

based power units (RBPUs) and the multiple fuel options of the 

TPUs are taken into account. Regarding the algorithms used in 

this study, both SCSO and SFOA are bio-inspired meta-

heuristic algorithms, meaning that their development is based 

on the interaction of particular animals in nature. Particularly, 

SCSO simulates the living practices of the sand cat, while 

SFOA mimics certain behaviors of the starfish in the ocean. 

The main novelties and contributions of this study are 

summarized as follows: 

- Successful application of two novel meta-heuristic algorithms 

to solve the Renewable Energy-based Economic Load 

Dispatch (REB-ELD) problem, considering both Renewable 

Energy-based Power Units (RBPUs) and the multiple fuel 

options for each Thermal Power Unit (TPU). 

- Determination of the superior algorithm, which exhibits a 

faster convergence speed and greater stability when 

addressing the REB-ELD problem, through the use of specific 

comparison criteria. 

- The inclusion of RBPUs provides a practical reference for 

integrating clean energy sources into the traditional economic 
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load dispatch problem, an approach that is increasingly 

encouraged.  

1. Problem description 

1.1.  The main objective function 

The main objective function of the study is to reduce the 

overall fuel expense (OFE) of all thermal power units (TPUs) 

in the considered system, as described below: 

𝑅𝑒𝑑𝑢𝑐𝑖𝑛𝑔 𝑂𝐹𝐸 = ∑ 𝜀1𝑖𝑇𝑃𝑖
2 + 𝜀2𝑖𝑇𝑃𝑖 + 𝜀3𝑖

𝑁𝑇𝑃𝑈𝑠

𝑖=1

 

𝑤𝑖𝑡ℎ 𝑖 = 1,… , 𝑁𝑇𝑃𝑈𝑠  

(1) 

Where 𝑂𝐹𝐸 is the overall fuel expense of all TPUs in the 

considered power system; 𝜀1𝑖, 𝜀2𝑖, and 𝜀3𝑖 are fuel coefficient 

of the TPU i; 𝑇𝑃𝑖  is the power supplied of the TPU i; and 𝑁𝑇𝑃𝑈 

is the quantity of the TPUs in the power system. 

1.2. The involved constraints 

• The power balance constraint:  

The balance between generated power and load demand, 

inclusive of losses, is achieved by the subsequent constraint: 

∑ 𝑇𝑃𝑖

𝑁𝑇𝑃𝑈

𝑖=1

+ ∑ 𝑅𝑃𝑘

𝑁𝑅𝐵𝑃𝑈

𝑘=1

 = 𝑃𝐷 + 𝑃𝐿𝑜𝑠𝑠 (2) 

Where, ∑ 𝑇𝑃𝑖
𝑁𝑇𝑃𝑈
𝑖=1  is total amount of power supplied from all 

the TPUs in the considered system; ∑ 𝑅𝑃𝑘
𝑁𝑅𝑃𝑈
𝑘=1  is the total 

amount of power supplied by all the renewable-based power 

units (RBPUs) in the system with k = 1, 2, …, 𝑁𝑅𝐵𝑃𝑈 with 

𝑁𝑅𝐵𝑃𝑈  is the quantity of RBPUs in the systems; 𝑃𝐷 and 𝑃𝐿𝑜𝑠𝑠 
are the amount of power required by load and the losses. 

The power loss in Eq. (2) is calculated using the following 

model: 

𝑃𝐿𝑜𝑠𝑠 = ∑ ∑ 𝑇𝑃𝑖𝛾𝑖𝑗𝑇𝑃𝑗

𝑁𝑇𝑃𝑈

𝑗=1,𝑖≠𝑗

𝑁𝑇𝑃𝑈

𝑖=1

+ ∑ 𝛾0𝑖𝑇𝑃𝑖

𝑁𝑇𝐺𝑈

𝑖=1

+ 𝛾00 (3) 

Where, 𝛾𝑖𝑗, 𝛾0𝑖, and 𝛾00 are, respectively the loss coefficients. 

• The operational constraint of TPUs  

Each TPU’s power output is limited by this constraint, which 

specifies its allowed minimum and maximum values: 

𝑇𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑃𝑖 ≤ 𝑇𝑃𝑖

𝑚𝑎𝑥 (4) 

Where, 𝑇𝑃𝑖
𝑚𝑖𝑛  and 𝑇𝑃𝑖

𝑚𝑎𝑥 are the minimum and maximum 

power generated by TPU i; 𝑇𝑃𝑖  is the power generated by the 

TPU i. 

• The multiple fuel option constraint 

As mentioned earlier, this research will evaluate the multiple 

fuel constraint of each TPU and the mathematical expression 

of the constraint is given below: 

𝑂𝐹𝐸

=

{
 
 

 
 𝜀1𝑖

1 + 𝜀2𝑖
1 𝑇𝑃𝑖 + 𝜀3𝑖

1 𝑇𝑃𝑖
2;    𝑖𝑓 𝑇𝑃𝑖

𝑚𝑖𝑛 ≤ 𝑇𝑃𝑖 ≤ 𝑃𝑇𝐺𝑛
𝑚𝑎𝑥,1

𝜀1𝑖
2 + 𝜀2𝑖

2 𝑇𝑃𝑖 + 𝜀3𝑖
2 𝑇𝑃𝑖

2;  𝑖𝑓 𝑇𝑃𝑖
𝑚𝑖𝑛,2 ≤ 𝑇𝑃𝑖 ≤ 𝑃𝑇𝐺𝑛

𝑚𝑎𝑥,2

…      

𝜀1𝑖
𝑞
+ 𝜀2𝑖

𝑞
𝑇𝑃𝑖 + 𝜀3𝑖

𝑞
𝑇𝑃𝑖

2;      𝑖𝑓 𝑇𝑃𝑖
𝑚𝑖𝑛,𝑞

≤ 𝑇𝑃𝑖 ≤ 𝑇𝑃𝑖
𝑚𝑎𝑥

 

(5

) 

Where 𝜀1𝑖
1 , 𝜀2𝑖

1  and 𝜀3𝑖
1  are the fuel coefficient of the TPU i while 

operating with fuel option 1, 𝑇𝑃𝑖
𝑚𝑖𝑛

 and 𝑇𝑃𝑛
𝑚𝑎𝑥,1 are the 

minimum and maximum power supplied by TPU i while 

operating with the fuel option 1. 𝜀1𝑖
2 , 𝜀2𝑖

2  and 𝜀3𝑖
2  are the fuel 

coefficient of the TPU i while operating with fuel option 2, 

𝑇𝑃𝑖
𝑚𝑖𝑛,2

 and 𝑇𝑃𝑖
𝑚𝑎𝑥,2 are the minimum and maximum power 

supplied by TPU i while operating with the fuel option 2. 𝜀1𝑖
𝑞

, 

𝜀2𝑖
𝑞

 and 𝜀3𝑖
𝑞

 are the fuel coefficient of the TPU i while operating 

with fuel option q, 𝑇𝑃𝑖
𝑚𝑖𝑛,𝑞

 and 𝑇𝑃𝑖
𝑚𝑎𝑥  are the minimum and 

maximum power supplied by TPU i while operating with the 

fuel option q, with q is the number of fuel options. 

• The operational constraints of the RBPU 

Similar to the TPU as mentioned earlier, the power supplied 

by RPU must vary within their design capabilities as follows: 

𝑅𝑃𝑘
𝑚𝑖𝑛 ≤ 𝑅𝑃𝑘 ≤ 𝑅𝑃𝑘

𝑚𝑎𝑥 (6) 

Where, 𝑅𝑃𝑘
𝑚𝑖𝑛 and 𝑅𝑃𝑘

𝑚𝑎𝑥 are the minimum and maximum 

power supplied by the RBPU k. 

II. APPLIED ALGORITHMS 

In this section, the mathematical model of the update 

process for the new solution featured by the two mentioned 

algorithms will be shortly given in the next two subsections 

below: 

2.1 The Sand Cat Swarm Optimization 

The update process of SCSO is based on the variation of 

the sand cat while hunting for the prey in nature. The simulation 

of the variation of the sand cat is modeled by the following 

mathematical expression: 

𝑋𝑛
𝑛𝑒𝑤

= {
(𝑋𝐵𝑒𝑠𝑡,𝑛 − 𝑟𝑛𝑑 × 𝑋𝑛) × 𝜑, 𝑖𝑓 𝑟𝑓 ≤ 1

𝑋𝐺𝐵𝑒𝑠𝑡 − 𝑋𝑟𝑛𝑑 × 𝑐𝑜𝑠(𝛿) × 𝜑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(7) 

with 

𝑋𝑟𝑛𝑑 = 𝑟𝑛𝑑 × (𝑋𝐵𝑒𝑠𝑡,𝑛 − 𝑋𝑡) (8) 

𝜑 = 𝑟𝑔 × 𝑟𝑛𝑑 (9) 

𝑟𝑔 =  2 − (
4 × 𝐶𝐼

𝐶𝐼 + 𝐻𝐼
) (10) 

Where 𝑋𝑛
𝑛𝑒𝑤 and 𝑋𝑛 are the new and the current position of the 

individual n with n = 1, 2, …, PS and PS is the population size; 

𝑟𝑛𝑑 is the random value between zero and one; 𝑋𝐵𝑒𝑠𝑡,𝑛 is the 

best-so-far position of the individual n; 𝜑 is the navigating 

factor. 𝑋𝐺𝐵𝑒𝑠𝑡 is the best position among the population; 𝛿 is the 

phase angle of the individual n while heading to the prey; 𝑟𝑓 is 

the reference factor determined between [−2𝑟𝑔, 2𝑟𝑔] with 𝑟𝑔 

regulating coefficient; 𝐶𝐼 and 𝐻𝐼 are the current and the highest 

index of iteration. 

2.2 Starfish Optimization Algorithm 

Unlike the SCSO the update process for the new solutions 

is executed based on two methods as shown below: 

• Method 1 

This method is conducted based on the dimensions number 

of the considered problem as follows: 

𝑋𝑛
𝑛𝑒𝑤

= {
{
𝑋𝑛 + 𝑎𝑓1 × (𝑋𝐵𝑒𝑠𝑡,𝑛 − 𝑋𝑛) × 𝑐𝑜𝑠(𝜏), 𝑖𝑓 𝑟𝑛𝑑 ≤ 0.5

𝑋𝑛 − 𝑎𝑓1 × (𝑋𝐵𝑒𝑠𝑡,𝑛 − 𝑋𝑛) × 𝑠𝑖𝑛(𝜏), 𝑖𝑓 𝑟𝑛𝑑 ≤ 0.5
,            𝑖𝑓 𝐷 > 5

𝐸𝑛 × 𝑋𝑛 + 𝑎𝑓2 × (𝑋𝑟𝑛𝑑,1 − 𝑋𝑛) + 𝑎𝑓3 × (𝑋𝑟𝑛𝑑,2 − 𝑋𝑛),                 𝑖𝑓 𝐷 ≤ 5

 

(1

1) 
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Where 𝑎𝑓1, 𝑎𝑓2, and 𝑎𝑓3 are the amplifying factors; 𝜏 is the 

approach angle of the individual n to its prey; D is the number 

of dimensions of the considered problem; 𝐸𝑛 is the energy boost 

featured by each individual n in the population; 𝑋𝑟𝑛𝑑,1 and 

𝑋𝑟𝑛𝑑,2 are the two random individuals selected from the 

population. 

• Method 2 

The update for the new solutions of this method is executed 

using the following models: 

𝑋𝑛
𝑛𝑒𝑤

= {

𝑋𝑛 + 𝑟𝑛𝑑 × 𝑑𝑡1 + 𝑟𝑛𝑑 × 𝑑𝑡2,            if 𝑛 ≠ 𝑃𝑆

𝑒𝑥𝑝 (−𝐻𝐼 ×
𝑃𝑆

𝐻𝐼
) × 𝑋𝑛 ,                 if 𝑛 = 𝑃𝑆

 
(12) 

With 𝑑𝑡1 and 𝑑𝑡2 are the distance between the two random 

individuals to the individual with the best position in the 

population. 

III. RESULTS AND DISCUSSION 

3.1 System data and parameter settings 

In this section, SCSO and SFOA are applied to solve the 

Renewable Energy-based Economic Load Dispatch (REB-

ELD) problem, with the primary objective of minimizing the 

Overall Fuel Expense (OFE) as defined in Section 2. The power 

system under consideration consists of ten Thermal Power 

Units (TPUs) and a Renewable Energy-based Power Unit 

(RBPU) with a capacity of 120 MW. SCSO and SFOA are used 

to optimize the power allocation among the ten TPUs for two 

load demand levels: 2500 MW and 2600 MW, while 

considering the multiple fuel options available for each TPU. 

The performance of the two algorithms is compared using 

various criteria to determine the superior algorithm. To ensure 

a fair comparison, SCSO and SFOA employ identical control 

parameters for population size (PS) and maximum number of 

iterations (HI). Specifically, for the 2500 MW load demand, PS 

and HI are set to 20 and 100, respectively, while for the 2600 

MW load demand, they are set to 30 and 200, respectively. 

Furthermore, both algorithms are executed for 50 independent 

trials to obtain their best results before the comparison.  

All coding and simulations were performed on a personal 

computer with the following specifications: a Central 

Processing Unit (CPU) with a 2.26 GHz clock speed and 16 GB 

of Random Access Memory (RAM). MATLAB programming 

language, version 2020a, was used for all computational tasks.  

3.2 Simulation results 

Figures 1 and 2 present the graphical results obtained by 

SCSO and SFOA, illustrating various aspects, including the 

results of 50 independent trials, the minimum convergence, and 

the maximum convergence, as depicted in subfigures (a), (b), 

and (c), respectively. Observations of these subfigures reveal 

that SCSO demonstrates greater stability across its trials, 

evidenced by the lower fluctuation of OFE values. Furthermore, 

subfigures (b) and (c) of both Figures 1 and 2 indicate that 

SCSO achieves not only a faster convergence speed but also 

superior OFE values for both the minimum and maximum 

criteria. Consequently, SCSO proves to be more effective than 

SFOA in addressing the considered problem for both load 

demand levels.  

Figures 3 and 4 present the quantitative results obtained by 

SCSO and SFOA for two load demand levels. Four criteria are 

considered: Minimum OFE, Average OFE, Maximum OFE, 

and Standard Deviation (STD). For the 2500 MW load demand, 

SCSO achieved the following results: $437.263 (Minimum 

OFE), $473.367 (Average OFE), $473.567 (Maximum OFE), 

and 0.077 (STD). In contrast, SFOA yielded $437.308 

(Minimum OFE), $473.730 (Average OFE), $747.707 

(Maximum OFE), and 0.304 (STD). SCSO demonstrates 

improvements of $0.045 in Minimum OFE, $0.362 in Average 

OFE, and $1.140 in Maximum OFE. More significantly, SCSO 

exhibits approximately four times greater stability than SFOA 

in the 2500 MW load demand test. In the 2600 MW load 

demand test, while SCSO still outperforms SFOA across all 

criteria, the margin of superiority is less pronounced than in the 

2500 MW test, particularly for the Maximum OFE.  

 

 
Figure 1. a) The results from 50 trial test, b) the minimum convergences, and c) the maximum convergences obtained by the SCSO and SFOA for 2500MW of 

load demand 

 

a) b) c) 
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Figure 2. a) The results from 50 trial test, b) the minimum convergences, and c) the maximum convergences obtained by the SCSO and SFOA for 2600MW of 

load demand 

 

 
Figure 3. The comparison on different criteria between SCSO and SFOA for 2500 MW of load demand. 

 

 
Figure 4. The comparison on different criteria between SCSO and SFOA for 2600 MW of load demand. 

 

Figures 5 and 6 illustrate the power supplied by the 10 TPUs 

in the system, as allocated by SCSO and SFOA. As shown in 

Figure 5, the higher power allocation by SCSO to TPUs 1, 3, 5, 

and 9 resulted in a lower OFE value, as previously presented 

for the 2500 MW load demand case. However, the power 

allocations by SCSO and SFOA are nearly identical in Figure 

6, leading to a negligible difference in the OFE values achieved 

by these two algorithms for this particular load demand. 

Figures 7 and 8 depict the fuel expense (FE) for each TPU 

at the two load demand levels, 2500 MW and 2600 MW, as 

determined by SCSO and SFOA. Minor variations in the FE 

values are observed in the 2500 MW load demand case, 

attributed to the differences in power allocation between the 

two algorithms, as previously discussed. However, the FE 

values are nearly identical in the 2600 MW load demand case, 

consistent with the earlier analysis. 
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Figure 5. The power supplied by each generators in the system for 2500 MW of load demand 

 

 
Figure 6. The power supplied by each generators in the system for 2600 MW of load demand. 

 

 

Figure 7. The fuel expenditure for each thermal power unit for 2500 MW of load demand 
 

 
Figure 8. The fuel expenditure for each thermal power unit for 2600 MW of load demand 

 

IV. CONCLUSION 

In this study, two novel meta-heuristic algorithms, Sand 

Cat Swarm Optimization (SCSO) and Starfish Optimization 

Algorithm (SFOA), were successfully applied to solve the 

Renewable Energy-based Economic Load Dispatch (REB-

ELD) problem, with the primary objective of minimizing the 

overall fuel expense for a 10-TPU power system. Furthermore, 
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the power allocation of all TPUs was optimized for two load 

demand levels, 2500 MW and 2600 MW, considering the 

contribution of a Renewable Energy-based Power Unit (RBPU) 

and the multiple fuel options available for each TPU. The 

results obtained by the two algorithms for both load demand 

levels indicate that SCSO outperforms SFOA across all 

comparison criteria, including Minimum OFE, Average OFE, 

Maximum OFE, and Standard Deviation (STD), for the 2500 

MW load demand. For the 2600 MW load demand, SCSO 

maintained its advantages over SFOA; however, the 

performance difference was less pronounced than in the 2500 

MW case. Overall, SCSO exhibited a faster convergence speed 

to the optimal value of the objective function and greater 

stability compared to SFOA. Based on these findings, SCSO 

demonstrates an efficient search methodology and is highly 

recommended for optimizing the power allocation in REB-ELD 

problems.  
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