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Abstract— In this paper, a Legendre-Galerkin spectral method for solving second-order elliptic eigenvalue problems in complex regions is 

presented. An affine transformation is first constructed to transform the second-order elliptic eigenvalue problem in a complex sectoral region 

into an equivalent second-order eigenvalue problem in a standard rectangular region. Subsequently, an appropriate Sobolev space is introduced 

based on the boundary conditions, and the variational and discrete formats of the second-order eigenvalue problem within the standard 

rectangular domain are derived. The matrix form of the discrete format is then derived using Legendre basis functions and tensor product methods. 

Finally, the convergence and high accuracy properties of the algorithm are demonstrated through numerical experiments. 
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I. INTRODUCTION  

Eigenvalue problems hold profound physical significance and 

find extensive applications across various scientific and 

engineering disciplines[1]. Consequently, the development of 

efficient and accurate numerical methods for solving 

eigenvalue problems has consistently been an important 

direction and an active area of research in the academic 

community. It is well known that when the problem is defined 

on regular domains, a variety of efficient numerical methods are 

available, such as the finite element method, finite difference 

method, and spectral methods. In[5], Shen proposed an efficient 

and accurate spectral-Galerkin method for biharmonic equation 

on a unit disk. In [6], An et al. developed a spectral-Galerkin 

approximation and optimal error estimate for biharmonic 

eigenvalue problems in circular, spherical, and elliptical 

domains. In [7], Li et al. developed a spectral approximation 

based on the orthogonal polynomials on the unit ball. In [8], An 

et al. Constructed an efficient spectral-Galerkin approximation 

and error analysis for Maxwell transmission eigenvalue 

problems in spherical geometries. 

Spectral methods have emerged as a principal 

computational approach for solving partial differential 

equations (PDEs) [9], demonstrating exceptional accuracy in 

handling problems with smooth solutions. Nevertheless, their 

practical implementation remains predominantly constrained to 

regular geometric configurations; specifically, these techniques 

are primarily restricted to canonical domains such as intervals, 

rectangular regions, and cuboidal spaces. This geometric 

constraint substantially limits their broader applicability across 

more complex spatial domains. This imperative necessitates the 

development of high-precision numerical methodologies for 

nonlinear eigenvalue problems in complex domains. 

Substantial efforts have been devoted to implementing fictitious 

domain formulations for PDE solutions in irregular 

configurations. Notable contributions include the rigorous 

spectral techniques established by Gu and Shen [13] for elliptic 

equations in complex geometries, along with Lui’s innovative 

approach integrating domain embedding strategies for PDE 

resolution [16]. Seminal work by Orszag [17] further advanced 

this paradigm through a Fourier-Chebyshev spectral framework 

employing explicit coordinate transformations to solve annular 

heat transfer problems. Wang et al. [18] employed a polar 

coordinate transformation to map the complex domain onto a 

unit disk, constructed a Fourier-Legendre spectral Galerkin 

scheme, and analyzed the optimal convergence of the numerical 

solution, representing a milestone in computational mapping 

techniques. 

To the best of our knowledge, there are relatively few 

studies on spectral methods for eigenvalue problems in 

complex sectoral regions. Therefore, this paper aims to propose 

a Legendre-Galerkin spectral approximation based on a 

mapping method for second-order eigenvalue problems in 

complex sectoral regions. Initially, an affine transformation is 

constructed to map the second-order elliptic eigenvalue 

problem defined in complex sectoral regions onto an equivalent 

formulation within a standard rectangular domain. 

Subsequently, a suitable Sobolev space is defined in accordance 

with boundary conditions, enabling the derivation of both 

variational and discrete formulations for the transformed 

eigenvalue problem. The discrete system is then expressed in 

matrix form through tensor product expansions using Legendre 

orthogonal basis functions. Ultimately, numerical experiments 

are conducted, demonstrating the algorithm’s convergence 

properties and high-order accuracy characteristics. 

The remainder of this article is organized as follows. In 

Section 2, we introduce an appropriate Sobolev space and 

deduce the weak form and corresponding discrete scheme. In 

Section 3, we describe in detail the efficient implementation of 

the algorithm. In Section 4, we present several numerical 

experiments to demonstrate the accuracy and efficiency of our 

algorithm. Finally, in Section 5, we give some concluding 

remarks. 

II. WEAK FORM AND DISCRETE FORM 

In this paper, we consider the following second-order 
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eigenvalue problem: 

( , ) ( , ) ( , ), in ,

( , ) 0, on ,

u x y u x y u x y

u x y

 − + = 


= 
  (2.1) 

where is a non-negative constant, 2 is a two-

dimensional complex sectoral region. Following [18], the polar 

coordinate transformation is defined as follows: 

𝑥 = 𝑟𝛿(𝜃) 𝑐𝑜𝑠 𝜃 ,  𝑦 = 𝑟𝛿(𝜃) 𝑠𝑖𝑛 𝜃 , 0 < 𝑎 < 𝑟 < 𝑏, 0 ≤ 𝜃1 <
𝜃 < 𝜃2 ≤ 2𝜋,  (2.2) 

here ( )   is a function related to the angle  .  

Applying (2.2) and performing a direct computation, we 

obtain 

𝜕𝑥
2𝑢 + 𝜕𝑦

2𝑢 =
1

𝑟 𝛿2
{[1 +

(𝜕𝜃𝛿)2

𝛿2
]𝜕𝑟(𝑟𝜕𝑟𝑢̃) +

1

𝑟
𝜕𝜃

2𝑢̃

− 𝜕𝑟(
𝜕𝜃𝛿

𝛿
𝜕𝜃𝑢̃) − 𝜕𝜃(

𝜕𝜃𝛿

𝛿
𝜕𝑟𝑢̃)} =: 𝛥𝑝𝑢̃, 

where ( , ) ( ( )cos , ( )sin )u r u r r      = . Then, (2.1) can 

be rewritten as follows: 

1 2

1 2

1 2

( , ) ( , ) ( , ), ( , ) ( , ) ( , ),

( , )  ( , ) 0, ( , ),

( , ) ( , ) 0, ( , ).

pu r u r u r r a b

u a u b

u r u r r a b

       

    

 

− + =  


= = 
 = =   
 (2.3) 

Let 

𝑟 =
𝑎 + 𝑏

2
+

𝑏 − 𝑎

2
𝑡, 𝜃 =

𝜃1 + 𝜃2

2
+

𝜃2 − 𝜃1

2
𝜍, 

(𝑡, 𝜍) ∈ 𝒟 = [−1,1] × [−1,1], 

𝑢̂(𝑡, 𝜍) = 𝑢̃(
𝑎 + 𝑏

2
+

𝑏 − 𝑎

2
𝑡,

𝜃1 + 𝜃2

2
+

𝜃2 − 𝜃1

2
𝜍),  

𝜌(𝜍) = 𝛿(
𝜃1 + 𝜃2

2
+

𝜃2 − 𝜃1

2
𝜍). 

Then, one obtains 

2

2 2 2

2 1

2 2

2

2 1

2

2 1

( )2 2 4
(1 )

[( ) ( ) ] ( )

8
ˆ ˆ ˆ[ ( )]

[ ( ) ]( )

8
ˆ ˆ ˆ[ ( ) ( )] : .

( )( )

{

}

p

t t

t t p

u
a b b a t b a

b a
u t u u

b a a b b a t

u u u
b a





 

 



   

 

 

   


 = +

+ + − − −

+
 + +  + 

− + + − −

 
−   +   =

− −
L

 

Then, (2.3) can be restated as follows: 

ˆ ˆ ˆ, ( , ) ,

 ˆ ˆ( 1, ) ( , 1) 0, , [ 1,1].

pu u u t

u u t t

  

 

− + = 


 =  =  −

L D
  (2.4) 

Next, in order to derive the weak form of equation (2.4) 

and its discrete scheme. We first define the following Sobolev 

spaces: 

ℋ∗
1(𝒟) = {𝑝: ∫ |

𝒟

𝜕𝑡𝑝|2 + |
𝜕𝜍𝜌

𝜗𝜌
𝜕𝑡𝑝 − 𝜕𝜍𝑝|2𝑑𝑡𝑑𝜍

< ∞, 𝑝(𝑡, ±1) = 0, 𝑝(±1, 𝜍) = 0}, 
and the corresponding inner product and norm are given by 

(𝑝, 𝑞)1,∗ = ∫ (
𝒟

1 +
1

𝜗2

(𝜕𝜍𝜌)2

𝜌2
)𝜕𝑡𝑝𝜕𝑡𝑞 −

1

𝜗

𝜕𝜍𝜌

𝜌
(𝜕𝑡𝑝𝜕𝜍𝑞

+ 𝜕𝜍𝑝𝜕𝑡𝑞) + 𝜕𝜍𝑝𝜕𝜍𝑞𝑑𝑡𝑑𝜍， 

‖𝑝‖1,∗ = (∫ |
𝒟

𝜕𝑡𝑝|2 + |
𝜕𝜍𝜌

𝜗𝜌
𝜕𝑡𝑝 − 𝜕𝜍𝑝|2𝑑𝑡𝑑𝜍)

1
2,  

 𝜗 =
𝜃2 − 𝜃1

2
. 

Then, using boundary conditions and integration by parts, we 

immediately get the variational formulation of (2.4), which can 

be formulated as follows: Find 
1

*
ˆ( , ) ( )u  H D , such 

that 
1

*
ˆ ˆ ˆ ˆ ˆ( , ) ( , ), ( ),u v u v v=  A B H D   (2.5) 

where  

𝒜(𝑢̂, 𝑣̂)

=
𝜃2 − 𝜃1

2(𝑏 − 𝑎)
∫ [a+b+(b-a)𝑡](1

4

(𝜃2 − 𝜃1)2
𝒟

(𝜕𝜍𝜌)2

𝜌2
)𝜕𝑡𝑢̂𝜕𝑡𝑣̂ 𝑑𝑡𝑑𝜍

+
2(𝑏 − 𝑎)

𝜃2 − 𝜃1

∫
1

𝑎 + 𝑏 + (𝑏 − 𝑎)𝑡𝒟

𝜕𝜍𝑢̂𝜕𝜍𝑣̂ 𝑑𝑡𝑑𝜍

−
2

𝜃2 − 𝜃1

∫
𝜕𝜍𝜌

𝜌𝒟

𝜕𝑡𝑢̂𝜕𝜍𝑣̂ 𝑑𝑡𝑑𝜍 −
2

𝜃2 − 𝜃1

∫
𝜕𝜍𝜌

𝜌𝒟

𝜕𝜍𝑢̂𝜕𝑡𝑣̂ 𝑑𝑡𝑑𝜍 

+ 𝛼
(𝑏 − 𝑎)(𝜃2 − 𝜃1)

8
∫ [𝑎 + 𝑏 + (𝑏 − 𝑎)𝑡]𝜌2𝑢̂𝑣̂ 𝑑𝑡𝑑𝜍,

𝒟

 

ℬ(𝑢̂, 𝑣̂) =
(𝑏 − 𝑎)(𝜃2 − 𝜃1)

8
∫ [𝑎 + 𝑏 + (𝑏 − 𝑎)𝑡]𝜌2𝑢̂𝑣̂ 𝑑𝑡𝑑𝜍.

𝒟

 

Let 
NP  be the space of polynomials of degree less than or 

equal to N and define the approximation space:
1

*( ) ( ).N N NX P P=  H D  Then, a Legendre-Galerkin spectral 

approximation associated with (2.5) is: Find 

ˆ( , )N N Nu X   , such that   

ˆ ˆ ˆ ˆ ˆ( , ) ( , ), .N N N N N N Nu v u v v X=  A B   (2.6) 

III. ALGORITHM DESIGN OF THE DISCRETE SCHEME 

In this section, we will describe the implementation 

process of the algorithm in detail. We first construct a set of 

basis functions for the approximation space NX . Denote by

( )iL t  the Legendre polynomial of degree i . Let 

2( ) ( ) ( ), ( 0,1, , 2),

span{ ( ) ( ), , 0, , 2}, ( 1,1).

i i i

N i j

t L t L t i N

X t i j N I



  

+= − = −

= = − = −

 

Let us denote 

2 1 [ ( ) ] ,
2( )

im i m
I

a a b b a t dt
b a

 


−
 = + + −

− 
 

2

2 2

2 1

( )4
(1 ) ,

( )
jn j n

I
b d

 
  

  


= +

−

 

2 1

1 2( )
, ,

( )
im i m jn j n

I I

b a
c dt d d

a b b a t
   

 

−
 = =

+ + − − 
 

2 1

2
, ,im i m jn j n

I I
e dt f d

 
   

  


 = =

−  
 

2 1

2
, ,im i m jn j n

I I
g dt h d

 
   

  


 = =

−  
 

𝑘𝑖𝑚 = ∫[𝑎 + 𝑏 + (𝑏 − 𝑎)]𝑡𝜑𝑖𝜑𝑚𝑑𝑡
𝐼

,  
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          𝑝𝑗𝑛 =
(𝑏 − 𝑎)(𝜃2 − 𝜃1)

8
∫𝜌2𝜑𝑗𝜑𝑛𝑑𝜍

𝐼

. 

We expand the eigenfunction ˆ
Nu  as follows: 

2

, 0

ˆ ( ) ( ),
N

N ij i j

i j

u u t  
−

=

=    (3.1) 

where iju  is the expansion coefficient. 

Denote 

00 01 0 2

10 11 1 2

2 0 21 2 2

U .=

N

N

N N N N

u u u

u u u

u u u

−

−

− − − −

 
 
 
 
  
 

 

We use U to denote the vector formed by the columns of .U  

Now, plugging the expressions of (3.1) in (2.6), and taking ˆ
Nv  

through all the basis functions in NX , we obtain 

𝒜(𝑢̂𝑁 , 𝑣̂𝑁) = ∑
𝜃2 − 𝜃1

2(𝑏 − 𝑎)

𝑁−2

𝑖,𝑗=0

∫ [a+b+(b-a)𝑡](1
𝒟

+
4

(𝜃2 − 𝜃1)2

(𝜕𝜍𝜌)2

𝜌2
)𝜑𝑖

′ 𝜑𝑗𝜑𝑚
′𝜑𝑛𝑑𝑡𝑑𝜍 𝑢𝑖𝑗 

+ ∑
2(𝑏 − 𝑎)

𝜃2 − 𝜃1

∫
1

𝑎 + 𝑏 + (𝑏 − 𝑎)𝑡
𝜑𝑖𝜑𝑗

′

𝒟

𝑁−2

𝑖,𝑗=0

𝜑𝑚𝜑𝑛
′𝑑𝑡𝑑𝜍 𝑢𝑖𝑗 

− ∑
2

𝜃2 − 𝜃1

∫
𝜕𝜍𝜌

𝜌
(𝜑𝑖𝜑𝑗

′𝜑𝑚
′𝜑𝑛

𝒟

𝑁−2

𝑖,𝑗=0

+ 𝜑𝑖
′𝜑𝑗𝜑𝑚𝜑𝑛

′)𝑑𝑡𝑑𝜍 𝑢𝑖𝑗  

+ 𝛼 ∑
(𝑏 − 𝑎)(𝜃2 − 𝜃1)

8
∫ [𝑎 + 𝑏 + (𝑏

𝒟

𝑁−2

𝑖,𝑗=0

− 𝑎)𝑡]𝜌2𝜑𝑖𝜑𝑗𝜑𝑚𝜑𝑛 𝑑𝑡𝑑𝜍 𝑢𝑖𝑗 , 

= (𝐴(𝑛, : ) ⊗ 𝐵(𝑚, : ) + 𝐶(𝑛, : ) ⊗ 𝐷(𝑚, : ) − 𝐸(𝑛, : ) ⊗
𝐹(𝑚, : )  

− 𝐺(𝑛, : ) ⊗ 𝐻(𝑚, : ) + 𝛼𝐾(𝑛, : ) ⊗ 𝑃(𝑚, : ))𝑈̄, 
and 

ℬ(𝑢̂𝑁 , 𝑣̂𝑁) = ∑
(𝑏−𝑎)(𝜃2−𝜃1)

8
∫ [𝑎 + 𝑏 + (𝑏 −

𝒟
𝑁−2
𝑖,𝑗=0

𝑎)𝑡]𝜌2𝜑𝑖𝜑𝑗𝜑𝑚𝜑𝑛 𝑑𝑡𝑑𝜍 𝑢𝑖𝑗 = 𝐾(𝑛, : ) ⊗ 𝑃(𝑚, : )𝑈̄, where  

( ), ( ), ( ), ( ), ( ),

( ), ( ), ( ), ( ), ( ),

im jn im jn im

jn im jn im jn

A a B b C c D d E e

F f G g H f K k P p

= = = = =

= = = = =  

and  represents the tensor product symbol of the matrix, 

( ,:)A n represents the n -th row of matrix A . Let  

( ,:) ( ,:) ( ,:) ( ,:) ( ,:) ( ,:)

( ,:) ( ,:) ( ,:) ( ,:), ( ,:) ( ,:).

A n B m C n D m E n F m

G n H m K n P m K n P m

=  +  − 

−  +  = 

A

B
 

Then, we can obtain the equivalent matrix form of the discrete 

variational form (2.6) as follows: 

                      
.NU U=A B   (3.2) 

IV. NUMERICAL EXPERIMENTS 

In this section, we will use two numerical examples 
on the MATLAB R2018b platform to verify that the 
algorithm we proposed earlier is a high-precision 
numerical method. It should be particularly noted that the 
expression of ( )   largely determines the complexity of the 

region. Without loss of generality, in the following two 

examples, we set 
1

4 4 4( ) (sin cos ) .   
−

= +   

Example 1: We take 1 2

1
1, 0, , , 1

2 2
a b


   = = = = = = . The 

numerical results of the first fourth eigenvalues 

( 1,2,3,4)j

N j = for different N are listed in Table 1. To 

intuitively demonstrate the spectral accuracy of our algorithm, 

we use the numerical solution with =60N  as a reference 

solution and plot the absolute error curves of approximate 

eigenvalues as well as corresponding error curves under a 

log-log scale in Figure 1. Additionally, Figure 2 provides an 

image of the reference solution for the eigenfunction and an 

error image between the reference solution and the approximate 

solution with N =50. 

 
TABLE 1. The first four approximation eigenvalues for different N  

N  1
N


 

2

N  
3

N  
4
N

  

2

0 

38.606182916

85105 

61.414558470

73811 

87.952727599

61485 

125.98742961

91142 

3
0 

38.606182581
18772 

61.414555727
20928 

87.952723504
61916 

125.98736686
83963 

4

0 

38.606182581

05261 

61.414555726

29643 

87.952723503

63464 

125.98736686

15286 
5

0 

38.606182581

05275 

61.414555726

29592 

87.952723503

63491 

125.98736686

15256 

 

From Table 1, it can be observed that as N  increases, the 

number of significant digits of the approximate eigenvalues 

also increases continuously, indicating that the proposed 

algorithm in this paper exhibits excellent convergence. When 

40N  , the first four eigenvalues achieve at least 12-digit 

accuracy, fully validating the high-precision characteristics of 

the algorithm. In addition, as shown in Figures 1-2, our 

algorithm is both convergent and spectral accurate. 

Example 2. We take 1 2

1
0, , , 1

2
a b  = = = =  and 1 = . 

The numerical results of the first fourth eigenvalues 

( 1,2,3,4)j

N j = for different N are listed in Table 2. We use the 

numerical solution with =120N as a reference solution and plot 

the absolute error curves of approximate eigenvalues as well as 

corresponding error curves under a log-log scale in Figure 3. 

Additionally, Figure 4 provides an image of the reference 

solution for the eigenfunction and an error image between the 

reference solution and the approximate solution with =100N .
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Figure 1: Absolute error curves (left) between the numerical solution and the reference solution and the errors curves (right) under log-log scale. 

 

 

Figure 2: Image (left) of the reference solution 60 ( , )u x y  and the error image (right) between reference solution and numerical solution 50 ( , )u x y . 

 
TABLE 2. The first four approximation eigenvalues for different N  

N  1
N


 

2

N  
3

N  
4
N

  

40 44.95027972545694 58.79680548274361 91.41616546541546 136.8474904345504 

60 44.95027693348787 58.79680125027318 91.41616248371694 136.8474819414608 

80 44.95027692871246 58.79680124277311 91.41616247896927 136.8474819251731 

100 44.95027692870467 58.79680124274616 91.41616247895206 136.8474819251479 

 

 

Figure 3:Absolute error curves (left) between the numerical solution and the reference solution and the errors curves (right) under log-log scale. 
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Figure 4:Image (left) of the reference solution 120 ( , )u x y  and the error image (right) between reference solution and numerical solution 110 ( , )u x y . 

 

We observe from Table 2 that the first four eigenvalues achieve 

at least 11-digit accuracy with 100N  . Again, as shown in 

Figures 3-4, our algorithm is both convergent and spectral 

accurate. 

V. CONCLUSION 

In this paper, we develop a Legendre-Galerkin spectral 

method for solving second-order eigenvalue problems in 

complex domains. By means of polar and affine 

transformations, we map the complex sector region into a 

regular rectangular domain on which the weak formulation and 

its corresponding discrete variational form are established. In 

addition, the numerical calculation results verify the 

effectiveness and high accuracy of the algorithm. 
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