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Abstract— Photovoltaic (PV) systems subjected to partial shading condition (PSC) can extremely decrease their output power. Therefore, it is 

essential to establish a robust mechanism capable of continuously monitoring and accurately tracking the maximum power output, even under 

dynamic and fluctuating conditions. There are various maximum power point tracking (MPPT) control algorithms designed to counteract the 

shading effects. The aim of this paper is to study the performance of the MFA for photovoltaic MPPT under PSCs. To validate the study, 

comparative analysis of four algorithms namely, P&O, PSO, FA, and MFA is conducted, and results demonstrate the superiority of the MFA 

algorithm over the other algorithms. Additionally, the effect of the load resistance on the performance of the above mentioned MPPT algorisms 

has been carried out. A comprehensive performance evaluation of the aforementioned algorithms was performed in MATLAB/Simulink software 

tool. Three patterns of PSC have been considered during the study namely: middle peak, left peak, and right peak. In each of those scenarios, the 

performance of each algorithm has been evaluated, and comparison was conducted among those methods. The results show that MFA is the most 

efficient and adaptive algorithm for optimizing power extraction in PV systems under varying shading and load conditions. 
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I. INTRODUCTION  

Currently, electrical energy has become an essential component 

worldwide to provide better living standards. It plays a crucial 

role in supporting all other vital facets of civilization. 

Conventional energy sources such as oil and coal leads to 

increased cost of fossil fuels, environmental factors, and their 

effects on human health. Researchers find better alternatives to 

reduce the consumption amount of fossil fuels. There are 

various alternatives for generating pollution-free electricity by 

means of sustainable energy sources. Sustainable energy 

sources denote naturally occurring types such as wind, biomass, 

solar, fuel cells, and water, acknowledged for being clean and 

limitless. Among the various sustainable energy sources, solar 

energy is mainly used for generating electrical power due to its 

lower maintenance and minimal operational expenses. The 

advancement of solar energy collection has recently garnered 

increased focus and is primarily employed for both stand-alone 

and grid-connected systems [1], [2]. 

When sun irradiance and ambient temperature fluctuate, 

photovoltaic (PV) systems' output power changes nonlinearly. 

Traditional approaches for maximum power point tracking 

(MPPT) include fractional open circuit voltage (FOCV), 

fractional short circuit current (FSCC), incremental 

conductance (INC), and perturb and observe (P&O). However, 

when a photovoltaic system is in partial shading condition 

(PSC), the most shaded cell may limit the current of a string of 

cells connected in series. This can result in the hot-spot 

problem, which happens when the most shaded cell becomes 

reverse-biased by the other cells, potentially causing destructive 

heating. In order to address the hot-spot problem, bypass diodes 

are usually connected in parallel to the cell cluster. This, 

however, results in numerous local maximum power points 

(LMPPs) in the power-voltage (P-V) curve and multiple-step 

patterns in the string's current-voltage (I-V) curve due to the 

additional bypass diodes. Because of this, traditional MPPT 

algorithms may often be unable to determine the global 

maximum power point (GMPP) among the many LMPPs, 

which would prevent the PV system from operating at its full 

potential [3]. 

Thus, choosing a proper control method is necessary to 

achieve the GMPP. Fuzzy logic, neural networks (NNs), normal 

harmonic search (NHS), and Cauchy and Gaussian sine cosine 

optimization (CGSCO) are examples of soft computing-based 

methods that have been effectively applied to find the best 

operating points for PV systems under PSCs. Furthermore, a 

number of nature-inspired algorithms have also been shown to 

perform well for MPPT applications under PSCs, including the 

firefly algorithm (FA), genetic algorithm (GA), differential 

evolution (DE), grey wolf optimization (GWO), intelligent 

monkey king evolution algorithm (IMKE), and particle swarm 

optimization (PSO) [4]. In addition, hybrid nature-inspired 

algorithms, such as the hybrid GA & FA, GWO with P&O, 

hybrid Jaya & DE (JayaDE), and whale optimization with DE 

(WODE), could offer better responses with higher tracking 

accuracy than their individual antecedents. As Compared to the 

conventional methods utilized in PSCs, the above mentioned 

Meta-heuristic algorithms methods have multiple advantages 

like auto identification of the shadow patterns, search for the 

GMPP, and having a simple structure [5], [6]. To track the 

MPP, few articles have recently used enhanced techniques such 

modified perturbation and observation. They can monitor the 

worldwide MPP. These approaches differ in terms of precision, 

speed, and intricacy. These methods are slow even though they 

can follow the MPP well [7]. 

The dividing rectangles algorithm was employed by the 

authors in [8] for the MPPT under PSC. The PV module's P-V 

characteristic curve fully matches the Lipschitz function using 
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this method. This approach can therefore be used to determine 

the highest value. An adaptive Neuro-fuzzy inference system-

based MPP tracker for PV modules is proposed in [9]. The 

tracking MPP is unable to track the global MPP in PSC when 

it is in uniform irradiance circumstances. An adaptive neuro-

fuzzy inference system was proposed in [10]as an MPPT for 

PV systems. The incremental conductance method based on the 

uniform irradiance approach was utilized to train ANFIS. In 

[11], the MPPT application was done using a hybrid approach. 

The first stage uses the ACO algorithm to get close to the MPP, 

and the P&O approach is then used to follow the MPP. 

The author of [12] employed the ABC algorithm for MPPT. 

To match the PV system and the output load, a boost converter 

was used. The suggested method's speed was shown to be 

higher when compared to the improved P&O and PSO 

approaches. In order to enhance its exploration capabilities, the 

DE algorithm was combined with the PSO algorithm [13]. In 

the known combined PSO-DE method, the PSO algorithm is in 

charge of half of the iterations, while the DE algorithm is in 

charge of the other half. In other words, the DE algorithm takes 

over for the subsequent iteration once the PSO runs for the first 

one. This keeps happening until the termination condition is 

met. In terms of efficiency, tracking speed, simplicity, and 

oscillations around the MPP, the hybrid PSO-DE approach 

outperforms incremental conductance, fuzzy logic controller, 

and PSO techniques, as demonstrated by the simulation data 

presented in the research. 

In this paper, the performance evaluation and comparison 

of MPPT algorithms, including P&O, PSO, FA, and the 

Modified Firefly Algorithm (MFA), for a PV system operating 

under various partial shading conditions has been conducted. 

The aim of this paper is to study the performance of the MFA 

for photovoltaic MPPT under PSCs. Additionally, we 

examined the impact of load resistance on the performance of 

the metaheuristic algorithms used in this study. To validate the 

study, we have conducted those comparisons which show the 

superiority of our MFA over the other algorithms. The 

comparative analysis has been carried out using 

MATLAB/Simulink software.  

II. CHARACTERISTIC OF SOLAR CELLS 

A cell may alter the short circuit current from mill amperes 

to several amps, and the voltages it produces are around half of 

the nominal light intensity. The nominal generation capacity of 

the cell can be ascertained by multiplying the open circuit 

voltage by the short circuit current, which yields the maximum 

generation capacity of the cell. Typically, a cell's power output 

ranges from a few mill watts to several watts [14]. 

          (1) 

Where IPV is the produced current of photovoltaic and I0 is the 

reverse saturation current.  (Vt= NsKT/q) is thermal voltage of 

the photovoltaic array where they are connected in series with 

Ns cells,  q is the electron charge (q = 1.6e−19c) and T is cell’s 

temperature in Kelvin. K is Boltzmann factor (K=1.3805e−23j/k) 

and “a” is diode’s ideal constant. The equivalent circuit of the 

solar PV module is depicted in the Fig.1. 
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Fig. 1. Equivalent electrical model of solar PV module. 

III. CHARACTERISTICS OF PV MODULE UNDER PSC 

Solar photovoltaic system is one of the most promising 

power systems based on renewable energy sources, with 

several advantages compared to others. However, solar PV 

systems have a challenge of low conversion efficiency because 

most of the irradiances of the sun, which are channeled to the 

PV panels, are not fully utilized for power consumption. A 

more complex challenge arises in the system when certain PV 

panels are partially obstructed from receiving full solar 

irradiance, a phenomenon known as Partial Shading Conditions 

(PSCs) in solar PV systems. This shading effect results in the 

formation of multiple LMPPs in the P-V characteristics. The 

presence of multiple peaks, especially in arrays with extended 

series connections, significantly increases the complexity of the 

P-V curve, making it more difficult to accurately track the true 

GMPP [15], [16]. The power produced by PV modules may be 

greatly reduced under such circumstances since traditional 

MPPT conditions and methods may fail to distinguish between 

LMPPs and GMPPs with ease and may become locked at a 

local peak. Additionally, the radiation intensity is likely to 

fluctuate quickly, which could result in variations in the 

GMPP's location and curve pattern. Consequently, in order to 

obtain the system's maximum power output, the authorized 

MPPT algorithm must be able to swiftly and accurately detect 

GMPP among the LMPPs under PSCs [17]. 

The photovoltaic system's P-V and P-I curves for both 

variable and uniform irradiances are displayed in Fig. 2. 

Irradiation Patterns: 

This work examines three different irradiation scenarios 

pertaining to partial shading: middle peak, left peak, and right 

peak. The following consecutive figures show the three 

scenarios. 

• Middle Peak 

In this case, the irradiance levels provided to the three PV 

panels are 1000 W/m², 700 W/m², and 300 W/m² for PV-1, PV-

2, and PV-3, respectively. There are three distinct peaks located 

at three different point of operation. 
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(a)        (b) 

Fig. 2. (a) P–V curve, (b) I-V curve under PSC and uniform irradiance [18]. 

 

The GMPP of the three occurs in the middle peak as shown 

in Fig. 3. 

 
Fig. 3. Middle peak irradiation pattern. 

Fig. 4. Left peak irradiation pattern. 
 

• Left peak 

The left peak occurs when the irradiance levels at PV-1, 

PV-2, and PV-3 are 800 W/m², 300 W/m², and 200 W/m², 

respectively. Such a condition causes three peaks similar to the 

previous case but the global maximum power point occurs at 

the left-most of those three points. For the specific values of 

solar irradiation used in this simulation the maximum power 

that can be generated is around 521.802 W, as depicted in Fig. 

4. 

• Right peak 

For the third case in which the GMPP is located on the right, 

the following solar irradiation values were used, 500 W/m2 for 

PV-1,700 W/m2 for PV-2 and 900 W/m2 for PV-3. Fig. 5 shows 

the panel power versus voltage curve where the GMPP is 

indeed located to the right side. In this case the  reached GMPP 

is approximately 1101.58 W. 

 
Fig. 5. Right peak irradiation pattern. 

IV. PERTURBATION AND OBSERVATION ALGORITHM 

The most common MPPT algorithm is P&O, mainly due to 

its acceptable performance and low complexity [19]. It 

achieves MPP tracking by introducing perturbations to a single 

variable, usually the voltage. Based on the criteria for tracking, 

a perturbation is applied to the operating voltage of a PV system 

by changing the duty cycle. This causes the generated power of 

a PV system to be increased, it means that the operating point 

moves toward the MPP. Consequently, the productive 

perturbation is formed in the same direction. This procedure 

will continue until the MPP is reached. However, if the attained 

PV system is reduced, it means that it is moving away from the 
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MPP and as a result, direction of the produced perturbation 

must be reversed [20], [21]. 

Even though this method is pretty straightforward, its 

efficiency highly depends on the convergence speed. The 

difficulty of P&O method is because of its high fluctuation 

around the MPP due to inability in precise tracking of the MPP. 

Hence, the output always experiences fluctuations and this 

leads to the loss of energy [22]. Performance of the P&O 

method degrades with the changes in environmental conditions, 

i.e., during cloudy days, and the reason behind it is that this 

method faces challenges in accurately tracking the GMPP 

under PSC [23], [24]. 

V. PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM 

PSO is a population-based evolutionary search algorithm. 

This method maintains a swarm of particles and each particle 

represents a potential solution in the swarm [14], [25]. PSO 

identifies the optimal parameters that either maximize or 

minimize the objective function within a defined search space. 

Each particle within the swarm maintains a current position, 

velocity, and a personal best position within the search space. 

The personal best position, 𝑝𝑏𝑒𝑠𝑡𝑖, represents the location 

where a particle has achieved the highest value based on the 

objective function F, particularly in a maximization scenario. 

Additionally, the position corresponding to the highest value 

among all personal bests is termed the global best position, 

denoted as gbesti [26]. 

Upon identifying optimal solutions, the particles adjust their 

accelerations and positions based on the predefined equations.  
𝑉𝑖
𝑘+1 = 𝑊𝑉𝑖

𝑘 + 𝐶1𝑟𝑎𝑛𝑑1
𝑘(𝑝𝑏𝑒𝑠𝑡𝑖

𝑘 − 𝑋𝑖
𝑘) + 𝐶2𝑟𝑎𝑛𝑑2

𝑘(𝑔𝑏𝑒𝑠𝑡𝑖
𝑘 − 𝑋𝑖

𝑘)  (2) 

  𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1                                                    (3) 

where 𝑉𝑖
𝑘 denotes acceleration of the particle i after k times 

of iterations, W is the weight, C1 and C2 are the acceleration 

constants for moving toward each individual or global best 

experiences, respectively, and rand1 and rand2 are random 

numbers between 0 and 1. 

VI. FIREFLY ALGORITHM (FA) 

FA is metaheuristic optimization algorithm inspired by the 

social behavior of fireflies developed by Yang in 2008 [6]. It is 

intelligence-based algorithm inspired by the flashing fireflies 

to attract mating partners and potential prey that is common in 

the summer sky of tropical temperate zones. The basic idea of 

formulation of the algorithm is the attractiveness of fireflies 

that the less bright one will be attracted to the brighter one [17]. 

The firefly algorithm has three main assumptions which are 

derived from firefly features: 

1) Fireflies are not gender-specific, meaning they are naturally 

attracted to individuals with higher brightness regardless of 

gender. They move toward the brighter fireflies based on 

their perceived intensity. 

2) The attractiveness of a firefly is directly proportional to its 

brightness, which decreases as the distance between fireflies 

increases. If no firefly appears brighter or more attractive, 

movement occurs randomly within the search space. 

3) The brightness or attractiveness of each firefly is 

determined by the value of the objective function, which 

influences its movement and guides the search process 

toward optimal solutions. 

Based on the three rules mentioned above, the execution 

process of the firefly algorithm for MPPT in a PV system is 

shown in Fig 6: 

Generate initial population of 

fireflies Xi = (i = 1,2...n)

Evaluate fitness f(x)

Rank fireflies according to 

fitness and find best fitness

For j=1:N_ff

F(Xj)>f(Xi)

Evaluate new solution and 

update fitness and ranking

Iter > maxIter

Best solution

Move firefly i towards 

firefly j

Xi = Xi + ꞵ * (Xj - Xi) + α * 

(rand - 0.5)

No

Yes

Yes

Iter = Iter + 1

No

Begin

End

Any irradiation 

change?

Yes

No

 
Fig. 6. Flowchart for the FA.  

 

Since the attraction of a firefly is directly proportional to the 

light intensity seen by the nearby firefly, the parameter β as the 

attractiveness can be defined as follows: 

                       𝛽 = 𝛽0𝑒
−𝛾𝑟2                                              (4) 

Where β0 is attractiveness at r = 0. The distance between 

fireflies i and j located at Xi and Xj coordinates is calculated as: 

𝑟𝑖𝑗 = ‖𝑋𝑖 − 𝑋𝑗‖ = √∑ (𝑋𝑖,𝑘 − 𝑋𝑗,𝑘)
2𝑑

𝐾=1                          (5) 

Where Xi,k is kth component of Xi related to firefly i. The 

movement of firefly i towards a more attractive firefly j is 

defined as below: 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝛽0𝑒
−𝛾𝑟2(𝑋𝑗 − 𝑋𝑖) + 𝛼𝜀𝑖                            (6) 

Where the second expression corresponds to the attraction, 

while the third term, αεi, represents the randomizer parameter, 

α is the coefficient of randomizer parameter, and εi is a random 

vector comprising of numbers obtained from a Gaussian or 

uniform distribution. 
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VII. MODIFIED FIREFLY AGORITHM (MFA) 

One of the primary limitations of FA is that its coefficients 

remain fixed throughout the iterations, preventing them from 

adapting dynamically over time. This rigidity limits the 

algorithm’s ability to optimize effectively in changing 

conditions. Additionally, FA does not retain historical data, 

which could be valuable for guiding future iterations. These 

constraints necessitate the development of an improved version, 

known as MFA. 

MFA is designed to address these limitations by enhancing 

both exploitation and exploration within the search space. 

Unlike the original FA, where key parameters such as 

randomization and attractiveness remain static, MFA 

dynamically adjusts these values during optimization. This 

modification allows for improved local exploration, ensuring 

more effective searches near local optima while maintaining the 

ability to progress toward the global optimum. By refining the 

search process, MFA reduces unnecessary randomness and 

stagnation, leading to a more structured and efficient 

convergence. 

Another significant advantage of MFA is its ability to 

accelerate the movement toward the optimal solution. By 

expanding the movement range of fireflies in a more controlled 

manner, the algorithm enhances its capacity to navigate 

complex optimization landscapes. The mathematical 

formulation used to refine firefly movement is expressed as 

[27]: 

         (7)
 

Where 𝜀𝑖 represents the random number, 𝛽(t) represents 

attractiveness coefficient, the time t, and the 𝛼(t) denotes 

randomness coefficient at time (t). 

The parameters in conventional FA may result in varying 

performances when solving optimization problems. Manually 

tuning the parameters of FA for different optimization 

problems with varying characteristics is a challenging task. To 

overcome this limitation and prevent premature convergence, 

MFA introduces an adaptive strategy for parameter selection. 

This approach is crucial in dynamically adjusting the 

randomization coefficient to maintain a balance between 

exploration and exploitation throughout the optimization 

process. The adaptive randomness coefficient α is formulated 

as [27]: 

                          (8) 

where c represents an integer value that determines the rate at 

which randomness decays over iterations. Itrmax denotes the 

maximum number of iterations allowed in the optimization 

process, while Itri  corresponds to the current iteration number 

Furthermore, the parameter γ is essential in regulating 

convergence speed and attractiveness, influencing the balance 

between exploration and exploitation in the optimization 

process, as given in [27]: 

                                 (9) 

The proposed modified firefly algorithm avoids being 

trapped in local extrema while accelerating convergence, 

ensuring a balanced search between local and global optima. 

To further enhance search capabilities, a heterogeneous 

updating rule based on Gray Relational Analysis (GRA) is 

applied, which is effective for handling incomplete information 

in finite sequences. In the search process, two updating 

equations are randomly selected and implemented, as presented 

in (10) [27]: 

       (10) 

Where δ represents the gray coefficient and NG is the number 

of generations. 

VIII. APPLICATION OF MFA TO MPPT 

The use of MFA in tracking the MPP under PSC is 

described in this section. The execution process and the block 

diagram of the MPPT scheme based on the MFA approach in a 

PV system are displayed in Fig. 7 and Fig. 8 respectively. Three 

photovoltaic modules are connected in series in the planned 

system. Additionally, the load and the PV system are interfaced 

via a DC-DC boost converter.  

Generate initial population of 

fireflies Xi = (i = 1,2...n)

Evaluate fitness f(x)

Rank fireflies according to 

fitness and find best fitness

For j=1:N_ff

F(Xj)>f(Xi)

Evaluate new solution and 

update fitness and ranking

Iter > maxIter

Best solution

No

Yes

Iter = Iter + 1

No

Begin

End

Evaluate 

(8)&(9) Evaluate

(10)

Any irradiation 

change?

Yes

No

Yes

 
Fig. 7. Flowchart for the MFA. 
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The steps of the MFA algorithm toward MPPT are 

described as follows: 

Step 1: Initialize Parameters: 

Define the key MFA constants, including β0 (attraction 

factor), ẟ (mutation factor), c (adaptation control), γ (light 

absorption factor), maximum iterations, and firefly population 

size (N_ff). Firefly positions represent duty cycle values and 

their brightness corresponds to power output. 

Step 2: Initialize Firefly Positions: 

Fireflies are randomly placed within the duty cycle (dmin= 

0.1 to dmax= 0.9). Each firefly’s intensity (power) is initialized, 

along with a randomly assigned best firefly position. 

Step 3: Evaluate Firefly Brightness: 

Each firefly’s duty cycle is applied to the system, and the 

corresponding power output is measured. The brightness 

(fitness) of each firefly is determined by its power output. The 

iteration counter is incremented. 

Step 4: Update Firefly Positions: 

Fireflies update their positions based on (10), Moving 

towards the brightest firefly. The parameters α and γ are also 

updated using (8) and (9) to improve convergence. 

Step 5: Rank Fireflies and Identify Best Solution: 

Fireflies are ranked based on their brightness. The firefly 

with the highest intensity is set as the new best firefly (Xbest), 

and its duty cycle is stored as the optimal candidate. 

Step 6: Check Stopping Condition: 

If the iteration count reaches the predefined limit (Itr > 

Itrmax), the process stops, and the current best duty cycle is 

recorded as the final solution. If not, the algorithm continues. 

Step 7: Update Adaptive Parameters: 

If the stopping conditions is not met, α and γ are updated 

dynamically using (8) and (9) to refine firefly movement and 

improve optimization. 

Step 8: Check for Irradiance Change: 

Before the next iteration, the algorithm checks if the 

irradiance level has changed. If a change is detected, fireflies 

are reinitialized, and the process returns to step 2. If no change 

occurs, the algorithm returns to step 3. 

Step 9: Repeat until Convergence: 

The process returns to step 3 and continues iterating until 

the stopping conditions is met. 

Step 10: Store the Optimal MPP: 

Once the stopping condition is satisfied, the optimal duty 

cycle and corresponding maximum power output are stored. 

The process then terminates. 

The simulation and model components along with their 

parameter values used in this work are listed in TABLE I. 

Controller

DC-DC 

Boost 

Converter

Load

PV 

Panel

PV 

Panel

VPV

IPV

Duty 

Cycle

 
Fig. 8. The tracking scheme based on PSO, FA, and MFA methods. 

 

 
Fig. 9. MATLAB/Simulink simulation of the P&O, PSO, FA, and MFA based MPPT system. 
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TABLE I. System model and controller parameters. 

System Parameter Description Value 

PV module 

Ncell Cells per module 132 

Voc (V) Open circuit voltage 45.7 

Isc (A) Short circuit current 18.53 

Pmax (W) Maximum power 660.366 

Vmp (V) Voltage at MPP 37.8 

Imp (A) Current at MPP 17.47 

P&O 

dmax Maximum duty ratio 0.9 

dmin Minimum duty ratio 0.1 

ΔD Change in duty 5*10-7 

PSO 

ꞷ inertia 0.1 

C1 Self-adjustment weight  2 

C2 Social-adjustment weight 0.4 

Np Number of particles 5 

lb Lower bound 0.1 

ub Upper bound 0.9 

Itermax Maximum number of iterations 20 

FA 

α Coefficient of randomizer 0.9 

ꞵ0 Attractiveness coefficient 1.9 

γ Light absorption coefficient 1.9 

N_ff Number of fireflies 100 

lb Lower bound 0.1 

ub Upper bound 0.9 

Itermax Maximum number of iterations 20 

MFA 

α Coefficient of randomizer 0.9 

ꞵ0 Attractiveness coefficient 1.9 

γ Light absorption coefficient 1.9 

C 
Speed of decaying of the 
randomness 

1.0 

δ Gray coefficient 0.8 

N_ff Number of fireflies 100 

lb Lower bound 0.1 

ub Upper bound 0.9 

Itermax Maximum number of iterations 20 

Boost 
Converter 

L(mH) Inductance 0.9 

Cin (μF) Input capacitance 1.9 

Cout (μF) Output capacitance 1.9 

Simulation 
Ts (μs) Sampling time 1.0 

fs (kHz) Switching frequency 0.8 

IX. SIMULATION RESULTS 

The simulation model used to study the performances of the 

algorithms is setup as shown in Fig. 9. It consists of three solar 

PV panels connected in series each with its own solar irradiance 

input to simulate partial shading, a boost DC-DC converter, a 

resistive load and an MPPT controller with options of P&O, 

PSO, FA and MFA algorithms that output duty ratio to a PWM 

generator which controls the boost converter IGBT. 

• Middle Peak 

In the middle peak condition discussed earlier (i.e. PV-1 at 

1000W/m2, PV-2 at 700W/m2, and PV-3 at 300W/m2), four of 

the MPPT algorithms were tested for a load resistance of 20Ω  

 Fig. 10 shows such a simulation in which the three PVs 

were under middle peak condition and the MPPT controller is 

P&O. In Fig.10 (a), it is observed that the P&O algorithm 

reaches the maximum power at 939.73W and remains stable for 

the rest of the simulation. 

The performance of the PSO algorithm with regard to tracking 

maximum power is depicted in Fig. 11. Fig. 11 (b) shows that 

the algorithm searches for the duty ratio corresponding to 

maximum power for the first 2 seconds, 20 iterations, and 

settles on around d = 0.31 giving about 940.29W of output 

power. 

 In Fig.12, the power output of the PVs and the duty ratio for 

FA are shown. The power generated in this case is 829.89W 

and the duty ratio is around 0.45. It is clear that the algorithm 

is not efficiently tracking the GMPP. 

 The power output of the PVs and the duty ratio for the MFA 

are depicted in Fig.13. After the maximum number of iterations 

are reached, the duty ratio settles around d = 0.38 and the power 

output is about 940.29W which is the same as the PSO 

controlled system. 

 The power outputs of the PVs under the middle-peak 

shading pattern, controlled by the four algorithms, are plotted 

together for comparison in Fig.14. It is observed that both the 

PSO and MFA algorithms show better MPP tracking capability 

than the other two algorithms (P&O and FA). In terms of 

convergence speed the MFA seems to reach the peak power 

value faster than the PSO algorithm. In this case the P&O 

algorithm resulted in better MPP tracking performance than the 

FA algorithm. All of the heuristic algorithms, PSO, FA, and 

MFA, were designed to have maximum number of iterations of 

20. Since those algorithms update every 0.1 seconds, all of 

them stop searching for better solutions when the simulation 

time reaches 2 seconds. 
 

 
(a) PV power output                                                                                                     (b) PWM duty ratio 

Fig. 10. Middle-peak P&O performance. 
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(a) PV power output                                                                                                     (b) PWM duty ratio 

Fig. 11. Middle-peak PSO performance. 

 

 
(a) PV power output                                                                                                     (b) PWM duty ratio 

Fig. 12. Middle-peak FA performance. 

 

 
(a) PV power output                                                                                                     (b) PWM duty ratio 

Fig. 13. Middle-peak MFA performance. 
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Fig. 14. Comparison of algorithms for middle peak. 

   
(a) PV power output                                                                                                     (b) PWM duty ratio 

Fig. 15. Left-peak P&O performance. 

 
(a) PV power output                                                                                                     (b) PWM duty ratio 

Fig. 16. Left-peak PSO performance. 

 

• Left Peak 

Is this case, the left peak in the GMPP is located at the left-

most peak point of the three peaks. Similar to the previous cases 

in the middle peak, the three PVs were exposed to different 

levels of solar irradiation representing partial shading by setting 

the irradiance level of PV-1 at 800W/m2, PV-2 at 300W/m2, and 

PV-3 at 200W/m2. By running the simulation for the four MPPT 

algorithms the results depicted in the figure were obtained.  

Fig. 15 shows such a simulation in which the three PVs were 

under left peak condition and the MPPT controller is P&O. In 
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Fig 15 (a), it is observed that the P&O algorithm reaches the 

maximum power of 348.67W approximately 0.5 seconds and 

stays there for the rest of the simulation. 

The performance of the PSO algorithm in tracking 

maximum power is illustrated in Fig. 16. The algorithm initially 

searches for the optimal duty ratio corresponding to the 

maximum power output during the first 2 seconds, completing 

20 iterations. It then stabilizes at a duty ratio of approximately 

d = 0.1, yielding an output power of 433.78W. 

Fig. 17 presents the performance of the PVs for the FA 

algorithm. In this case, the generated power reaches 487.53W, 

with the duty ratio stabilizing around d = 0.54. 

Fig. 18 illustrates the power output and the duty ratio of the 

PVs when applying the MFA controller. The observed 

performance is closely similar to that in FA. The generated 

power reaches 487.53W, while the duty ratio stabilizes around 

d = 0.54. 

The comparison of the four algorithms for the left peak 

shading pattern is plotted here in Fig. 19, and it can be 

concluded that the FA and MFA algorithms deliver better MPP 

tracking performance than the other two algorithms. The other 

main point is that the MFA reaches the optimal duty cycle faster 

than the other algorithms. 

 

 
(a) PV power output                                                                                                     (b) PWM duty ratio 

Fig. 17. Left-peak FA performance. 

 
(a) PV power output                                                                                                     (b) PWM duty ratio 

Fig. 18. Left-peak MFA performance. 

 

• Right Peak 

 In this condition, simulation results of the four algorithms 

when subjected to the right peak condition are presented. Fig. 

20 shows the simulation result of P&O algorithm in which the 

three PVs were under right peak condition. It is observed that 

the P&O algorithm reaches the maximum power of 931.45W 

and retains this value for the rest of the simulation. 

 Fig. 21 illustrates the performance of the PSO algorithm in 

tracking the maximum power point. The algorithm initially 

searches for the optimal duty ratio corresponding to maximum  

power over the first 2 seconds, completing 20 iterations. 

Eventually, it converges to a duty ratio of approximately d= 0.1, 

achieving an output power of 1.051KW 
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Fig. 19. Comparison of algorithms for left peak. 

 
(a) PV power output                                                                                                     (b) PWM duty ratio 

Fig. 20. Right-peak P&O performance. 

   
(a) PV power output                                                                                                     (b) PWM duty ratio 

Fig. 21. Right-peak PSO performance. 

 

Fig. 22 illustrates the power output of the PV system and the 

corresponding duty ratio for the FA, where the generated power 

reaches 841.25W, with a duty cycle of approximately 0.22. 

However, the results indicate that the algorithm struggles to 

effectively track the GMPP, leading to suboptimal power 

extraction. In contrast, Fig. 23 presents the performance of the 

MFA algorithm, demonstrating a notable improvement. The 

generated power reaches 1.067kW, with a duty ratio of 

approximately 0.15, indicating a more efficient tracking 

capability. 

For comparative analysis, Fig. 24 presents the power output 

of the PV system for all four algorithms. The results clearly 

demonstrate that MFA and PSO outperform the other two 

algorithms in terms of tracking efficiency and power extraction. 
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Among them, MFA proves to be the most effective, as it not 

only achieves GMPP but also converges faster and more 

consistently to the optimal duty ratio, ensuring stable and 

efficient operation under varying shading conditions. 

Overall, these findings highlight MFA as the most robust 

and efficient MPPT algorithm, offering faster response times, 

greater accuracy, and superior stability in dynamic 

environmental conditions. MFA proves to be a highly reliable 

method for maximizing the efficiency of photovoltaic energy 

harvesting. 

    
(a) PV power output                                                                                                     (b) PWM duty ratio 

Fig. 22. Right-peak FA performance. 

 
(a) PV power output                                                                                                     (b) PWM duty ratio 

Fig. 23. Right-peak MFA performance. 

 
Fig. 24. Comparison of algorithms for right peak. 

 

TABLE II presents a quantitative comparison of the four 

algorithms across the three partial shading conditions, with 

efficiency calculated based on the performance of the solar PV 

system. For each shading scenario, the GMPP was identified, 
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and the power output corresponding to each algorithm was 

determined through simulation. The efficiency of each 

algorithm was then computed as the ratio of the power output 

achieved by the respective MPPT controller to the ideal GMPP, 

as expressed in (11): 

  (11) 

where PAlgorithm represents the power output obtained by the 

MPPT algorithms, and PGMPP denotes the ideal maximum 

power generated by the PV system. 
 

TABLE II: Performance comparison under different PSCs. 

Shading 

Pattern 
Techniques 

Power  

(W) 

Global  

Maximum 

Power (W) 

Efficiency 

(%) 

Middle 
Peak 

P&O 939.73 

990.05 

94.92 

PSO 940.29 94.97 

FA 828.89 83.72 

MFA 940.29 94.97 

Left Peak 

P&O 348.67 

521.80 

66.82 

PSO 433.78 83.13 

FA 487.53 93.43 

MFA 487.53 93.43 

Right Peak 

P&O 931.45 

1101.58 

84.56 

PSO 1051 95.40 

FA 841.25 76.37 

MFA 1067 96.86 

 

The results emphasize the advantages of heuristic-based 

algorithms, PSO, FA, and MFA over conventional methods like 

P&O, particularly in handling multiple peaks caused by 

shading. While P&O achieves relatively high efficiency under 

middle peak conditions at 94.92%, its performance drops 

significantly under left peak at 66.82% due to its tendency to 

get stuck at local maxima. Similarly, the FA, despite being 

heuristic-based, underperforms compared to PSO and MFA, 

particularly in right peak condition, where it only achieves 

76.37% efficiency, indicating poor adaptability. The MFA, by 

contrast, exhibits the most consistent tracking accuracy across 

all shading conditions, reinforcing its effectiveness as a robust 

MPPT strategy. These findings highlight the importance of 

advanced metaheuristic algorithms in optimizing the energy 

extraction of PV systems under real-world shading scenarios. 

X. EFFECT OF LOAD RESISTANCE 

The tracking efficiency of MPPT heuristic algorithms under 

different load resistance conditions is critical for evaluating 

their adaptability in real-world scenarios. To quantify the 

overall effectiveness the applied algorithm, the mean efficiency 

ηmean is calculated across all resistance values for each peak 

condition. The mean efficiency is determined using (12): 

                             (12) 

where N is the number of resistance values considered, and 

ηi represents the efficiency of the algorithm at a specific 

resistance Ri. 

• Resistance Variation Under Middle Peak Condition: 

The performance of MPPT under varying resistances for 

the middle peak condition is illustrated in the figures below. 

Fig. 25 presents the performance of PSO, while Fig. 26 and Fig. 

27 depict the performance of FA and MFA, respectively.  

 
TABLE III: Resistance variation under middle peak condition. 

Ri (Ω) 
PSO FA MFA 

P (W) ηi P (W) ηi P (W) ηi 

20 940.29 94.97% 828.89 83.72% 940.29 94.97% 

30 916.05 92.53% 916.05 92.53% 916.05 92.53% 

40 610.46 61.66% 988.64 99.86% 988.64 99.86% 

50 752.51 76.01% 874.27 88.31% 874.27 88.31% 

60 891.13 90.01% 891.13 90.01% 891.13 90.01% 

70 989.06 99.90% 989.06 99.90% 989.06 99.90% 

ηmean 85.85% 92.39% 94.26% 

 

For the middle peak condition, the mean efficiency values were 

85.85% for PSO, 92.39% for FA, and 94.26% for MFA. The 

PSO algorithm exhibited fluctuating efficiency, dropping as 

low as 61.66% for R=40Ω but recovering at higher resistances. 

FA demonstrated more stable performance, maintaining 

efficiency values consistently above 83.72% and reaching a 

peak efficiency of 99.90% at R=70Ω. The MFA algorithm 

achieved the highest mean efficiency, maintaining values above 

88.31% across all resistances and peaking at 99.90% for 

R=70Ω. This confirms MFA’s superior adaptability in tracking 

the maximum power under the given shading condition. 

TABLE III presents the impact of different load resistances on 

the middle peak condition. 

 
Fig. 25. PSO algorithm for different values of R under the middle peak condition. 
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Fig. 26. FA algorithm for different values of R under the middle peak condition. 

 

 
Fig. 27. MFA algorithm for different values of R under the middle peak condition. 

 

• Resistance Variation Under Left Peak Condition: 

The performance of MPPT under varying resistances for 

the left peak condition is illustrated in the figures below. Fig. 

28 presents the performance of PSO, while Fig. 29 and Fig. 30 

depict the performance of FA and MFA, respectively. For the 

left peak condition, the mean efficiency values were 85.57% for 

PSO, 93.26% for FA, and 93.26% for MFA. The PSO algorithm 

exhibited noticeable fluctuations, with efficiency dropping to 

77.30% at R=70Ω, highlighting its sensitivity to changes in load 

resistance. In contrast, FA and MFA demonstrated significantly 

better tracking performance, with efficiency values consistently 

exceeding 93% across most resistances and peaking at 99.83% 

for R=30Ω. The similarity in FA and MFA performance in this 

condition suggests that both algorithms are well-suited for 

tracking MPP when shading patterns result in left-dominant 

peaks in the P-V curve. TABLE IV presents the impact of 

different load resistances on the left peak condition. 
 

TABLE IV: Resistance variation under left peak condition. 

Ri (Ω) 
PSO FA MFA 

P (W) ηi P (W) ηi P (W) ηi 

20 433.78 83.13% 487.53 93.43% 487.53 93.43% 

30 520.92 99.83% 520.92 99.83% 520.92 99.83% 

40 451.44 86.52% 451.44 86.52% 451.43 86.51% 

50 435.50 83.46% 435.50 83.46% 435.50 83.46% 

60 434.14 83.20% 507.24 97.21% 507.24 97.21% 

70 403.33 77.30% 517.19 99.12% 517.19 99.12% 

ηmean 85.57% 93.26% 93.26% 

 

 
Fig. 28. PSO algorithm for different values of R under the left peak condition. 
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Fig. 29. FA algorithm for different values of R under the left peak condition. 

 

 
Fig. 30. MFA algorithm for different values of R under the left peak condition. 

 

• Resistance Variation Under Right Peak Condition: 

The performance of MPPT under varying resistances for 

the right peak condition is illustrated in the figures below. Fig. 

31 presents the performance of PSO, while Fig. 32 and Fig. 33 

depict the performance of FA and MFA, respectively. For the 

right peak condition, the mean efficiency values were 88.39% 

for PSO, 90.41% for FA, and 95.35% for MFA. The PSO 

algorithm exhibited high efficiency at R=40Ω, achieving 

98.13%, but experienced notable drops at lower and higher 

resistances, such as 83.43% at R=30Ω and 80.84% at R= 60Ω, 

indicating its sensitivity to resistance variations. FA 

demonstrated improved consistency, particularly at moderate 

resistances, with a peak efficiency of 97.02% at R=30Ω, 

maintaining values above 89% across the range. MFA 

outperformed both algorithms, achieving the highest mean 

efficiency among the three. Notably, it maintained efficiency 

above 95% for most resistances, reaching 98.13% at R=40Ω 

and 95.84% at R=60Ω, reaffirming its robustness and ability to 

accurately track the GMPP. TABLE V presents the impact of 

different load resistances on the right peak condition. 
 

TABLE V: Resistance variation under left peak condition. 

Ri (Ω) 
PSO FA MFA 

P (W) ηi P (W) ηi P (W) ηi 

20 1051.00 95.41% 841.25 76.37% 1067.00 96.86% 

30 919.04 83.43% 1068.80 97.02% 1068.80 97.02% 

40 1081.00 98.13% 980.40 89.00% 1081.00 98.13% 

50 919.01 83.43% 1048.10 95.15% 1048.10 95.15% 

60 890.53 80.84% 1055.80 95.84% 1055.80 95.84% 

70 981.58 89.11% 981.58 89.11% 981.58 89.11% 

ηmean 88.39% 90.41% 95.35% 

 

 
Fig. 31. PSO algorithm for different values of R under the right peak condition. 
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Fig. 32. FA algorithm for different values of R under the right peak condition. 

 

 
Fig. 33. MFA algorithm for different values of R under the right peak condition. 

 

XI. CONCLUSION 

The comparative analysis conducted in this study 

underscores the effectiveness of the Modified Firefly Algorithm 

(MFA) in tracking the Maximum Power Point (MPP) under 

Partial Shading Conditions (PSC) in photovoltaic (PV) systems. 

Through extensive simulations, MFA consistently 

outperformed the conventional Perturb and Observe (P&O) 

algorithm, as well as the metaheuristic approaches Particle 

Swarm Optimization (PSO) and the standard Firefly Algorithm 

(FA), across all tested shading patterns. While FA exhibited 

stable tracking capabilities, MFA’s adaptive parameter tuning 

enabled it to achieve higher mean efficiency, particularly in 

scenarios where PSO experienced efficiency drops due to 

variations in load resistance. 

Furthermore, MFA showed remarkable consistency in 

maintaining high efficiency while adjusting to different 

resistances, demonstrating its robustness and adaptability in 

dynamic environmental conditions. The findings indicate that, 

although PSO and FA occasionally approached MFA’s 

performance under certain conditions, they were unable to 

maintain the same level of efficiency across all scenarios. 

MFA’s ability to efficiently converge toward the global MPP 

while minimizing fluctuations makes it the most reliable MPPT 

algorithm among the tested methods. 

Overall, the results of this study confirm that MFA is the 

most efficient and adaptive algorithm for optimizing power 

extraction in PV systems under varying shading and load 

conditions. Its superior tracking performance, faster 

convergence, and ability to maintain high efficiency in all cases 

reinforce its potential as a leading solution for enhancing the 

reliability and efficiency of solar energy systems. 
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