
 International Journal of Scientific Engineering and Science
Volume 9, Issue 3, pp. 37-40, 2025. ISSN (Online): 2456-7361

37

http://ijses.com/

All rights reserved

Modern Approaches to Web Application

Architecture: Microservices and Micro Frontends

Chmelev Andrei

Wildberries LLC, Moscow, Russia

Abstract—This review article examines the evolution of microservice architecture and the transition from monolithic frontend applications to

micro frontends. Special attention is paid to a comparative analysis of orchestration methods, service interaction, and version control, as well as

a detailed assessment of performance, development convenience, and maintenance. The work includes extended conceptual diagrams illustrating

the principal differences and common features of the two approaches. In addition, a table is presented that visually compares the key

characteristics of monolithic applications, microservices, and micro frontends. This article serves as an overview of existing practices and helps

determine which tools and technologies are best suited for building modern distributed web applications.

Keywords— Microservices, Micro Frontends, Web Application Architecture, Orchestration, Versioning, Performance Analysis, Monolithic

Applications.

I. INTRODUCTION

Modern web development often faces conflicting requirements:

high scalability, reliability, rapid feature delivery, and ease of

maintenance. Traditional monolithic architectures, while

simpler to deploy at early stages, frequently become bottlenecks

as projects expand [5]. They limit the ability to scale individual

components and slow down the release cycle when any single

part of the application needs updates. In response, microservice

architecture emerged as a means to separate a system into small,

autonomous services that can independently evolve and deploy

[1], [2].

However, the monolithic paradigm also persists in frontend

development, where large Single Page Applications (SPAs)

accumulate a significant amount of code, resulting in extended

loading times, complex maintenance, and challenges for

distributed teams [3]. The concept of micro frontends addresses

these issues by applying microservice principles to the client

side, thereby splitting the application into smaller,

independently deployable UI modules. Ensuring organizational

alignment across these teams often follows guidelines similar

to those discussed in [4].

Although focusing mainly on software architecture, some

classic works have also touched upon network-intensive or

infrastructure-heavy designs, which can tangentially inform

microservice and micro-frontend strategies. For instance, the

discussion in [6] on infrared navigation hardware systems

highlights the importance of scalability in complex

environments, and [7] examines electromagnetic structures that

necessitate robust distributed computing. Likewise, earlier

conferences explored how bandwidth constraints and

specialized hardware might shape an application’s architecture

[5].

This paper reviews the key aspects of microservice

architecture, explores how micro frontends extend these ideas

to the frontend layer, and provides an in-depth discussion on

orchestration, interaction, version management, and the impact

on both performance and team organization. By comparing

monolithic approaches, microservices, and micro frontends, it

illustrates how modern distributed architectures help achieve

greater flexibility, scalability, and maintainability for large-

scale web projects.

II. EVOLUTION OF MICROSERVICE ARCHITECTURE

A. Transition from Monolithic Applications to Microservices

In a classic monolithic architecture, the entire backend

application runs as a single process, with modules and layers

logically separated in the code but physically remaining part of

a single application. As the number of users and functional

requirements grows, the monolith becomes cumbersome,

making it difficult not only to scale but also to release new

versions. A pivotal step in solving this issue was the shift

toward microservice architecture, in which the system is

divided into a set of small, autonomous services, each

responsible for a specific business function [1]. This separation

facilitates independent development and release of services,

providing a more flexible update cycle.

B. Technology Stack and Patterns

There is a wide range of tools and patterns that help

implement microservice architecture. Popular solutions include

Docker and Kubernetes, which allow packaging services into

containers and managing their lifecycle while also offering

automatic scaling. Additional capabilities are provided by

Service Mesh solutions (e.g., Istio or Linkerd), which handle

distributed policies, security, and tracing. The API Gateway

concept enables consistent routing of requests, as well as

centralized authentication and authorization. In some cases, a

message broker (RabbitMQ, Kafka) is used to implement

asynchronous communication, facilitating event exchange

between services and simplifying coordination.

C. Benefits and Challenges in Implementing Microservices

One of the key benefits of this approach is the ability to

perform independent releases and scale services individually,

as each team can use the technology stack and development

methodology most suited to its needs. Moreover, system growth

becomes more manageable: changes in one service do not

directly affect the functionality of others. However, the

distributed nature of microservices also introduces new issues.

 International Journal of Scientific Engineering and Science
Volume 9, Issue 3, pp. 37-40, 2025. ISSN (Online): 2456-7361

38

http://ijses.com/

All rights reserved

Network communication adds overhead, complicating tracing

and debugging, while a decentralized architecture demands

more advanced

DevOps practices for monitoring, logging, and

orchestration. Incorrectly defined service boundaries can lead

to interdependencies, resulting in a “distributed monolith” that

fails to resolve the original scalability problems. Figure 1 shows

one possible arrangement of microservices via an API Gateway.

Each request is routed to the appropriate service, while logging

is centralized for easier monitoring and debugging.

For more advanced scenarios, a sequence of calls can be

traced with the help of service mesh tooling or specialized

logging. An example is shown in Figure 2, illustrating how user

requests might flow between various microservices during an

“order placement” process.

Fig. 1. Example of microservice orchestration through an API Gateway with centralized logging.

Fig. 2. Example of sequential service calls when placing an order.

III. TRANSITION TO MICRO FRONTENDS

A. Challenges with Monolithic SPA Applications

In the frontend, developing large Single Page Applications

(SPAs) remained relevant for a long time. SPAs provide a

convenient user experience and high interactivity but, with

rapid growth of code and features, lead to difficulties in

maintenance and testing. Sometimes even a minor update

requires redeploying the entire frontend, and the increasing

bundle size degrades performance, especially on clients with

slower connections. When large teams work on a single

application, synchronization and release speed can suffer

significantly.

B. The Concept of Micro Frontends

The idea of micro frontends extends microservice principles

to the client side. It assumes that a large frontend is split into

independent modules, each with its own technology stack,

lifecycle, and development team. As a result, the project

becomes more flexible since each functional area can evolve

independently and release its updates without blocking others.

In practice, ensuring a consistent user experience is particularly

important so that transitions among micro frontends remain

seamless.

For this, the “root” part of the application (often called the

Shell) is equipped with routing and a shared UI framework to

keep site-wide styling and the header consistent throughout the

system.

C. Common Approaches to Implementing Micro Frontends

In everyday practice, there are several ways to combine

micro frontends into a cohesive whole. Server-Side

Composition implies that individual modules are assembled on

the server during rendering, using ESI (Edge-Side Includes) or

 International Journal of Scientific Engineering and Science
Volume 9, Issue 3, pp. 37-40, 2025. ISSN (Online): 2456-7361

39

http://ijses.com/

All rights reserved

other mechanisms. Client-Side Composition focuses on loading

modules directly in the user’s browser, sometimes using

iframes or Web Components, including Module Federation in

Webpack. Build-Time Integration involves jointly building

multiple parts into one bundle, provided each team

independently develops its segment of the code.

Figure 3 presents one possible schematic of how micro

frontends can be composed together. Each module manages a

distinct area of the UI but shares common resources, such as

styles or libraries, to ensure a unified look and feel.

Fig. 3. High-level representation of micro frontends combined by a shell.

IV. ORCHESTRATION, INTERACTION, AND VERSIONING

Orchestration in Microservices

Orchestration is designed to simplify the lifecycle

management of multiple services. Kubernetes or Docker

Swarm can automate scaling, self-healing, and rolling updates.

For microservices, especially in larger projects, a Service Mesh

is often used to centrally manage routing, encryption (mTLS),

and observability. This approach significantly eases debugging

by adding a unified layer for logging, metrics, and request

tracing.

Interaction of Micro Frontends

For micro frontends, orchestration comes down to how the

user interface is assembled from separate parts into a unified

application. The central Shell or Layout not only handles

routing but also provides a shared visual environment (header,

footer, navigation bar). It is crucial for users that styles,

interface elements, and authentication remain consistent. Each

micro frontend team can use its own technology stack, provided

it does not hinder overall composition. Data exchange among

independent modules is handled through events, shared

services, or a global store, depending on the project’s specifics.

Versioning and Release Management

A common method of coordinating versions in

microservices and micro frontends is semantic versioning

(semver), which helps clarify compatibility levels. Many

companies use Feature Toggles, where new features are initially

hidden for most users, making it possible to test them and

disable them if needed without halting the entire service.

Canary and Blue-Green Deployment allow testing new releases

on a subset of users or running two parallel environments,

thereby reducing risk during updates. In micro frontends,

Module Federation is also frequently used to dynamically load

different module versions on the client side.

Fig. 4. A typical CI/CD pipeline for microservices and micro frontends.

To ensure code quality and automate deployment, many

organizations incorporate a CI/CD pipeline for both

microservices and micro frontends, as shown in Figure 4. In this

example, commits trigger automated builds and tests, followed

by staged deployments and final approval before production

release.

V. PERFORMANCE, DEVELOPMENT, AND MAINTENANCE

ANALYSIS

Performance

A distributed architecture with microservices can increase

latency due to numerous network calls. On the other hand, it

allows more precise scaling of individual services, potentially

 International Journal of Scientific Engineering and Science
Volume 9, Issue 3, pp. 37-40, 2025. ISSN (Online): 2456-7361

40

http://ijses.com/

All rights reserved

saving resources. In micro frontend projects, frontend

performance depends on the number of components loaded

simultaneously and the degree to which the overall bundle size

grows. Proper planning and configuration of caching,

compression, and the use of a CDN can minimize the negative

impact on web application speed.

Development Convenience and Team Organization

One of the most notable reasons for adopting a distributed

architecture is the convenience of parallel development. Each

team can manage its own releases and updates, with the only

coordination point being the shared interaction interfaces. The

flexibility to choose languages, frameworks, and libraries for

specific needs allows adaptation of the tech stack to different

tasks. However, maintaining unified styles and UI patterns

requires additional agreements and oversight, especially when

multiple teams—potentially dozens of specialists—are working

on separate micro frontends or microservices.

Maintenance and Future Evolution

As the system grows, maintenance and version control

become more complex. Infrastructure costs rise due to

Kubernetes, logging systems, and monitoring solutions.

Nevertheless, well-designed service boundaries and

modularization often pay off by enabling faster rollout of new

features and reducing interdependencies among parts of the

application. The evolution of such projects becomes easier if

documentation on interfaces is maintained and consistent

standards exist for coding, security, and testing. It is important

to remember that choosing a “distributed” approach is a

strategic decision involving investment in DevOps and

infrastructure, so that the flexibility and scalability benefits can

be realized over time. Table I compares the key characteristics

of monolithic applications, microservices, and micro frontends.

TABLE I. Comparison of Key Approaches

Characteristic Monolith Microservices Micro Frontends

Architecture

Complexity
Low (single codebase)

High (multiple services, network

interactions)

Medium (several UI modules, each is somewhat self-

contained)

Scalability Limited (scales as a whole)
High (each service can be independently

scaled)

Medium (only certain frontend modules can be scaled,

but they still depend on backend)

Release Cycle
Single release cycle, often

bulky

Independent releases for each service, faster

feature delivery

Independent release of individual frontend modules,

reducing risk of breaking the entire UI

Technology

Autonomy

Typically one technology

stack

Freedom to choose different languages and

frameworks per service

High flexibility (each team can choose its own

framework for the micro frontend)

Maintenance
Complexity

Simpler environment (just
one project)

Complex infrastructure requiring advanced
DevOps practices

Requires coordination among multiple modules and
consistent UI styling

VI. CONCLUSION

This review article has highlighted the key aspects of web

application evolution from monolithic architecture to

microservices, as well as the specifics of transitioning to micro

frontends for the client side. Microservice architecture

simplifies scalability and optimizes collaboration among teams,

reducing the risk that changes in one module might break the

entire application. At the same time, micro frontends address

similar problems at the frontend layer, splitting large,

monolithic SPA applications into self-contained modules with

their own release lifecycles.

Despite the numerous advantages, a distributed design

approach requires advanced solutions for orchestration,

monitoring, and maintaining version compatibility. In the case

of micro frontends, there is a need to coordinate the efforts of

multiple teams responsible for different parts of one interface.

Well-defined boundaries for services and micro frontends,

along with a mature DevOps culture and testing practices,

enable realization of the main benefits of these approaches,

providing a more flexible, reliable, and easily scalable web

application architecture. Earlier explorations of network-based

system evolution, such as those in [5], [6], and [7], underscore

the importance of balancing infrastructure complexity with

application needs—an insight that remains relevant when

scaling modern distributed architectures.

ACKNOWLEDGMENT

The author extends gratitude to colleagues who provided

expert review and support during the preparation of this

material, as well as all members of the development team who

participated in discussions and peer reviews. Special

acknowledgment goes to the scientific community for the

ongoing exchange of experience and best practices in the fields

of microservices and micro frontends.

REFERENCES

[1] M. Fowler, “Microservices: a definition of this new architectural term,”

[Online]. Available: https://martinfowler.com/articles/microservices.html

[2] S. Newman, Building Microservices, 2nd ed., O’Reilly Media, 2021.
[3] L. Richardson and M. Fulton, “Micro Frontends in Action,” Manning

Publications, 2021 (to be published).

[4] M. Heath and L. Porcaro, Team Topologies: Organizing Business and
Technology Teams for Fast Flow, IT Revolution Press, 2019.

[5] D. B. Payne and J. R. Stern, “Wavelength-switched passively coupled

single-mode optical network,” in Proceedings IOOC-ECOC, pp. 585–
590, 1985.

[6] J. U. Duncombe, “Infrared navigation—Part I: An assessment of

feasibility,” IEEE Transactions Electron Devices, vol. ED-11, no. 1, pp.
34–39, 1959.

[7] R. J. Vidmar, “On the use of atmospheric plasmas as electromagnetic

reflectors,” IEEE Transactions on Plasma Sciences, vol. 21, issue 3, pp.
876–880, 1992.

