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I. INTRODUCTION  

Fractional calculus has appeared in various scientific fields and 

has been successfully applied in signal processing, anomalous 

diffusion, physics and Engineering (see, for example, [1-5]). 

Fractional differential equations can describe various complex 

physical and mechanical behaviors, and many phenomena in 

life can also be described by fractional differential equations, 

such as blood alcohol concentration, videotape problem, world 

population growth, so it is of practical significance to solve its 

numerical solution. The exact solutions of many fractional 

differential equations can not be obtained accurately, so the 

numerical algorithm of fractional differential equations has 

attracted much attention. At present, the numerical algorithm 

research of fractional differential equations has made some 

progress and has been gradually applied to mechanics, 

viscoelasticity [6], biology [7], simulation of fluid flow [8] and 

other different fields. 

There are not many methods for solving fractional 

differential equations. For example, Zhou and dai[9] 

constructed Legendre spectral collocation method for nonlinear 

fractional differential equation coupling system; Huseynov i t, 

ahmadova a, Fernandez a, et al. [10] considered the two-

dimensional coupled system of linear fractional differential 

equations with Caputo derivative and the corresponding non-

homogeneous system; Zhou and Xu [11] proposed a high-order 

scheme for the numerical solution of fodes; Nabil t. [12] 

established the existence and uniqueness of solutions for 

nonlinear coupled systems of implicit fractional differential 

equations containing ψ - Caputo fractional order operators 

under nonlocal conditions; Zaky and Ameen [13] constructed 

Legendre Jacobi collocation method to solve nonlinear 

fractional differential equations of two-point boundary value 

problems with fractional derivative order at most two; [14] end 

value problems for nonlinear systems of fractional differential 

equations, etc. 

The outline of the paper is as follows: in Section 2, we 

describe the system of time fractional slow diffusion equation. 

Then in Section 3, we give its establishment of differential 

format. In Section 4 and 5, we give the stability and 

convergence analysis. In Section 6, we use some numerical 

examples to verify the feasibility of the method. In Section 7 

gives some concluding remarks.  

II. PRELIMINARY KNOWLEDGE  

2.1 Consider the following system of time fractional slow 

diffusion equation 
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where the initial boundary conditions are as follows 
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where 0 , 1,  ,  ,  ,  ,  ,  1,2i i if g i      = . 

2.2 1L  Interpolation approximation of Caputo fractional 

derivative 

For Caputo derivative of order (0 1)   : 
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using the piecewise linear interpolation 1L  approximation. 
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where is N a positive integer, the following notation is 
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Performing linear interpolation on ( )f s  in the interval 
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where 1( ) ( , )k k k ks t t  −=  ，substitute 1, ( )kfL s  into 
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Thus, the approximation formula for Caputo fractional 

derivative at nt t=  is obtained 
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formula (5) is usually referred to as Formula 1L . 

The coefficient 
( )

la 
 has the following properties: 
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III. ESTABLISHMENT OF DIFFERENTIAL FORMAT  

Consider fractional order problems (1)-(2) at node 

( , )i nx t , and obtain 
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The time fractional derivative in equation (6) is discretized 

using the 1L  interpolation approximation formula, the spatial 

second-order derivative is discretized using the second-order 

center difference quotient, and then Lemma 2 and Lemma 3 are 

applied 
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Note the initial boundary condition (2), there are 
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Omit the small term 1 2( ) ,  ( )n n

i ir r  in equation (7), by using 

numerical solution 
n

iu  instead of exact solution 
n

iU , the 

following difference scheme can be obtained for solving 

problems (1)-(2): 
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Note that the right-hand term ,n n
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i iu v , which makes it an implicit format. When 
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IV. STABILITY OF DIFFERENTIAL FORMATS  
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where initial boundary value conditions in equation (10). 

4.2 stability analysis 
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Starting from inequality (14), applying the discrete form of 

Gronwall inequality, we can obtain 
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V. CONVERGENCE OF DIFFERENTIAL FORMAT  
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6. Numerical examples 
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Figure 1 The 𝑈 error surface of 𝛼 = 0.3, 𝛽 = 0.5, ℎ = 1/800, 𝜏 = 1/32. 

 

Figure 2 The 𝑉 error surface of 𝛼 = 0.3, 𝛽 = 0.5, ℎ = 1/800, 𝜏 = 1/32. 

 
Table 1. The maximum error and convergence order of 𝑈 under different step 

length ℎ, 𝜏 

ℎ 𝜏 
𝛼 = 0.2, 
𝛽 = 0.4 

𝑅𝑎𝑡𝑒 
𝛼 = 0.6, 
𝛽 = 0.8 

𝑅𝑎𝑡𝑒 

1/4 1/16 3.5001e-04  9.6400e-04  

1/8 1/64 7.6546e-05 2.1930 1.7456e-04 2.4654 
1/16 1/256 1.8132e-05 2.0778 3.3702e-05 2.3728 

1/32 1/1024 4.4187e-06 2.0368 6.8333e-06 2.3022 

 
TABLE 2. The maximum error and convergence order of 𝑉 under different 

step length ℎ, 𝜏 

ℎ 𝜏 
𝛼 = 0.2, 
𝛽 = 0.4 

𝑅𝑎𝑡𝑒 
𝛼 = 0.6, 
𝛽 = 0.8 

𝑅𝑎𝑡𝑒 

1/800 1/8 0.0019  0.0079  

1/800 1/16 6.4888e-04 1.5340 0.0035 1.1924 
1/800 1/32 2.2114e-04 1.5530 0.0015 1.1992 

1/800 1/64 7.4684e-05 1.5661 6.5689e-04 1.2020 

 

Example 2 Consider (1) the right-hand function as the 

following nonlinear term 
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TABLE 3. The maximum error and convergence order of 𝑈 under different 

step length ℎ, 𝜏 

ℎ 𝜏 
𝛼 = 0.2, 
𝛽 = 0.4 

𝑅𝑎𝑡𝑒 
𝛼 = 0.6, 
𝛽 = 0.8 

𝑅𝑎𝑡𝑒 

1/4 1/16 5.7587e-04  0.0105  

1/8 1/64 1.0601e-05 2.4416 0.0024 2.1129 
1/16 1/256 2.1858e-05 2.2780 5.3908e-04 2.1692 

1/32 1/1024 4.7752e-06 2.1945 1.1820e-04 2.1893 
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TABLE 4. The maximum error and convergence order of 𝑉 under different 

step length ℎ, 𝜏 

ℎ 𝜏 
𝛼 = 0.3, 
𝛽 = 0.5 

𝑅𝑎𝑡𝑒 
𝛼 = 0.6, 
𝛽 = 0.8 

𝑅𝑎𝑡𝑒 

1/800 1/8 0.0035  0.0145  

1/800 1/16 0.0013 1.4354 0.0066 1.1307 

1/800 1/32 4.6359e-04 1.4763 0.0030 1.1626 
1/800 1/64 1.6357e -04 1.5029 0.0013 1.1797 

 

Figure 3 The 𝑈 error surface of 𝛼 = 0.3, 𝛽 = 0.5, ℎ = 1/800, 𝜏 = 1/32. 

 

 

Figure 4 The 𝑉 error surface of 𝛼 = 0.3, 𝛽 = 0.5, ℎ = 1/800, 𝜏 = 1/32. 

VI. CONCLUDING REMARKS  

For the nonlinear coupled time fractional slow diffusion 

equations, the predictor corrector method is used to linearize the 

right-hand function. At the same time, the time fractional 

derivative is approximated by L1 scheme, and the spatial 

second derivative is discretized by difference method. Then a 

stable convergence numerical scheme is established. The 

results of theoretical analysis are verified by the above 

numerical examples, and the error accuracy of the 

corresponding method is obtained. 
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