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Abstract— This article provides a systematic overview of key classification and clustering methods that form the foundation of modern data 

analysis. It begins with a general introduction to supervised and unsupervised learning, illustrating the fundamental differences between 

classification tasks and those aimed at uncovering hidden structures. The following sections examine major classification approaches, including 

linear and nonlinear models, ensemble methods, and probabilistic algorithms. In the clustering section, the discussion focuses on how various 

algorithms (K-means, hierarchical clustering, and DBSCAN) detect complex data shapes differing in density and form. The author’s contribution 

addresses the interpretation of results, comparative analysis, and practical visualization examples, offering a more meaningful application of 

these models. Such a comprehensive methodology and examples of use highlight the flexibility of machine learning and its suitability for solving 

a wide range of tasks related to large and heterogeneous datasets. 
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I. INTRODUCTION  

In today’s scientific and industrial landscape, classification and 

clustering have become fundamental tools of data analysis, 

serving as a crucial link in tasks of intelligent information 

processing. The continuous growth in both the volume and 

variety of data, generated in research, business processes, and 

technological services, drives the urgent need for automated 

methods capable not only of extracting patterns but also of 

providing quantitatively and qualitatively sound conclusions 

for decision-making. For instance, banks employ advanced 

classifiers to assess credit risk and detect fraudulent 

transactions, the pharmaceutical industry actively uses 

clustering techniques to group biomarkers and personalize 

treatment approaches, and major internet companies apply 

similar algorithms in recommendation systems and advertising 

[1]. 

Despite the widespread use and theoretical foundation of 

core ideas, researchers and practitioners face numerous 

unresolved questions when choosing a specific classification or 

clustering method. Which parameters determine the 

performance of ensemble models? How robust are kernel-based 

approaches to outliers? How can one accurately select the 

number of clusters or assess clustering quality when the true 

structure of the data remains unknown? Attempts to answer 

these questions often encounter the lack of a universal solution, 

as well as existing differences regarding interpretability, 

computational complexity, and algorithmic stability in dealing 

with real-world, often incomplete or “noisy” datasets. 

Moreover, there is a growing demand for research that aims 

to develop more coherent guidelines: when and why should 

logistic regression or Random Forest be employed, in which 

situations do ensemble methods outperform single models, and 

how can one correctly evaluate clustering outcomes given the 

diversity of available metrics? 

While the standard strategy for classification and clustering 

covers virtually all stages of data analysis—from the initial 

detection of patterns to complex predictive analytics tasks in 

large-scale datasets [2]—there remains a noticeable lack of in-

depth systematic overviews and comparisons of methods, 

especially in terms of their practical application to real-world 

data. The issue of interpretability holds a prominent place in 

contemporary studies, as creating an effective algorithm that 

yields accurate results is insufficient without a transparent 

decision-making mechanism. In medicine, this directly affects 

diagnostic responsibility, and in the banking sector, regulatory 

compliance [3]. 

This work aims to form a comprehensive understanding of 

classification and clustering methods, including their 

theoretical underpinnings, existing subtypes, underlying 

principles, and practical applicability, as well as to provide 

author's recommendations for their rational selection and 

interpretation. 

1. General Theoretical Background 

Data analysis in machine learning is traditionally divided 

into two domains: supervised learning and unsupervised 

learning [4,5]. The former assumes the presence of a target 

variable (label), while the latter focuses on discovering the 

internal structure of a dataset without any additional 

information about correct answers. 

Supervised learning addresses tasks related to predicting 

class labels (classification) or numerical values (regression). 

The learning process uses training pairs (x,y), where x 

represents input features and y represents the target output. The 

objective is to construct a function f(x) that minimizes 

prediction error on new, unseen data. 

Unsupervised learning, on the other hand, analyzes 

unlabeled data to identify underlying patterns and structures. 

Common applications include clustering (grouping similar 

objects), dimensionality reduction (such as PCA and t-SNE for 

data visualization), and association rule mining [4,5]. These 

methods reveal natural groupings and relationships within data 

without prior knowledge of correct outcomes. 



International Journal of Scientific Engineering and Science 
Volume 9, Issue 1, pp. 120-125, 2025. ISSN (Online): 2456-7361 

 

 

121 

http://ijses.com/ 

All rights reserved 

From a mathematical standpoint, supervised learning is 

formally described by optimizing a loss function L(f(x),y). For 

support vector machines (SVMs), this may involve maximizing 

the margin between classes, while for linear models such as 

logistic regression, it often entails minimizing cross-entropy. In 

contrast, unsupervised learning lacks a clear notion of a 

“correct” answer, typically focusing on maximizing intra-

cluster similarity (or minimizing inter-cluster distances) or 

reducing dimensionality with minimal information loss. 

Practical applications help clarify the difference: 

● Finance: Banks employ supervised learning (classifiers) to 

identify fraudulent transactions and unsupervised methods 

to detect unusual patterns in financial flows. 

● Medicine: Classification helps diagnose diseases based on 

labeled symptom data, while clustering reveals previously 

unknown disease subtypes by grouping patients with similar 

pathological patterns. 

● Marketing: Supervised models optimize advertisements by 

predicting conversion rates from past campaign data, while 

unsupervised methods segment customers into natural 

groups based on behavior patterns. 

Below is Table 1, providing a brief summary of the main 

distinctions. 

 
TABLE 1. Differences in Supervised and Unsupervised Learning [4,5] 

Characteristic 
Supervised 

Learning 
Unsupervised Learning 

Presence of 
Target Label 

Yes (classes, 
regression) 

No 

Main Objective Predict ŷ Discover groups/patterns 

Typical Tasks 
Classification, 

Regression 
Clustering, Dimensionality 

Reduction 

Example Metrics 

Accuracy, 

Precision, Recall, 

ROC AUC 

Silhouette Score, Sum of 

Squared Errors (SSE), 

Adjusted Rand Index (ARI) 

 

Thus, the fundamental distinction between supervised and 

unsupervised learning determines the choice of methods and 

analysis strategies. The following sections will examine in 

detail the two key types of learning tasks: classification (the 

logic of building supervised models) and clustering (a primary 

example of unsupervised methods). 

2. Classification 

Classification, as a key representative of the supervised 

learning paradigm, aims to determine the membership of 

objects in predefined categories. Formally, classification 

involves finding a mapping f: Rⁿ → Y, where x ∈ Rⁿ represents 

a feature vector and Y is a finite set of classes. The quality of 

this mapping is evaluated through a loss function L(f(x), y), 

such as cross-entropy or classification error. The objective is to 

minimize this function on the training data while maintaining 

the model's ability to generalize to unseen instances. Closely 

related to this concept, the model’s generalization capacity 

defines how reliably the algorithm will handle instances not 

encountered during training [6]. 

To illustrate different approaches in classification, it is 

useful to consider a hypothetical two-dimensional problem with 

two overlapping classes. Suppose objects of the first class 

occupy the upper-right region of a plot, while those of the 

second class are in the lower-left (Fig. 1). Various algorithms 

build the separating boundary differently. The simplest linear 

boundary (e.g., logistic regression) may fail to capture complex 

structures, but it is easily interpretable. More flexible methods, 

such as decision trees and their ensembles, can form nonlinear 

separating surfaces but may increase the risk of overfitting. This 

trade-off between model complexity and generalization is 

widely documented in classification literature [7]. 

 

 
Figure 1. A schematic illustration [7] 

 

Classification vs. regression. In classification the dotted line 

represents a linear boundary that separates the two classes; in 

regression, the dotted line models the linear relationship 

between the two variables. 

Below is a brief overview of the main classification 

algorithms, considering their characteristic features and areas 

of application. 

The earliest classification approaches assumed linear 

separability, giving rise to simple but still relevant models. 

Logistic regression remains a fundamental approach, creating 

decision boundaries using the logistic function to estimate class 

membership probabilities. Its primary advantages include 

interpretable coefficients and effective regularization options, 

though it cannot capture nonlinear relationships in data. 

Nonlinear algorithms form a broad category. Decision trees 

recursively partition the feature space into simpler regions, with 

the tree’s leaves representing final classes. However, individual 

trees are prone to overfitting, and tree depth directly influences 

the balance between accuracy and generalization. Tree 

ensembles (Random Forest, Gradient Boosting) combine 

multiple base trees into a single model. Random Forest uses 

bootstrapping and aggregation (bagging) of multiple trees to 

reduce variance and improve noise resistance. Gradient 

Boosting builds trees sequentially, with each tree focusing on 

correcting previous errors, typically achieving high accuracy 

but requiring careful parameter optimization 

Among the classic “non-parametric” methods is the k-

Nearest Neighbors (k-NN) algorithm. It assigns a new object’s 

class based on the majority vote among its k closest training 

instances, according to a chosen metric. The advantage is that 

no explicit “training” is needed—everything relies on the 

distances between objects. The drawback is the substantial 

computational cost when the dataset grows and sensitivity to 

noisy features. 
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Another important algorithm is the Support Vector Machine 

(SVM). It constructs a hyperplane or set of hyperplanes that 

optimally separate the classes and maximize the margin 

between them. By employing nonlinear kernels (radial, 

polynomial, etc.), the method can handle complex decision 

boundaries. SVMs are fairly stable but require careful kernel 

selection and parameter tuning. 

Finally, the Naive Bayes method, based on Bayes’ theorem 

and the assumption of feature independence, deserves mention. 

Despite the roughness of this assumption, Naive Bayes often 

performs competitively, especially in text classification tasks 

(e.g., spam detection), and it trains and predicts very quickly 

[6,9]. 

For a concise comparison of key characteristics, see Table 2. 

 
TABLE 2. Key Characteristics of Classification Algorithms [6,7,9] 

Algorithm 
Type of 

Decision 

Boundary 
Key Advantages 

Main 

Disadvantages 

Logistic 

Regression 
Linear 

High 

interpretability; 
Efficient training 

Limited to linear 

relationships 

Decision 
Trees 

Nonlinear 
(rules) 

Transparent 

decision rules; 
Handles mixed 

data types 

Prone to 
overfitting 

Random 

Forest 

Ensemble of 

trees 

Robust 

performance; 

Handles missing 

data 

Limited 

interpretability; 

Memory intensive 

Gradient 

Boosting 

Sequential tree 

ensemble 

High accuracy; 
Feature 

importance 

ranking 

Complex 

parameter tuning; 
Training time 

k-NN Distance-based 
No training phase; 

Nonparametric 
Computationally 

expensive online 

SVM 
Optimal 

hyperplane 

Effective in high 

dimensions; 
Robust separation 

Kernel selection 

complexity; 
Scaling issues 

Naive 

Bayes 

Linear 

(assuming 
independence) 

Fast training and 

inference; 
Memory efficient 

Strong 

independence 
assumption 

 

 

These classification methods, while differing in their 

underlying approaches and characteristics, share the 

fundamental goal of achieving optimal class separation while 

maintaining generalization capability. The selection of an 

appropriate method depends on several key factors: data 

characteristics (dimensionality, noise level, feature types), 

computational constraints (training time, memory 

requirements, inference speed), and application requirements 

(interpretability, accuracy thresholds, deployment 

environment). 

3. Clustering 

Clustering falls under unsupervised learning methods, as it 

does not require predefined labels for the data points. Its aim is 

to partition a dataset into groups (clusters) so that objects within 

each cluster are as similar as possible, while objects from 

different clusters differ significantly. Unlike classification, 

there is no “correct answer” here; the focus lies primarily on the 

data’s internal structure. This approach is particularly important 

in tasks such as market segmentation in marketing, gene 

grouping in bioinformatics, or searching for similar patterns in 

large image databases. 

The foundation of clustering rests on distance or similarity 

metrics between data points. For numerical features, Euclidean 

distance (d = ||xi - xj||) serves as the standard metric.  However, 

in high-dimensional tasks or those involving specialized data 

formats (such as text), alternative metrics like cosine similarity 

may be preferable. Determining the optimal cluster structure 

(how many clusters and their arrangement) is not always 

straightforward. Selecting the number of clusters in methods 

like K-means can be done via heuristic approaches such as the 

“elbow method” or silhouette analysis, though the choice 

remains largely subjective. Further complicating the matter is 

the fact that clusters may have irregular shapes or varying 

densities, making it unwise to rely solely on “spherical” 

assumptions [9]. 

Classical overviews highlight several fundamental 

approaches that differ in how they group objects [9]: 

1. K-means. This is the most popular algorithm due to its 

simplicity and ease of implementation. The idea involves 

randomly initializing k centroids, then iteratively updating 

their positions by assigning objects to the nearest centers. 

The process continues until stabilization when the centroids 

stop changing. 

Advantages:  

● Computational efficiency (O(nkd) per iteration); 

● Simple implementation and interpretation; 

● Guaranteed convergence to local optimum. 

Limitations:  

● Requires pre-specified number of clusters (k); 

● Assumes spherical cluster shapes; 

● Sensitive to initial centroid positions; 

● May converge to suboptimal solutions. 

2. Hierarchical Clustering. This method constructs a tree-like 

structure called a dendrogram. In the agglomerative (bottom-

up) variant, the algorithm starts with isolated points and 

gradually merges the closest clusters until only one remains. In 

the divisive (top-down) variant, it begins with the entire dataset 

as one cluster and progressively splits it. 

Advantages:  

● No predefined cluster number is required; 

● Provides hierarchical data structure visualization; 

● Supports multiple distance metrics and linkage 

criteria. 

Limitations:  

● Time complexity O(n³) for naive implementation; 

● Memory requirements O(n²); 

● Sensitive to linkage criterion selection (single, 

complete, average). 

3. DBSCAN (Density-Based Spatial Clustering of Applications 

with Noise). DBSCAN is density-based: objects belong to the 

same cluster if they are close enough to a “cluster core.” The 

parameters ε (eps) and min_samples define the neighborhood 

radius and the minimum number of points required to form a 

cluster. 

Advantages:  

● Discovers arbitrary-shaped clusters; 
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● Automatically handles noise/outliers; 

● No preset cluster number needed; 

● Time complexity O(n log n) with spatial indexing. 

Limitations:  

● Parameter selection challenges; 

● Struggles with varying density clusters; 

● Memory requirements for distance calculations [9]. 

Below is a conceptual two-dimensional diagram that can 

depict several groups of points with varying shapes and 

densities. By coloring the regions differently, one can illustrate 

how each algorithm interprets the data structure (Fig. 2) [8]. 

 

 
Figure 2. Example of Clustering [8] 

 

K-means will attempt to partition these points into roughly 

spherical clusters of similar shape and size. If k=2 is chosen, it 

will likely group the compact set into one cluster and the 

elongated region into another, ignoring outliers or distributing 

them to the nearest centers. 

Hierarchical clustering builds a dendrogram, and a vertical 

“cut” at the desired level determines the number of resulting 

groups. Cutting at two clusters might recreate a division close 

to that of K-means. Cutting at three or four clusters could isolate 

noisy points into separate small groups or merge them with 

similar segments. 

DBSCAN identifies clusters based on density patterns, 

naturally grouping dense regions while marking isolated points 

as noise. Its ability to discover clusters of arbitrary shapes and 

automatic noise detection offer advantages over K-means, 

despite requiring careful parameter selection for ε and 

min_samples. 

While such a diagram does not aim for strict accuracy, it 

effectively illustrates the differences among these algorithms. 

The choice of a particular method depends on requirements 

related to cluster shape, dataset scale, and noise levels. 

In the end, clustering results in partitioning the dataset into 

clusters that can be interpreted as potentially “related” groups. 

The ultimate success of this partitioning depends on chosen 

evaluation metrics, feature characteristics, and hyperparameter 

settings. Compared to classification, the outcome does not rely 

on external labels, placing greater responsibility on the 

researcher to interpret the results and draw meaningful 

conclusions. 

4. Quality Assessment and Practical Examples 

Models used in classification and clustering tasks produce 

specific outputs—either a predicted class or an assigned cluster. 

However, without proper interpretation and objective quality 

assessment, these outputs remain just numbers or labels, 

lacking substantial analytical value. The analyst must be able to 

read the results, understand their limitations, and select suitable 

metrics for comparison and diagnostics. Moreover, practical 

implementation examples are essential to verify a method's 

reproducibility and effectiveness. 

Interpreting classification models often involves three 

aspects: understanding the model’s logic (which features are 

most important and how decisions are formed), evaluating key 

metrics, and analyzing behavioral patterns (where and why the 

model might fail). Logistic regression provides coefficients for 

each feature, simplifying the explanation of decisions. Decision 

trees can be examined by tracing the path from the root to the 

leaf—this is especially valuable in medical diagnostics, where 

it is crucial for a physician to understand the rationale behind a 

given diagnosis. More complex ensemble algorithms (Random 

Forest, Boosting) or SVMs are often less interpretable directly. 

For these, interpretation techniques such as SHAP (SHapley 

Additive exPlanations) or LIME (Local Interpretable Model-

agnostic Explanations) are increasingly employed to 

quantitatively estimate each feature's contribution to the final 

prediction. 

Clustering requires a dual interpretation strategy: on one 

hand, the quality of the discovered groups should be examined 

using internal metrics (e.g., silhouette index, Sum of Squared 

Errors [SSE], Davies–Bouldin index); on the other hand, one 

must consider the domain-specific logic of grouping. Since 

clusters lack external validation labels, the researcher must 

meaningfully describe the resulting groups. For K-means, 

analyzing the mean feature values within each cluster (its 

center) can reveal the defining characteristics of each segment. 

Hierarchical clustering allows step-by-step examination of 

merging stages—a dendrogram shows the nested structure of 

clusters and may suggest which hierarchical level yields the 

most interpretable segmentation. In addition to identifying 

clusters, DBSCAN labels outliers as anomalies, so if the data 

truly contain unusual patterns, the interpretation can focus on 

understanding the nature of these isolated objects. 
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Classification model quality assessment often involves a 

standard set of metrics (Accuracy, Precision, Recall, F1-score, 

ROC AUC), whose selection depends on the task’s specifics. In 

financial fraud detection, Recall is critical to avoid missing 

fraudulent activities. In spam filtering, high precision is 

desirable to minimize blocking legitimate emails. Clustering, 

given the lack of a reference solution, more frequently relies on 

internal metrics (silhouette index, Davies–Bouldin) that 

measure cluster density and separation. When partial external 

information is available, metrics like Adjusted Rand Index 

(ARI) or Normalized Mutual Information (NMI) can be used if 

some objects have at least partial labeling. 

Even after choosing a metric, it is important to recognize 

that no single indicator provides a complete picture. In real-

world scenarios (product analytics, medicine, social studies), 

practitioners often establish a comprehensive measurement 

framework. For example, they may consider not only the F1-

score but also the economic or practical impact of implementing 

the model, response times in operational systems, or the ease of 

explaining results to decision-makers. 

A visual example could involve comparing several 

classifiers trained on a hypothetical dataset for spam detection. 

Suppose we have Logistic Regression, Random Forest, and 

SVM. For simplicity, assume we have already split the data into 

training and test sets, tuned hyperparameters, and obtained the 

following test metrics (Table 3). 
 

TABLE 3. Test Set Metrics 

Model Accuracy 
Precision 

(spam) 
Recall 

(spam) 

F1-

score 

(spam) 

ROC 

AUC 

Logistic 
Regression 

0.92 0.88 0.76 0.82 0.93 

Random 

Forest 
0.95 0.90 0.85 0.87 0.96 

SVM (RBF) 0.93 0.87 0.81 0.84 0.94 

 

The classifiers are evaluated using standard performance 

metrics: Accuracy (overall correct predictions), Precision 

(proportion of correct spam identifications), Recall (proportion 

of actual spam detected), F1-score (harmonic mean of Precision 

and Recall), and ROC AUC (Area Under the Receiver 

Operating Characteristic Curve).  We see that Random Forest 

performs best on most metrics, although Logistic Regression is 

slightly easier to interpret. Depending on the objective, an 

analyst might prefer the model offering higher accuracy and F1-

score, or opt for greater interpretability. 

To enhance clarity, ROC curves are often plotted to 

compare models. Below is a conceptual diagram (Fig. 3) 

showing three ROC curves and their associated AUC values. A 

higher AUC indicates that the model better distinguishes spam 

from non-spam at various threshold settings. 

 
Figure 3. Example of ROC Curves for Model Comparison 

 

Logistic Regression (AUC=0.93); Random Forest 

(AUC=0.96); SVM (RBF) (AUC=0.94). 

Each point on the ROC curves corresponds to different 

classification thresholds. The best curves approach the top-left 

corner of the plot, and their AUC values are higher. In this case, 

Random Forest achieves the highest AUC = 0.96. 

Such visualizations help compare the quality of multiple 

methods and facilitate the selection of a specific model for 

deployment. Furthermore, if we were addressing a 

segmentation task (clustering), we could similarly create 

summary tables or scatter plots colored by cluster membership 

(e.g., K-means vs. DBSCAN results) and evaluate indices like 

the silhouette score. 

Thus, combining summary tables of metrics with visual aids 

(ROC curves, scatter plots, dendrograms for hierarchical 

clustering, etc.) allows not only for metric calculation but also 

for a visual assessment of which model best meets the task’s 

requirements and a better understanding of each approach’s 

strengths and weaknesses. 

II. CONCLUSION 

The findings confirm that the choice of a particular 

classification or clustering method is largely determined by the 



International Journal of Scientific Engineering and Science 
Volume 9, Issue 1, pp. 120-125, 2025. ISSN (Online): 2456-7361 

 

 

125 

http://ijses.com/ 

All rights reserved 

data’s structural characteristics, available resources, and the 

analyst’s objectives. While algorithmic performance is crucial, 

practical considerations often take precedence—interpretability 

may be more valuable than maximizing accuracy, particularly 

in domains like medical diagnostics. Different data challenges, 

such as noise and high dimensionality, require specific 

methodological approaches. The result is a holistic 

understanding of the applicability boundaries of various 

algorithms, helping to develop more reliable and meaningful 

solutions when analyzing large data sets. A judicious 

combination of metrics, result visualization, and awareness of 

potential pitfalls forms the foundation for effectively deploying 

such solutions in real-world scenarios, whether for fraud 

detection, medical diagnostics, or marketing segmentation. 

Through such a comprehensive evaluation, machine learning 

methodology serves not just as a tool, but also as a conceptual 

framework for interdisciplinary developments. 
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