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Abstract— In this paper, we mainly study the existence and form of entire solutions of two classes delay-differential equation 
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where  2, 0n k³ ³  are integers, 
1 2 1 2

,  ,  ,  ,  p pw a a  are non-zero constants satisfying 
1 2

a a¹ , and ( ) 0q z ¹  is a polynomial, ( )Q z  is a non-

constant polynomial. 
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I. INTRODUCTION AND MAIN RESULTS 

In modern science, the application of mathematical equations 

is one of the important directions, such as physics, chemistry, 

and quantum mechanics and mathematical models in 

economics basically rely on differential equations and 

difference equations, and with the development of the 

discipline, these equations involved in the discipline have 

become more and more complex, so many scholars have 

advanced themselves in many disciplines, such as physics 

began to further study the deeper equation problems, the more 

typical of which are differential-difference and delay-

differential equations. With the establishment of the 

Nevanlinna theory, it has become a powerful tool for studying 

the properties of solution of equation. We assume that the 

reader is familiar with standard notation and basic results of 

Nevanlinna theory, see [1-3] for more details. Suppose f  is a 

meromorphic function in the complex plane £ , we denote by  

( , )S r f  any quantity satisfying ( , ) ( ( , ))S r f T r fo=  as 

r ® ¥ , outside of a possible exceptional set of finite 

logarithmic measure. If meromorphic function ( )a z  satisfies 

( , ( )) ( , )T r a z S r f= , then ( )a z  is called small function of f . 

We define its shift by ( )f z c+ , \{0}c Î £ . 

Definition 1.1.[3] Let f  be a meromorphic function in £ , its 

difference operators are defined as 

( ) ( )
c
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c
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l
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j

f z C f z jc
-

=

D = - +å  

where l is a positive integer. 

Definition 1.2.[1] Let f  be a meromorphic function in £ , the 

order of f , the hyper order of f  and the exponent of 

convergence of zeros of f , demoted as 2( ),  ( ),  ( )f f fr r l , 

respectively, are defined as 

log ( , )
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r
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In 2004, Yang and Li[4] obtained all the entire solutions of 

the nonlinear differential equation 
3 3 1

( ) sin 3
4 4

f z f z¢¢+ = - . 

Because of sin
2 2

biz bizc c
c bz e e

i i

-= - , in 2006, Li and Yang[5] 

further studied Tumura-Clunie differential equation, and 

obtained the following result. 

Theorem 1.3.[5] Let 4n ³  be an integer and ( , )dQ z f be an 

algebraic differential polynomial in f  of degree 3d n£ - . 

Let 1 2( ),  ( )p z p z  be two nonzero polynomials, 1a  and 2a  be 

two nonzero constants with 1

2

a

a
 not rational. Then the 

following differential equation 

 1 2

1 2( ) ( , ) ( ) ( )z zn
df z Q z f p z e p z ea a+ = +        (1.1) 

has no transcendental entire solution. 

With the development of the difference analogues of 

Nevanlinna theory, the focus of research has gradually 

extended from Tumura-Clunie differential equation to 

Tumura-Clunie difference equation. In 2010, Yang and Laine[6] 

explored difference analogue of the above differential 

equation didn’t admit entire solutions of finite order. In [7], 

Wen et al. classified the finite order entire solutions of the 

equation ( )( ) ( ) ( ) ( )n Q zf z q z e f z c P z+ + = , where ( )q z , ( )P z  

and ( )Q z  are polynomials, 2n ³  is a integer. 

By observing the above Tumura-Clunie differential 

equations, we find that the degree of polynomial ( , )dQ z f  in 

the equation is usually not higher than 1n- . Naturally, 

scholars consider the existence of solution of Tumura-Clunie 
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equation when ( ( , ))ddeg Q z f n= , while noting that ( )nf ¢=  

1nnf f- ¢, and there are only two terms on the left side of the 

equation. Therefore, Chen et al.[8] studied the following delay-

differential equation when the left side of the equation has 3 

dominant terms, the following result is obtained. 

Theorem 1.4.[8] If f  is a transcendental entire solution with 

finite order to equation 
1 ( )

1 2

( ) ( ) ( ) ( ) ( )

                       ,

n n Q z

z z

f z f z f z q z e f z c

p e p el l

w -

-

¢+ + +

= +
           (1.2)                                                                          

where n is a positive integer, 1 2,  ,  ,  c p pl are nonzero 

constants and w  is a constant, and ( )( 0)q z º/ , ( )Q z  are poly-

nomials such that ( )Q z  is not a constant, then the following 

conclusions hold. 

(i) If 4n ³  for 0w ¹  and 3n ³  for 0w = , then 

f satisfies ( ) ( ) 1f deg Qr = = . 

(ii) If 1n ³  and f  belongs to 0G , then 

( ) ,
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l
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where  ,b B Î £  and ( )
0 { : ( )ze za aG = is a nonconstant 

polynomial }. 

In 2022, Hao and Zhang[9] replaced the dominant term 
1

( ) ( ) ( )
n n

f z f z f zw
- ¢+ in (1.2) with 1 ( )

( ) ( ) ( )
n n k

bf z af z f z
-

=  

and obtained the nonlinear differential-difference equation 
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admits a transcendental entire solution of finite order f  

with
1)

1)

1
,

(0, ) 1 lim 0
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d
® ¥

æ ö÷ç ÷ç ÷ç ÷çè ø
= - >  , and ( ) ( ) 1f deg Qr = = . 

Later on, Xiang et al.[10] considered solution of (1.3) when 

its right side is replaced by 1 2

1 2
z zp e p el l+ , where 1p  , 2p , 1l , 

2l  are nonzero constants, they obtained following result. 

Theorem 1.5.[10] Let f  is a transcendental entire solution 

with finite order to 

1 2
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            (1.4) 

then the following conclusions hold. 

(1) If 4n ³ , then ( ) ( ) 1f deg Qr = = . 

(2) If 1n ³  and ( ) ( )f fl r< , then ( )q z  degenerates 

into a constant, and 
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In 2023, Zhu and Chen[11] extended the equation, in which 
( ) ( )kf z c+  is replaced by l

c fD  and every exponential term 

on the right side of the equation became polynomial of degree 

q, and obtained the following result.  

Theorem 1.6. [11] Let ,  ( 2),  ,  l n m q³  be positive integers and 

c  be a nonzero complex number satisfying 0l
c fD º/ . 

Suppose that 1, ,  mp pL  are polynomials in z  of degree q , 

whose leading coefficients 1, , ma a¼ are distinct nonzero 

complex numbers. Let 0 1, , , , mP H H H¼ be meromorphic 

functions of order less than q  such that 1 0mPH H º/L . If the 

equation 

( )
0

1

( ) ( ) i

m
p zn l

c i

i

f z p z f H H e
=

+ D = + å           (1.5) 

admits a meromorphic solution f  satisfying 2 ( ) 1fr <  and 

( , ) ( , )N r f S r f= , then ( )f qr = , and the following asser-

tions hold. 

(i) When ( ) ( )f fl r< , we have 0 0H º , 2m = , 

1 ( )

0( ) ( )

p z

nf z z eg= , 1

2

n
a

a
= , 0 1( )n z Hg = . 

(ii) When ( ) ( )f fl r= , we have two possibilities: 

(1) When 0 0H º/ , we have 2n m£ + . 

(2) When 0 0H º , we have 1n m£ + . 

Many researchers have been studied about the solvability 

and existence of solution of certain kind of non-linear delay-

differential equations [6-11]. Motivated by Theorem 1.5 and 

Theorem 1.6, here we considered the properties of solutions of 

the following nonlinear delay-differential equation, in which a 

term ( )f z c+  in the middle of (1.2) is replaced with delay-

term ( )( ) k
c fD  , Our results are as follows. 

Theorem 1.7. Suppose that 4n ³ , 1 2 1 2,  ,  ,  ,  p pw a a  are non-

zero constants, for the differential-difference equation 

1 2
1 ( )

1 2( ) ( ) ( ) ( ) ,
z zn n k

cf z f z f z f p e p e
a a

w
- ¢+ + D = +    (1.6) 

then the following assertions hold: 

(1) When ,  i

j

n i j
a

a
¹ ¹ , we have the (1.6) has no finite 

order transcendental entire solutions; 
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(2) when ,  ,  i jna a i ja a= = ¹ , then (1.6) has finite 

order transcendental entire solution f , and it must 

be of ( ) azf z Ce= form, where C  are non-zero 

constant satisfying 

1

1

1

(1 )

n
i

n

C p

aw

=

+

 in for some 

1,  2i = . 

Observing (1.4) and (1.6), for a class of nonlinear delay-

differential (1.6), we consider the first order differential term 
1( ) ( )nf z f zw - ¢  of (1.6) is replaced by 1 ( )( ) ( )n kf z f zw -  and 

( )( ) k
c fD  is replaced by ( ) ( )( ( ) ( )Q z k

cq z e fD , then we study 

nonlinear delay-differential equation 
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where  2, 0n k³ ³  are integers, 1 2 1 2,  ,  ,  ,  p pw a a  are non-

zero constants satisfying 1 2a a¹ , and ( ) 0q z ¹  is a poly-

nomial, ( )Q z  is a non-constant polynomial, and the following 

results are obtained. 

Theorem 1.8. If f  is a finite order transcendental entire 

solution to (1.7), then the following conclusions hold: 

(1) If 4n ³ , then ( ) deg( ) 1f Qr = = . 

(2) If 1n ³  and ( ) ( )f fl r< , then ( )q z  degenerates 

into a constant, and 
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where 0d  is a constant. 

II. PRELIMINARY  RESULTS  

To prove our theorem, we need the following lemma gives 

proximity function, integral counting function and chara-

cteristic function of logarithmic derivative and shift of a 

meromorphic function f . 

Lemma 2.1.[3] Let f  be a meromorphic function of 

2 ( ) 1fr < , k  be a positive integer and 1 2,  ,  c c c  be nonzero 

complex numbers. Then  
( ) ( )

, ( , ),
( )

kf z c
m r S r f

f z

æ ö+ ÷ç ÷ç =÷ç ÷÷çè ø

1

2

( )
, ( , )

( )

f z c
m r S r f

f z c

æ ö+ ÷ç ÷=ç ÷ç ÷ç +è ø
. 

Next we give some properties of counting function and 

characteristic function about meromorphic function f . 

Lemma 2.2.[3] Let f  be a meromorphic function of 

2 ( ) 1fr < , k  be a positive integer and c  be nonzero complex 

number. Then 

1 1
, , ( , )

( ) ( )
N r N r S r f

f z c f z

æ ö æ ö÷ ÷ç ç÷ ÷= +ç ç÷ ÷ç ç÷ ÷ç ç+è ø è ø
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( , (   ))  ( , ( ))  ( , ),N r f z c N r f z S r f+ = +  

( , (   ))  ( , ( ))  ( , ).T r f z c T r f z S r f+ = +  

Next lemma plays an important part in the study of 

uniqueness of meromorphic function. 

Lemma 2.3.[13] suppose 1 2,  ,  ,  ( 2)nf f f n ³L  be meromorphic 

functions and 1 2,  ,  ,  nh h hL  be entire functions satisfying the 

following conditions: 

(1) 
( )

1

( ) 0j

n
h z

j

j

f z e
=

ºå ; 

(2) For1 j k n£ < £ , j kh h- is not a constant; 

(3) For1 ,1j n t k n£ £ £ < £ , ( , ) { ( , )}t k

j

h h
T r f o T r e

-
= , 

,  r r E® ¥ Ï , where E  is the set of finite linear measure. 

Then ( ) 0, 1, ,jf z j nº = L . 

The following lemma plays a vital role in the study of 

complex dealy-differential equations and it can be seen in [6]. 

Lemma 2.4.[6] suppose that f  is a transcendental merom-

orphic solution of 2 ( ) 1fr <  of the equation 

( , ) ( , )nf P z f Q z f= , 

where ( , ),  ( , )P z f Q z f  are dealy-differential polynomials, its 

derivatives and its shifts with small meromorphic coefficients. 

Such that the total degree of  ( , )Q z f  is less than or equal to 

n , then  

( , ( , ))  ( , )m r P z f S r f=  

for all r  outside of a possible exceptional set of finite logar-

ithmic measure. 

Lemma 2.5.[13] Suppose that ( ) ( 1,  2,  3,  4)jf z j = are 

meromorphic function and 1 2( ),  ( )f z f z  are not constants 

satisfying 
4
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( ) 1,j
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f z
=
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4 4

1 1

1
( , ) 3 ( , ) ( (1)) ( , )( , 1,2),j k
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l
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+ < + Î =å å

where 1l < , then 3 1f º  or 4 1f º  or 3 4 1f f+ º . 
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Lemma 2.6.[11] Let ,  m q  be positive integers, 1 2, , mw w wL  

be distinct nonzero complex numbers, and 0 1,  ,  ,  mH H HL  

be meromorphic function of order less than q  such that 

0jH º/ , 1 j m£ £ , Set 
0

1

( ) ( )
q

j

n
z

j

j

z H H z e
w

j

=

= + å . Then the 

following results hold. 

(1) There exist two positive numbers 1 2d d< , such that 

for sufficiently large r , 1 2( , )q qd r T r d rj£ £ . 

(2) If 0 0H º , then 
1

( , ) ( )qm r o r
j

= . 

III. PROOF OF THEOREM 1.7 

The proof of Theorem 1.7. suppose f  be a finite order 

transcendental entire solution of (1.6).  

Set 1( ) ( ) ( )n nA f z f z f zw - ¢= + , ( )( ) k
cB f= D , so (1.6) can 

be written as 

1 2

1 2 ,z zA B p e p ea a+ = +                     (3.1) 

Differentiating both sides of (3.1) and eliminate 1ze
a , we have 

2
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again differentiating (3.2), then 
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e

a  from (3.2) and (3.3), then 

1 2 1 2 1 2 1 2( ) ( )A A A B B Ba a a a a a a a¢ ¢¢ ¢ ¢¢- + + = - + + - ,  (3.4) 

where 
1n nA f f fw - ¢= +  

1 2 2 1[( 1) ( ) ]n n nA nf f n f f f fw- - -¢ ¢ ¢ ¢¢= + - +  

2 2 1 3 3
( 1) ( ) ( 1)( 2) ( )

n n n
A n n f f nf f n n f fw

- - -¢¢ ¢ ¢¢ ¢= - + + - -          
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Next give that ( 3) 1n- ³  , and 1 2 1 2( )B B Ba a a a ¢ ¢¢- + +  is 

a delay-differential polynomial of f   and the total degree is 

at most 1. By Lemma 2.4, then 

( , )  ( , ),m r F S r f= ( , ) ( , ).m r fF S r f=  

Next we considered ( , ) 0F z f º/  or ( , ) 0F z f º  two 

cases. 

Case 1. If ( , ) 0F z f º/ , then 

( , ) ( , ) ( , ) ( , ) ( , ) ( , ),
fF

T r f m r f m r m r fF m r F S r f
F
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this is impossible. 

Case 2. If ( , ) 0F z f º , from (3.6), then 
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From the above equation, suppose f has infinite many zeros, 

then we can clearly get that the zeros of f  have multiplicity 

greater or equal to 2. suppose 0z  is a zero of f  with 

multiplicity 2m ³ , then right side of (3.8) has zero at 0z  

with multiplicity at most 3 3m- , while left side of the same 

has zeros at 0z  with multiplicity 3m , which is impossible. 

Hence f  has finitely many zeros, through applying 

Hadamard’s factorization theorem, we get 
( )( ) ( ) h zf z m z e=                    (3.9) 

Where ( )m z  is the canonical product formed by zeros of f  

such that ( ) ( ) ( )m f fr l r= < , and ( )h z  is a polynomial 

with deg( ) ( ) 1h fr= ³ . Then (1.6) can be written as 
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number of groups satisfying 
1

i

nj
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jt i
=

=å  and the coefficient 

of the term ( )( )( ( ))k h zm z h z e¢  is nka , 1,  2,  ,  in N= L , and 

n k= . 

If deg( ) 2h l= ³ , since 1( ( )( ( ) ( ) ( ))nm z m z m z h zr w - ¢ ¢+  

( )) deg( )nm z h+ < , then by definition of order of growth, it 

is clear that the order of growth of the left side of the above 

(3.10) be l  while right side of the same has 1 order of 

growth, this is impossible. Hence deg( ) 1h = , then assume 

( )h z az b= + , where 0a ¹  and b  are constant. After 

substitution the ( )h z , (3.10) becomes 

1 2
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Next we study the following cases: 

(1) If 2  , , , , 1, j ina a i j i ja a¹ ¹ ¹ = ; it follows from this 

and Lemma 2.3 that 1 0p =  and 2 0p = , which is a 

contradiction. 

(2) If 2  , , , , 1, j ina a i j i ja a= ¹ ¹ = ; say 1na a=  and 

2a a¹ , it again follows from this and Lemma 2.3 that 
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2 0p =  and 1 0p ¹ , which is a contradiction. By the same 

method, when 2na a=  and 1a a¹ , we can deduce 

1 0p =  and 2 0p ¹ , which is a contradiction. 

(3) If 2  , , , , 1, j ina a i j i ja a= = ¹ = ; say 1na a=  and 

2a a= , we have 

1

2

1
1

2

[( ( ) ( )( ( ) ( ) ( ))) ]

       ( ( ) ( ) ) 0

zn n nb

zac b b

m z m z m z m z h z e p e

D z e E z e p e

a

a

w -

+

¢ ¢+ + -

+ + - º
(3.12) 

again applying Lemma 2.3, we get 
1

1( ( ) ( )( ( ) ( ) ( ))) 0
n n nb

m z m z m z m z h z e pw
- ¢ ¢+ + - º ,     (3.13) 

then 
1

1[ ( )( ( ) ( ( ) ( ))]n nbm z m z m z am z e pw- ¢+ + º , 

this give ( )m z  must be a constant and 
1

a
w

¹ - , let 

0( )m z m= . Substituting this into (3.13), then 0m =  

1 1

1(1 ) bn na e pw
-

-+ . Thus combining (3.9), we get ( )f z =  

1 1

1(1 ) azn na p ew
-

+ . 

In a similar way, we get 

1 1

2( ) (1 ) azn nf z a p ew
-

= + , so the 

solution of (1.6) must be of ( ) azf z Ce=  form, where C  are 

nonvanishing constant. 

Thus Theorem 1.7 is proved. 

IV. PROOF OF THEOREM 1.8 

The proof of Theorem 1.8. suppose f  be a finite order 

transcendental entire solution of (1.7). First we prove Theorem 

1.8 (1). According to proof of Theorem 1.7, to simplify (1.7), 

let 1 ( )( ) ( ) ( )n n kA f z f z f zw -= + , ( )( )( ) k
cB q z f= D , then 

1 2( )
1 2

z zQ zA Be p e p ea a+ = + .               (4.1) 

Differentiating both sides of (4.1), then 

1 2( )
1 1 1 2 2

z zQ zA B e p e p ea aa a¢+ = + ,         (4.2) 

where 
( ) ( )

1 ( ) ( ( )( ) ) ( )( ) ( )k k
c cB B BQ z q z f q z f Q z¢ ¢ ¢ ¢= + = D + D . 

Combining (1.7), (4.2) and (4.1), we eliminate 1 2 ,z ze ea a , then 

proceeding to the similar as we have done in the proof of the 

theorem 1.7, we get 
( )

1 2 1 2 2 2 2 2( ) ( ) 0
Q z

A A A B B Q B ea a a a a
¢¢¢ ¢ ¢- + - + + - = (4.3) 

where 2 1 1B B Ba= - . 

Now we study the order of f  by the following two case. 

Case 1. suppose ( ) 1fr < , then by applying Lemma 2.3, we 

get 

1 2

1 2

1 ( )

( ) 1 2

( )

( )

1 2

( )

1 2

( )

( )

1

( , ) ( , )
( )

( , ) ( , ) ( , ) ( ,1 )

   ( , ( ) )

( ) ( , ) ( 1) ( , ) ( , )

( )
( , ) ( , ) ( , ( ) ) ( , )

(

z z n n k

Q z

k

c

k
z z n

k

c

k

kc

c

p e p e f f f
T r e T r

q f

f
T r p e T r p e T r f T r

f

T r q f

r
nT r f k N r f N r f

f
m r m r f N r f S r f

f

a a

a a

w

w

a a
p

a

-
+ - -

=
D

£ + + + +

+ D

£ + + + + +

D
+ + + D +

£ + 2

1 2

) ( 3 5) ( , ) ( , )

( ) ( ).

r
n k T r f S r f

r
o r

a
p

a a
p

+ + + +

£ + +

 (4.4) 

It follows from this inequality that deg( ) 1Q = . Let ( )Q z =  

az b+ , where ,  0a b¹  are constant. Applying Lemma 2.3 to 

(4.3), then 

2 2 2 2 2 2 2( ) 0,B B Q B B a Ba a¢ ¢¢+ - = + - =       (4.5) 

where 
( ) ( ) ( )

2 1 1 1 .( ( ) ) ( ) ( )k k k
c c cB B B q f q f a q fa a¢= - = D + D - D  

    For the above equation, we discuss 2 0B º  or 2 0B º/ . 

Subcase 1.1. Suppose 2 0B º , Since ( )( ) 0k
cq fD º/ , by 

integration, we get 

1( )( )
1( ) ,a zk

cq f c e a -D =  

where 1c  is a nonvanishing constant. According to f  is a 

finite order transcendental entire function, then 1 aa ¹  and 

( ) 1c fr D = , Since ( )( ,( ) ) ( 1) ( , ) ( , )k
c cT r f k T r f S r fD £ + D +      

(2 2) ( , ) ( , )k T r f S r f£ + + , then ( ) ( )c f fr rD £ , which 

contradicts ( ) 1fr < . 

Subcase 1.2. Suppose 2 0B º/ , by integration (4.5), we get 

2

( ) ( )

2 1

( )

2 2

( ( ) ) ( ) ( )

, \ {0},   

k k

c c

a z

B q f a q f

c e c
a

a

-

¢= D + - D

= Î £
          (4.6) 

By routine computation of one order linear differential 

equation, we have 

1 2
( ) ( )( ) 2

3 3

2 1

( ) , \ {0},
a z a zk

c

c
q f c e e c

a a

a a

- -
D = + Î

-
£      (4.7) 

it is clear that 2 1a a¹ . From discuss of case 1, we get 

( ) ( )c f fr rD < , then if 1a a= , we get 

2( )( ) 2
3

2 1

( ,)
a zk

c

c
q f e ca

a a

-
D = +

-
 

by Lemma 2.6, then ( ) 1c fr D = , which contradicts ( ) 1fr < . 

If 2a a= , we get 1( )( )
3( ) a zk

cq f c e a -D = , from the same 

reason, then ( ) 1c fr D = , which is a contradiction. If 

{ }1 2,a a aÏ , as the same discuss above, we also get a 

contradiction. Then it is  



 International Journal of Scientific Engineering and Science 
Volume 9, Issue 2, pp. 41-48, 2025. ISSN (Online): 2456-7361 

 

 

46 

http://ijses.com/ 

All rights reserved 

impossible that ( ) 1fr < . 

Case 2. suppose ( ) 1fr ³ , we can rewrite (1.7), then 

1 ( ) ( )( ) ( ) ( ) ( )n n k Q zf z f z f z Be H zw -+ + = ,      (4.8) 

where 1 2( )
1 2 ( )( ) , ( ) z zk

cB q z f H z p e p ea a= D = + , and ( ) 1Hr =  

by applying Lemma 2.6. 

So differentiating (1.7), we get 
1 2 ( ) 1 ( 1)

1( 1)
n n k n k Q

nf f n f f f f f B e Hw w
- - - +¢ ¢ ¢+ - + + =    (4.9) 

Eliminating Qe  from (4.8) and (4.9), then from the same 

method theorem 1.7, we have 
2

1( , )nf G z f HB H B- ¢= -                (4.10) 

where 
2 ( ) ( 1) ( )

1( , ) ( 1) .k k k
G z f Bf B ff nBff B ff B n f fw w w

+¢ ¢= + - - - -  

      Next we discuss ( , ) 0G z f º  or ( , ) 0G z f º/ , aim for 

contradiction. 

Subcase 2.1. Suppose ( , ) 0G z f º/ , give that 2 2n- ³  and 

1HB H B¢-  is a delay-differential of f  and the total degree is 

2. Then applying Lemma 2.4 to (4.10), we get 

( , ) ( , ),  ( , ) ( , ).m r G S r f m r fG S r f= =  

Then 

1
( , ) ( , ) ( , ) ( , ) ( , )

                            ( , ) ( , ) ( , ),

fG
T r f m r f m r m r fG m r

G G

T r G S r f S r f

= = £ +

£ + =

 

which is impossible. 

Subcase 2.2. Suppose ( , ) 0G z f º , from (4.10), we get 

1 0HB H B¢- º . This give 

( ) ( )
( ) 0

( ) ( )

B z H z
Q z

B z H z

¢ ¢
¢+ - = , 

Then 
( 1)

( )

( )( ) ( )
( ) 0.

( ) ( )( )

k
c

k
c

fq z H z
Q z

q z H zf

+¢ ¢D
¢+ + - =

D
 

On integrating above equation, we get 

1 2( ) ( )
1 2

4

1
( )( ) ( ).

z zk Q z
cq z f e p e p e

c

a a
D = +       (4.11) 

 For the same reason and method of (3.8), it is clear that 

f  has finitely many zeros, hence applying Hadamard 

factorisation theorem, f  must be of the form 

( )
0( ) ( ) ,t zf z g z e=                       (4.12) 

where ( )t z  is a polynomial such that ( ) deg( ) 1f tr = ³  and 

( )g z  is the canonical product of zeros of ( )f z  with 

( ) ( ) ( )f g fl r r= < . Then 

( ) ( )( ) ( ) ,k t z
kf z g z e=                    (4.13) 

where 1 1( ) ,  1,  2,  ,  .k j jg z g t g j k- -
¢ ¢= + = L  

Combing (4.11), (4.12) and (4.13), we get 

1
0 0

4

1
[ ] (1 ) .n n nt

kg g g e H
c

w -+ = -                (4.14) 

By definition of the order of growth, we get that the order 

of growth of the left side is greater than 1, while the order of 

growth of the right side is exactly 1. This is a contradiction. 

Thus based on Case 1 and Case 2, we get ( ) 1fr = . 

Applying Lemma 2.1 and Lemma 2.6 to (1.2), then 

1 2

1 2

1 ( )

( ) 1 2

( )

( )
( )

1 2

1 2

( , ) ( , )
( )

( , ) ( , (1 )) ( , ( ) )

( ) ( 3 5) ( , ) ( , )

( ) ( , ),

z z n n k

Q z

k

c

k
z z n k

c

p e p e f f f
T r e T r

q f

f
T r p e p e T r f T r q f

f

r
n k T r f S r f

O r S r f

a a

a a

w

w

a a
p

-
+ - -

=
D

£ + + + + D

£ + + + + +

£ +

 

since ( ) 1deg Q ³ , so we get deg( ) ( ) 1Q fr= = . Hence (i) of 

theorem 1.8 is proved. 

Next we prove (ii) of theorem. Suppose f  is a finite 

transcendental entire solution of (1.7) with ( ) ( )f fl r< , then 

applying Hadamard factorisation theorem, from (4.12) and 

(4.13), we get 

1 2

1 ( )

0 0

1 2

[

                     

] (

             

)

 .

n n nt Q t z c Q t

k k k

z z

g g g e qg z c e qg e

p e p e
a a

w
- + + +

+ + + -

= +
  (4.15) 

By simplifying the above equation, then 

1 2 3 1,f f f+ + =                           (4.16) 

where 

1 2( )1
1

2

,
zp

f e
p

a a-
= -  

2

1
0 0

2

2

,
n n

nt zkg g g
f e

p

aw -
-+

=  

2 ( ) ( )
3

2

( ( ) ),
Q t z t z c t z

k k

q
f e g z c e g

p

a+ - + -= + -  

Because 1 2l l¹ , then 1f  is not a constant. Let ( )T r =  

{ }1 2 3max ( , ), ( , ), ( , )T r f T r f T r f . 

  Now we study the order of f  by the following two case. 

Case 1. suppose deg( ) ( ) 1t fr= > , it is clear that kg  is a 

polynomial of 0g  and its derivatives with polynomial 

coefficients. Since 0( ) deg( )g tr < , by definition of the order 

of growth of f , we get 
( ) ( )

(( ( ) )) deg( ),
t z c t z

k kg z c e g tr
+ -

+ - £  

then ( ) ( )( ) t z c t z
k kg z c e g+ -+ - , 1

0 0
n n

kg g gw -+  and 2e a-  are 

small functions of te . We have 

1
2 0 0

1 1
( , ) ( , ) ( , ),t

n n
k

N r N r S r e
f g g gw -

= =
+

 

( ) ( )
3

1 1
( , ) ( , ) ( , ),

( ( ) )

t

t z c t z
k k

N r N r S r e
f q g z c e g+ -

= =
+ -
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Since 2( ) ( , ) ( , ) ( , )t tT r T r f nT r e S r e³ = + , then applying 

Lemma 2.6, we get 2 1f º  or 3 1f º . 

If 2 1f º , we have 21
0 0 2( ) nt zn n

kg g g e paw --+ = . By Lemma 

2.3 and deg( ) 1h > , then 2 0p º , which is impossible. 

If 3 1f º , then 1 2 0f f+ º , that is 1
0 0( )n n nt

kg g g ew -+ =  

1

2
zp ea , again applying Lemma 2.3, we get 2 0p º , which is a 

contradiction. 

Case 2. suppose deg( ) ( ) 1t fr= = . then ( ) deg( )kg hr <  

1 2( )( )e za ar -=  and 1 2( )( ) ( )( ( ) ) ( ),t z c t z
k kg z c e g e za ar r -+ -+ - <  

1 2 1 2( ) ( )
1( ) ( , ) ( , ) ( , )z zT r T r f T r e S r ea a a a- -³ = + . Thus we 

obtain 

1 2( )

1
2 0 0

1 1
( , ) ( , ) ( , ),

z

n n
k

N r N r S r e
f g g g

a a

w

-

-
= =

+
 

1 2
( )

( ) ( )
3

1 1
( , ) ( , ) ( , ),

( ( ) )

z

t z c t z

k k

N r N r S r e
f q g z c e g

a a-

+ -
= =

+ -
 

By Lemma 2.6, we get 2 1f º  or 3 1f º . Now we discuss 

these two situations. 

Subcase 2.1. Suppose 2 1f º , we have  21
0 0( ) nh zn n

kg g g e aw --+  

2p= . Otherwise by Lemma 2.6, we get 2 0p º . Thus  

1
0 0 2 ,n n

kg g g pw -+ =                          (4.17)  

it is clear that 0g  is a constant. Otherwise if 0g  is a 

nonconstant entire function, then it follows from (4.17) that 0 

is a Picard exceptional value of 0g , applying Hadamard’s 

factorization theorem, we know that 0g  can be expressed as 

the product of the canonical product formed by zeros of 0g  

and a transcendental entire function, so we have 0( ) 1gr ³ , 

which contradicts with 0( ) 1gr < . Then 0g  is a nonzero 

constant. Thus 2
0 (( ))k

kg g
n

a
=  we can rewrite (4.17), 

2
0 21 ( ) ,n kg p

n

aæ ö÷ç + =÷ç ÷÷çè ø
 

therefore 

1

2
0

2

k n

k k

p n
g

n wa

æ ö÷ç ÷ç= ÷ç ÷÷ç +è ø
, then 

2

1

( ) 2
0

2

( ) .

zk n
t z n

k k

p n
f z g e e

n

a

wa

æ ö÷ç ÷ç= = ÷ç ÷÷ç +è ø
           (4.18) 

Since 2 1f º , we have 1 3 0f f+ º , that is 

2 2

12
0 1( ) ( 1) .

c
Q

zkn n
z

qg e e p e
n

a a

aa+

- =  

From the same reason as 0 ,  ( ( )g q z  degenerates into a 

constant.  

By routine computation, we get 

2

1

2 2
1 1

2

2

( ) log ( ) log

           log( ) log( 1).

k n

k k

c

k n

p n
Q z p z q

n n

e
n

a

a
a

wa

a

æ ö÷ç ÷ç= + - - -÷ç ÷÷ç +è ø

- -

 

Subcase 2.2. Suppose 3 1f º , we have 21 0f f+ º , that is 

11
0 0 1( ) nt zn n

kg g g e paw --+ =  . From the same reason and 

method as in the Subcase 2.1. Then 

1

1
0

1

k n

k k

p n
g

n wa

æ ö÷ç ÷ç= ÷ç ÷÷ç +è ø
, we 

get  

1

1

( ) 1
0

1

,( )

zk n
t z n

k k

p n
f z g e e

n

a

wa

æ ö÷ç ÷ç= = ÷ç ÷÷ç +è ø
 

Since 3 1f º , we have 
1 1

21
0 2( ) ( 1)

z c
Q

zkn nqg e e p e
n

a a

aa+

- = . 

Then 

1

1

1 1
2 2

1

1

( ) log ( ) log

           log( ) log( 1).

k n

k k

c

k n

p n
Q z p z q

n n

e
n

a

a
a

wa

a

æ ö÷ç ÷ç= + - - -÷ç ÷÷ç +è ø

- -

 

Hence, this completes the proof of Theorem 1.8. 
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