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Abstract—To better explain non-stationary time series data and predict changes in the data using models, this paper employs a piecewise 

autoregressive model. By utilizing LASSO regression, the problem of detecting change points is transformed into a variable selection problem. 

The number of change points and their positions are estimated, resulting in an initial grouping of the data. Subsequently, autoregressive models 

are used to interpret each group of data. The Innovation of This Paper Lies in the Following Aspects: Considering that the innovations of the 

model may follow a normal distribution or not, we employ a mixture of normal distributions to fit the unknown distribution. By utilizing the 

Dirichlet process to identify the unknown distribution of the innovations for each group of the model, we obtain the variances of the mixture of 

normal distributions and the weights of each normal distribution. Through numerical simulations, we compare our model with the LASSO 

regression method and the MLE method. Our model performs better.  
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I. INTRODUCTION  

The autoregressive (AR) model uses past time series values as 

the independent variables of the model. Since its introduction 

by Yule [1] in 1927, it has been widely applied in fields such as 

statistics, econometrics, and information science. Walker [2] 

further developed the AR model by proposing the p-order 

autoregressive model while studying atmospheric pressure at 

the Darwin port in India. However, as scientists have delved 

deeper into research, linear time series models have been found 

to have certain limitations, especially when fitting stock data. 

The closing prices of stocks can sometimes experience sudden 

increases or decreases. Page [3] was the first to formally 

introduce the change-point problem in 1954. He primarily 

focused on whether the distribution parameters undergo a single 

change, i.e., whether there is a single change point in the time 

series data, and proposed the cumulative sum detection method. 

Quandt [4] used the likelihood ratio test (LRT) to construct a 

test statistic for studying a simple linear regression model with 

one change point. For traditional methods and review literature 

on change-point research, please refer to [5][6][7][8]. Barry [9] 

developed a Bayesian approach to address change-point 

detection problems, utilizing a product partition model to 

demonstrate the effectiveness of a new product partition model. 

This model exhibits posterior clustering of blocks and a new 

independent block posterior distribution for parameters. Bai 

[10] proposed a likelihood ratio type test for multiple structural 

changes in regression models, allowing for the use of lagged 

dependent variables and trend regression variables, and derived 

the limiting distribution of the test, from which asymptotic 

critical values can be obtained. Zou et al. [11] proposed a 

nonparametric maximum likelihood method for detecting 

multiple change points in regression models without requiring 

prior knowledge of the number of change points. They used the 

Bayesian information criterion (BIC) to determine the number 

of change points and leveraged the intrinsic sequential structure 

of the likelihood function, employing a dynamic programming 

algorithm to estimate the locations of the change points. 

After Tibshirani [14] introduced the LASSO method by 

adding a penalty term based on the norm, many scholars 

have applied the LASSO method to change-point detection. The 

idea is to transform the change-point detection problem into a 

variable selection problem. After analyzing the LASSO 

algorithm, Zou [15] derived the necessary conditions for 

consistent variable selection in the LASSO algorithm and 

suggested introducing adaptive weights, proposing the 

Adaptive LASSO method. This method adaptively adds 

weights to the LASSO penalty term in a data-driven manner. 

Ciuperca [16] studied the change-point problem in multivariate 

linear regression models using two types of Lasso methods and 

found that the adaptive Lasso method performs better than the 

least squares method in detecting change points. Ciuperca [17] 

also applied the adaptive Lasso method to detect change points 

in quantile regression models and demonstrated that this 

method outperforms other variable selection methods. Zhang 

[18] proposed a change-point linear regression method based 

on sparse group Lasso, which segments the available data into 

different regions by estimating the number and locations of 

change-points, and further generates sparse and interpretable 

models for each region. Qian and Su [19] proposed two 

shrinkage procedures for determining the number of structural 

changes in linear panel data models using the adaptive group 

fused Lasso. Li Aomei [20] combined the Groupwise 

Majorization Descent (GMD) algorithm with the adaptive 

group Lasso method to study the change-point problem in 

multivariate linear regression models, accurately estimating the 

number, location, and model parameters of change points, with 

good estimation precision. Yang Zhaoxin [21] proposed 

constructing a quantile Lasso statistic to estimate the change-

point locations in linear regression models and obtained the 

convergence rate of the estimates. 

After identifying the change points, this paper applies the 

Dirichlet mixture model to the prior of the parameters. The 

Dirichlet process, first proposed by Ferguson [22], does not 

require a pre-specified number of clusters. For each data point, 
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an auxiliary variable is assigned, and the probability of the data 

point belonging to each existing category as well as the 

probability of a new category is calculated. Then, the value of 

the auxiliary variable is sampled according to these 

probabilities, achieving the purpose of clustering. Due to the 

unknown parameters playing a decisive role in the number of 

clusters, Escobar & West [23] calculated that the posterior 

distribution of the parameters is a mixture of two gamma 

distributions, under the assumption that the prior of the 

parameters follows a gamma distribution. After continuous 

improvement by subsequent researchers, the Dirichlet process 

has been widely applied in many fields. Liang Hong & Ryan 

Martin [24] established a flexible nonparametric Bayesian 

model for modeling insurance losses to predict future claim 

amounts. Adesina [25] proposed a Dirichlet process mixture 

prior for generalized linear mixed models (GLMMs) and 

applied it to fit over-dispersed and equi-dispersed count data. In 

the field of time series, Dirichlet mixture models have been 

widely applied, and their analyses have repeatedly 

demonstrated the feasibility of these models for model building 

and estimation [26][27][28][29][30]. 

The subsequent content of this paper is as follows. Section 

2 will briefly introduce the methods used in this paper. Section 

3 will identify change points and incorporate the Dirichlet 

mixture model into the autoregressive model. Section 4 is about 

parameter estimation. Section 5 will compare the estimation 

methods of the Dirichlet process mixture model with the 

separate LASSO method and maximum likelihood estimation 

method through a segmented autoregressive model, 

demonstrating the superiority of our approach. Section 6 

presents a specific case study. 

II. METHOD INTRODUCTION  

2.1: Introduction to LASSO 

Consider the typical linear regression model, where our 

data consist of an n-dimensional vector Y and an  matrix 

X. As the number of variables  gradually increases, even to 

the point where , the standard linear regression model 

will fail. To address this issue, Tibshirani [5] proposed the 

LASSO method. For the general autoregressive model: 

 

The LASSO method estimates  as follows: 

 

Herein,  is a regularization penalty parameter, i.e., 

, and the sparsity of the solution is determined by the 

magnitude of  denotes the norm, while  

represents the  norm. The Lasso method involves adding a 

constraint to the sum of the absolute values of the coefficients 

after the loss function reaches its minimum value, thereby 

bounding it. By introducing this constraint, some of the 

estimated coefficient values  become sparse, with most of 

their values being zero, thus achieving an optimization goal. 

Equation (2) can also be transformed as follows: 

 

The LASSO method possesses favorable characteristics in 

optimization, with the objective function to be minimized being 

a convex function. Therefore, it does not suffer from the issue 

of multiple local minima, and the global minimum can be 

efficiently solved using various algorithms, such as the 

coordinate descent algorithm [31], Least Angle Regression and 

Shrinkage (LARS) [32], and so on. 

2.2: Dirichlet Process Mixture Model 

We first introduce the basic concept of the Dirichlet 

process: for any finite partition in the measurable 

space , if the following equation holds, then the distribution 

G is said to satisfy the Dirichlet process. 

 

Where  is the concentration parameter, which controls the 

discreteness of the distribution G. Specifically, the larger the 

value of , the more categories there are; the smaller the value 

of , the fewer categories there are. The Dirichlet process has 

been widely applied in nonparametric clustering. 

It is difficult for readers to understand how the Dirichlet 

process is computed merely from its definition. Fortunately, 

Blackwell, D [33] derived an important formula, which can be 

interpreted as follows: assuming we have an infinite number of 

data points, and the first n data points are divided into 

categories, the probability that the n+1-th data point belongs to 

a certain category is given by 

where  is the indicator function, which takes the value 1 

when the equality holds and 0 otherwise.  denotes the 

category to which the n+1-th data point belongs. 

We also need to understand one thing: although we know 

that the Dirichlet process can be computed, how can we link 

this stochastic process with the data? This is achieved through 

the Dirichlet process mixture model, which is represented as 

follows: 
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 represents the parameters of the distribution that the 

data  follows. In order to perform clustering, the distribution 

is generally a discrete distribution, which is a distribution we 

construct. The most widespread application of the Dirichlet 

process is as the prior for the Dirichlet process mixture model. 

III. MODEL ESTABLISHMENT AND CHANGEPOINT 

DETECTION 

The objective of this paper is to estimate the locations of 

changes , the number of changepoints , the coefficients 

 of the autoregressive models for each segment, and the 

mixture normal distribution of the innovations, based on n pairs 

of observed data . 

We consider the following autoregressive model: 

 

Where  is a  

dimensional column vector,  is the mean of each segment of 

the autoregressive model, is a  dimensional sparse 

coefficient vector, and is the innovation. The coefficient 

vector  in the above equation is not a fixed vector; instead, it 

varies with time t. Assuming that among the n data points, the 

value of  changes K times, we denote the set of all 

changepoints as , and define it as 

follows: 

 

Where  and  

are the values of the coefficients for each segment in equation 

(7). Typically, the innovation  is assumed to follow the same 

normal distribution. However, in this paper, we assume that the 

innovation  may follow other distributions or a mixture of 

several distributions, and the distribution that  follows may 

differ for each segment. As long as the data size is sufficiently 

large, we can use a mixture of normal distributions to 

approximate the unknown distribution. 

Suppose there are n data points, then equation (7) can be 

transformed into the following form: 

 

Where is an  dimensional 

column vector, is an  dimensional 

vector, where each  can be determined from equation (8), and 

it is piecewise. is an  

matrix, and is an  dimensional 

column vector. 

We define the following matrices: 

 

Where is the  identity matrix,  is the  

zero matrix, and is an  matrix. Therefore, the 

following matrix can be obtained: 

 

Where is an  matrix. If we let 

where  and  

is a  zero vector, then Since  is a 

sparse vector, most of the  in Θ are zero vectors, and the 

majority of the elements in the non-zero  are also 0. 

Therefore, equation (9) can be rewritten as: 

 

To obtain the number of changepoints and the location of 

each changepoint, in conjunction with equation (3), the SGL 

estimation is transformed into solving the following 

optimization problem: 

 

Through equation (13), we can determine where the 

autoregressive model begins to segment and how many 

segments there are. Next, we will use the Dirichlet process to 

estimate the coefficients of each segment of the autoregressive 

model, as well as the mixture normal distribution that the 

innovations follow. 

We use the model in equation (7) for subsequent 

estimation. Let's make an assumption that our autoregressive 

model has K segments, each segment contains  data points, 

and the innovations in each segment follow a mixture of  

normal distributions, with each normal distribution containing 

 data points, where  We 

expand the autoregressive model specifically, and equation (9) 

is rewritten as: 
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It can be observed that our assumed model is not only 

segmented, but also categorized within each segment according 

to different distribution parameters. As described in the 

previous section on the Dirichlet process, the prior of the 

parameters does not need to be specified: 

 

where  is the true variance associated with each data point, 

The discrete distribution G is defined as follows by 

Sethuraman.J [34]: 

 

where are known variances sampled from the base 

distribution H,  is the indicator function,  represents the 

probability that  equals a specific known , and 

 (GEM stands for Griffiths, Engen, and 

McCloskey). Specifically:  

 

When  To ensure conjugacy and facilitate 

the derivation of the posterior distribution, we make the 

following setting for the base distribution H: 

 

If the true variance  associated with each data point 

were known, it would be straightforward to classify the data in 

each segment. However, the value of  is unknown. Therefore, 

for the subsequent classification work, we reintroduce the 

indicator variable from equation (5), incorporating the 

indicator variable into the model. Here,  

represents the category to which the n-th data point belongs, 

such that when then The 

distribution of  is as follows: 

 

In conjunction with equations (16) to (19), equation (15) 

can be rewritten as: 

 

IV. THE POSTERIOR DISTRIBUTION OF THE MODEL 

PARAMETERS 

Let Since the 

posterior distribution of the Dirichlet process mixture model 

does not have an analytical solution, we partition the unknown 

model and use Bayes' theorem to obtain the joint posterior 

distribution of the parameters: 

     

 Below, we will sequentially estimate the posterior distributions 

of the various parameters in equation (21). 

4.1: Sampling of   

Through equation (13), we have already determined the 

number and locations of the changepoints in the piecewise 

autoregressive model. Thus, all the data between every two 

consecutive changepoints constitute a dataset for an 

autoregressive model.  

We denote as 

the set of data for each normal distribution, and let the set 

 represent all the data. Since  takes values from 

 this paper needs to estimate each  

rather than  Let denote the prior distribution of  

and then 

 

where  and it follows that: 

 

4.2: Sampling of   

The sampling probability of  is as follows: 
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The sampled values of  are  If the 

sampled value is within  the variance of that 

category will be updated. If the sampled value is  then 

 is incremented by 1, increasing the number of mixture 

normal distributions, and the variance of the new distribution 

will be randomly sampled from the inverse gamma distribution. 

4.3: Sampling of   

When the distribution of the innovation term is non-

normal, a mixture of normal distributions can be used to 

approximate the unknown distribution, yielding the following 

mixture model: 

 

It is worth mentioning that even if  does not follow a 

distribution with a mean of 0, as long as the time series data in 

equation (7) is adjusted for the mean, it will suffice. Combining 

the Chinese restaurant process in equation (5), we obtain: 

     

 Where  denotes the variances of all data points except for 

the t-th data point, and . 

By the properties of conditional probability, it follows that:  

 

Applying the prior information from equation (20), the 

posterior distribution of  can be derived as the inverse 

gamma distribution: 

 

Where  denotes the number of data points contained 

in the j-th normal distribution of the kth segment. If 

 the number of mixture normal distributions in the 

k-th segment increases, and at this point, 

In the algorithm, a Gibbs sampler can be employed to 

continuously update the values of  

4.4: Sampling of   

The parameter  essentially controls the similarity 

between the distribution  generated by the Dirichlet process 

and the base distribution . When  is larger,  is more 

similar to , and when  is smaller,  tends to deviate from 

. Escobar and West (1995) provided the posterior density of 

the parameter  under a gamma prior. Assuming a continuous 

prior density (which may depend on the sample size n), 

this implies the implied prior  

Using the result from Antonia [35], we have: 

 

Where  If  is known, the 

data are assigned to  specific groups. When both  and the 

weights  are known, the data  are conditionally 

independent of the parameter . Moreover, when  is known, 

the weights  are also conditionally independent of the 

parameter . This leads to the definition of the conditional 

distribution: 

 

Given that the likelihood function has been provided in 

Equation (29), the Gibbs sampling analysis can be extended 

accordingly. For a given parameter , one can first sample all 

other parameters except  Subsequently, the parameter  can 

be sampled using Equation (30), without requiring additional 

information. 

Assuming  if and with 

 following a uniform distribution, Equation (30) can be 

expressed as a mixture of two gamma posteriors. The 

conditional distribution of the mixture parameters, given 
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and  is a simple beta distribution. When the gamma 

function in Equation (29) can be written as: 

 

Here, denotes the commonly used beta function. For 

any Equation (30) can be rewritten as: 

 

This implies that  is the marginal distribution of 

the joint distribution of  and the continuous variable  such 

that: 

 

Where Consequently, we can derive two 

conditional posterior distributions:  and 

 First, under the prior distribution of  

 

Thus, the posterior estimate of  is a mixture of two 

gamma distributions: 

     

   The parameter  is defined by the following expression: 

 

These distributions are well-defined for all gamma priors, 

all  within the unit interval, and all . The second posterior 

distribution is given by: 

 

That is to say,  and the mean of 

this Beta distribution is  Therefore, 

sampling  is carried out in two steps: First, initial values for 

 and  are provided, and a value for  is sampled from the 

Beta distribution in Equation (37). Subsequently, based on the 

same  value and the newly sampled  value, a new value for 

 is sampled from the two Gamma distributions in Equation 

(35). 

V. NUMERICAL SIMULATION 

In this subsection, we compare the DPMM method used in 

this paper with the LASSO regression method and the MLE 

method. We first consider the following dataset: 

 

 

 

 
   Fig. 5-1. Scatter plot of the time series 

 

It is a two-piece autoregressive model, with the specific 

parameters as follows: 

 

Where  with the mean defaulting to 0 

and the standard deviation defaulting to 1. Additionally, 

The sample size n=1000, 

and the true location of the change point is at the 401st time 

point. 

 
Fig. 5-2. The change point location found by the LASSO method. 

 

Figure 5-2 illustrates the identification of the change point 

by the LASSO method. It divides the time series model into two 

segments, with the change point located at the 396th time point. 

The vertical line in the figure indicates the position of this 

change point, which is very close to the true change point 
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location. In Figure 5-2, the horizontal axis represents the time 

series of the data points, while the vertical axis represents the 

data values. 

 
TABLE 5-1. The estimation of parameters for the autoregressive model 

Parameters     

True values 0.6 0.2 0.8 -0.1 

DPMM 0.5973 0.2378 0.8015 -0.1005 

LASSO 0.5950 0.2538 0.8096638 -0.1116126 

MLE 0.6044 0.2416 0.8057 -0.1048 

 

Table 5-1 presents the estimates of the coefficients for the 

two-piece autoregressive model obtained by the three methods. 

From this table, it can be observed that the DPMM provides the 

most accurate estimates of the autoregressive coefficients for 

both segments, especially for the second segment of the 

autoregressive model. The MLE method performs the second 

best, while the LASSO regression method yields the weakest 

results among the three. 

The innovation is an important component of the 

autoregressive model, representing all the new information at a 

given time point that cannot be explained by past sequence 

values. It follows an unknown distribution, which may be non-

normal or even a mixture distribution. We apply the Dirichlet 

process to the prior of the innovation, using a mixture of normal 

distributions to fit the unknown distribution, resulting in Table 

5-2: 

 
TABLE 5-2. The estimation of parameters for the distribution of innovation 

Parameters t-distribution 
Mixture of Normal 

Distributions 

True values t(df=10) N(0,2) N(0,0.5) 

DPMM 
N(0,1.0677) 

+N(0,2.2338) 
N(0,2.1702) N(0,0.5789) 

LASSO N(0,1.4248) N(0,1.6093) N(0,1.6093) 

MLE N(0, 1.1018) N(0,1.5287) N(0,1.5287) 

 

In Table 5-2, it is necessary to clarify that for the first 

segment of the autoregressive model, the innovation follows a 

t-distribution with 10 degrees of freedom. The DPMM method 

approximates this t-distribution using a mixture of two normal 

distributions, with specific standard deviations and weights: 

0.6302392N(0,1.0677) + 0.3697608N(0,2.2338).  

For the second segment of the autoregressive model, the 

innovation follows a mixture of two normal distributions with 

equal weights of 0.5 each. The DPMM method identifies the 

number of components in the mixture normal distribution, with 

specific standard deviations and weights: 0.4972397N(0, 

2.1702) + 0.5027603N(0,0.5789). 

It is important to note that the Dirichlet process often 

identifies a number of clusters that exceeds the true number of 

clusters. For example, in the first segment of the autoregressive 

model, the maximum number of clusters identified by DPMM 

is 14, which occurs only three times. The corresponding 

weights are:  

(0.63023919,0.21786768,0.07667684,0.03166412,0.02159288

,0.01172519,0.00424936,0.00303308,0.00107888,0.00110433

,0.00051908,0.00015267,0.00008142,0.00001527). In fact, 

apart from the first two categories, the sample sizes of the 

remaining categories are very small, with only a few or a dozen 

samples. Therefore, this paper ignores these categories and 

classifies them into the second category, considering that the 

innovations in the second segment follow a mixture of only two 

normal distributions. In the second segment of the 

autoregressive model, the DPMM used up to 7 mixture 

components to fit the innovation distribution, but this occurred 

only once. The weights for the mixture components were 

(0.462809917,0.507438017,0.004958678,0.018181818,0.0016

52893,0.001652893,0.003305785). The Dirichlet process often 

identifies more clusters than the actual number of underlying 

components. In this case, we consider that there are effectively 

only two distinct components. Meanwhile, the LASSO and 

MLE methods assumed that the innovations followed a single 

normal distribution. 

We process the innovations with two main objectives: to 

better interpret the time series data and to enable forecasting of 

the time series model. To this end, we conduct predictions for 

the first and second segments of the autoregressive model, 

forecasting the values for the subsequent five time points. The 

results are as follows: 

 
TABLE 5-3. The estimates for the next five time points of the first segment of 

the autoregressive model 

 the first segment of an AR model MSE 

True 

values 

3.8398

09 

1.8832

47 

4.4811

81 

3.4108

80 

3.3541

03 
NULL 

DPMM 
3.2568

16 
3.9779

92 
4.5880

88 
2.2725

28 
2.3898

73 
1.3929

70 

LASSO 

-

0.3378
23 

-

0.0028
89 

-

0.4183
13 

-

1.4101
94 

0.1511

77 

15.703

330 

MLE 
1.1643

46 

1.0672

13 

0.9935

61 

0.9255

71 

0.8666

78 

6.4703

08 

 

In the five-step-ahead time series prediction for the first 

segment of the autoregressive model, the estimate of the first 

time point by DPMM is acceptable, and the estimate of the third 

time point is very close to the true value. However, the errors at 

the other three time points are all greater than 1. This is due to 

the randomness involved in the estimation process, yet the MSE 

value remains relatively small. The LASSO regression has the 

largest MSE value, followed by MLE, while a smaller MSE 

value indicates a more accurate estimation. 

 
TABLE 5-4. The estimates for the next five time points of the second segment 

of the autoregressive model 

 the second segment of an AR model MSE 

True 

values 

1.8171

31 

1.2138

66 

1.8967

25 

2.0187

33 
2.114893 NULL 

DPMM 
2.0109

773 
1.7938

544 
0.7503

575 
0.9040

297 
2.1030925

7 
0.5861

65 

LASSO 
3.5001

33 

2.1129

54 

2.9792

87 

5.2745

92 
6.007251 

6.1127

73 

MLE 
1.3726

238 

0.9267

491 

0.6462

279 

0.4669

116 
0.3518173 

1.4720

70 

 

In the prediction of the second segment of the 

autoregressive model, the estimate of the first time series value 

by the DPMM method is close to the true value, and the 

estimate of the second time series value is also acceptable. 

However, the estimates of the third and fourth time series values 

deviate from the true values due to the characteristics of random 
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sampling, while the estimate of the fifth time series value is 

again close to the true value. The LASSO method has the largest 

MSE, followed by MLE, with DPMM having the smallest MSE. 

Additionally, the clustering effect of the Dirichlet process 

is influenced by the hyperparameter . The closer the value of 

 is to 0, the fewer the number of clusters. The estimated 

values of  for the two segments of the autoregressive model 

are  and  respectively. In 

practice, the calculated values of  often tend to be close to 0, 

and there is no so-called "true value" for  

VI. CASE ANALYSIS 

In this subsection, we apply the conclusions drawn from 

the numerical simulations. First, we use the LASSO regression 

to identify the change points and then employ the DPMM to 

estimate the model parameters. This approach is applied to the 

closing prices of QingHai Salt Lake Industry Co., Ltd. (referred 

to as “Salt Lake Shares,” stock code 000792) from January 2, 

2020, to November 10, 2023. The data consists of 2,492 time 

series observations, collected hourly, and is sourced from the 

East Money website. 

 
Fig. 6-1. The scatter plot of Salt Lake Shares data 

 

Based on the raw data from Figure 6-1, an Augmented 

Dickey-Fuller (ADF) test was conducted. The Dickey-Fuller 

statistic value was -2.668, with a lag order of 13, indicating that 

data from the previous 13 time points were considered to assist 

in estimating the value of the current point. The p-value was 

0.2955, which is greater than the commonly used significance 

levels (e.g., 0.05 or 0.01). Therefore, the time series is non-

stationary. 

Using LASSO regression, Figure 6-2 was obtained, which 

clearly identifies the change point location at 307. Subsequently, 

we conducted the ADF test on the two segments of time series 

data separately. The test results for the two segments were as 

follows: Dickey-Fuller = -1.4952, p-value = 0.7891 for the first 

segment, and Dickey-Fuller = -3.7367, p-value = 0.02215 for 

the second segment. Given that the p-value for the second 

segment is less than 0.05, it indicates the absence of a unit root, 

suggesting that the second segment of the time series is 

stationary. 

 

 
Fig. 6-2. Change point detection using LASSO regression. 

 

In contrast, the p-value for the first segment is greater than 0.05, 

leading us to reject the null hypothesis and conclude that the 

first segment of the time series is non-stationary. To address this, 

we performed differencing on the first segment, resulting in a 

Dickey-Fuller statistic of -6.4397, with the p-value being 

significantly less than 0.01. This indicates that the differenced 

time series is stationary. 

 
TABLE 6-1. The estimated values of the coefficients in the two autoregressive 

models 

    

DPMM 0.003613054 0.42549951 0.07383823 

 

In Table 6-1, based on the AIC, the optimal orders of the 

two autoregressive models are determined to be first-order and 

second-order, respectively. The estimated coefficients for the 

first segment of the autoregressive model are small because the 

original data values are close to each other, resulting in small 

differences after differencing. For the second segment of the 

autoregressive model, the time series values are strongly related 

to their first-order lagged values. In fact, in most autoregressive 

models, time points closer to the t-th moment are more useful 

for the model. 

 
TABLE 6-2. The estimation of the unknown distributions of innovations in 

the two-segment autoregressive models 

 
Mixture of Normal 

Distributions 
MSE 

the first paragraph AR N(0,0.1981) 0.0146692 

the second 

paragraph AR 

N(0,0.2327)+ 

N(0,0.8000) 
1.166021 
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From Table 6-2, it can be observed that the unknown 

distribution of innovations in the first segment of the model can 

be approximated by a single normal distribution, while the 

unknown distribution of innovations in the second segment 

requires a mixture of two normal distributions for fitting. 

During the clustering process, up to 10 clusters were generated, 

with weights as follows: 

(0.5380384968,0.2873510541,0.1448212649,0.0210815765,0.

0018331806,0.0018331806, 0.0009165903, 0.0009165903, 

0.0009165903,0.0022914757). Considering this particular 

clustering result, there appear to be three normal distributions. 

However, across numerous iterations, the weight of the third 

cluster rarely exceeds 5%. Therefore, we take the average 

weight over 500 iterations, and the weight of the third cluster 

becomes negligible. Ultimately, we obtain a mixture of two 

normal distributions with weights: 0.5614537N(0, 0.2327) + 

0.4385463N(0,0.8000). 

Additionally, since the first segment of the model is 

derived from differenced time series values, which are 

relatively small, its MSE is also small. In contrast, the second 

segment of the model uses the original data, which contains 

over two thousand data points, resulting in a much larger MSE 

compared to the first segment. The clustering parameters 

generated by the two autoregressive models are 

and respectively. As 

previously mentioned, the closer the value of  is to 0, the 

fewer the number of clusters generated. 

Therefore, the time series estimation model should be 

modified as follows: 

 

Where  

 

VII. SUMMARY 

This paper considers a piecewise autoregressive model 

with multiple change points. First, the LASSO method is 

employed to identify the number and locations of the change 

points, transforming the originally non-stationary 

autoregressive model into a piecewise stationary autoregressive 

model. Subsequently, the DPMM is introduced into the 

autoregressive model, with the DP serving as the prior for the 

parameters of the unknown distribution of innovations. A 

mixture of normal distributions is used to approximate this 

unknown distribution, thereby enhancing the flexibility of 

parameter estimation in the model. Through numerical 

simulations and comparisons with LASSO regression and MLE, 

it is demonstrated that the DPMM outperforms these two 

methods in both parameter estimation and time series prediction. 

This advantage is particularly pronounced when the unknown 

distribution is a mixture of normal distributions. 
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