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Abstract— The study aims to enhance the efficiency of using CAE simulation technology in analyzing hot forging for SUS304 valve blanks. The 

simulation process utilizes three different input variables, forming a set of 15 simulations with two distinct output objectives. The results obtained 

from the CAE simulations will be used to construct a set of optimal solutions through the NSGA II algorithm. Subsequently, the TOPSIS method 

is applied to select the most optimal solution from the Pareto set of solutions. The chosen simulation software is QForm, which provides several 

desired results, including temperature, forging force, stress, durability, and defect analysis. 
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I. INTRODUCTION 

"According to the Ministry of Industry and Trade (2023), statistics reveal that the value of Vietnam's mold industry has exceeded 

USD 1 billion per year," indicating the immense potential for strong development in this field in the future. With an annual growth 

rate of 18%, the mold market in Vietnam has garnered significant attention from both domestic and international enterprises [1]. 

Hot forging molds play an essential role in the industry, particularly for components requiring high quality and durability, such as 

valves. 

Today, CAE analytical tools are advancing rapidly, and various optimization methods are available. The combination of these 

methods contributes to enhancing efficiency, improving product quality, shortening production time, and minimizing errors in the 

manufacturing process. According to reports, the production process of SUS304 valve blanks [2], is well-suited to closed-die 

forging. Closed-die forging is applied to various materials, such as AISI4150 automotive steering joints [3], 20CrMnTi planetary 

differential gears [4], AISI4130 bevel gears [5], aluminum alloy rotors [6], Nimonic 80 large exhaust valves [7], motorcycle engines 

[8], and gears. Its outstanding advantages include reduced scrap and superior durability. Simulation software is often the most 

accurate choice for optimizing forging dies and designing blanks to reduce design time and improve economic efficiency [9]. 

The research was conducted using QForm UK 11.0.1 simulation software, which applies various theories to the simulation 

process, notably the finite element method (Figure 1.1) and plastic deformation (Figure 1.2) [10]. The goal is to determine the 

optimal die based on predicted results for the required forging force and tool durability. Subsequently, SVR, the NSGA II algorithm, 

and the TOPSIS method are applied to propose an optimal solution. 

 

 
 

  
 

Figure 1.1. Diagram depicting finite element method Figure 1. 2 Description of geometric plastic deformation. 

 

The finite element method applies (Equation (1.1)) [10].  
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𝑓(𝑥) = ∑ 𝜑𝑚(𝑥); 𝜑𝑚(𝑥) =
𝑓𝑛+1−𝑓𝑛

𝑥𝑛+1−𝑥𝑛

𝑀
𝑚=1 (𝑥 − 𝑥𝑛) (1.1) 

In addition, there are several other related scientific theories such as friction in the process of plastic deformation (Figure 1.3) 

[10]. 

 

 
Figure 1.3. Charts the crossover between friction theories. 

II. APPLICATION OF CAE 

a. Materials of workpieces and dies 

The chemical composition percentages of the billet material are SUS304 (Table 2.1) and the die material is SKD11 (Table 2.2).  

 
Table 2.1. The chemical composition of JIS stainless steel SUS 304 in percent  

C Yes Mn P S N Cr Ni 

< 0.07 < 1 < 2 < 0.045 <0.015 <0.11 17.5÷19.5 8÷10.5 

 

Table 2.2. The chemical composition of SKD11 in percent 

C Si Mn P S Cr Mo V 

0.35÷0.45 0.9÷1.2 0.25÷0.55 < 0.03 <0.03 4.5÷5.5 1.2÷1.7 0.85÷1.15 

b.  Input parameters 

The fixed parameters during the experiment are presented in (Table 2.3). 

 
Table 2.3. Forging process parameters 

 Raw-Forging 

Workpiece material SUS304 

The material H13 

Load 6.3 MN 

Lubrication Graphite + water 

 

The changing parameters (input variables) include billet temperature, die temperature, and the stopping distance of Tool 2 

(central punch) during the forming process of the billet with Tool 3 (side punch).  

+ 𝑋1: Initial billet temperature (℃) 

+ 𝑋2: Initial die temperature (℃) 

+ 𝑋3: Stopping distance of Tool 2 (mm) 

The objective functions are determined as the forging force of Tool 2 and the wear cycle 5% of Tool 2, denoted as 𝑌1 and 𝑌2 

respectively. After identifying the variables, the parameter values for the objective functions are established (Table 2.4). 

 
Table 2.4. Simulation Data  

STT 𝑿𝟏 (°∁) 𝑿𝟐 (°∁) 𝑿𝟑 (𝒎𝒎) 

1 1000 200 34 

2 1000 180 32 

3 1000 220 32 

4 1000 200 30 

5 1100 200 32 

6 1100 200 32 

7 1100 180 30 

8 1100 220 34 

9 1100 220 30 

10 1100 200 32 

11 1100 180 34 
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12 1200 180 32 

13 1200 220 32 

14 1200 200 30 

15 1200 200 34 

c. Simulation process in QForm 

The four main steps of a simulation process in QForm 10 are shown in (Figure 2.1) [11]. 

 
Figure 2.1.  Simulation process in QForm software 

d. Results and discussion 

2.4.1 Plastic strain 
Table 2.5. Plastic strain 

 
  

 
Simulation 1 Simulation 2 Simulation 3 Simulation 4 

  
 

 

Simulation 5 Simulation 6 Simulation 7 Simulation 8 
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Simulation 9 Simulation 10 Simulation 11 Simulation 12 

   

 

Simulation 13 Simulation 14 Simulation 15  

 

In (Table 2.5) the orange color indicates large deformation, while the blue color represents small deformation. 

The results show that the highest plastic deformation occurs on both sides of the neck of the part, where the material excessively 

recovers, causing the material flow to spread to both sides. 

2.4.2 Fatigue failure Tool 2 
 

Table 2.6. Fatigue failure Tool 2 

    
Simulation 1 Simulation 2 Simulation 3 Simulation 4 

  
  

Simulation 5 Simulation 6 Simulation 7 Simulation 8 

  
 

 
Simulation 9 Simulation 10 Simulation 11 Simulation 12 

 

  

 

Simulation 13 Simulation 14 Simulation 15  
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From the results of 15 simulation experiments, the author selects one experiment for evaluation, and in simulation experiment 

5, the variable values are set at the midpoint within their respective ranges. The die's durability is evaluated based on the percentage 

of die volume wear after the forging cycles. 

With 5% volume wear occurring after 2 968 forging cycles, the factory needs to maintain the die to ensure that the product 

quality continues to meet the required standards (Figure 2.2). 

 

 
Figure 2.2. Wear diagram as a percentage of the volume of the Tool 2 

 

2.4.3 The forging force load 
Table 2.7. The forging force load Tool 2 and Tool 3 

    

Simulation 1 Simulation 2 Simulation 3 Simulation 4 

  
 

 

Simulation 5 Simulation 6 Simulation 7 Simulation 8 

   
 

Simulation 9 Simulation 10 Simulation 11 Simulation 12 
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Simulation 13 Simulation 14 Simulation 15  

 

 
Figure 2.3. The relationship between forging force and the distance of Tool 2 and Tool 3 

 

With the complex profile of the valve, the forging force of the punch fluctuates in the final stage to fully fill the die. The blue 

line represents the force of Tool 2, which shows a sharp increase at the beginning and stabilizes later, while the brown line represents 

the force of Tool 3, which increases steadily throughout. 

III. SVR-NSGA II-TOPSIS 

a. Support Vector Regression 

SVR stands for "Support Vector Regression," a machine learning algorithm applied to regression analysis. The model in SVR 

aims to find a function that approximates the relationship between input variables and a continuous target variable while minimizing 

prediction error [12]. 

 
Figure 3.1.  

Hình 3.1. SVR Regression Function Chart [12] 
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The hyperplane lies between two boundary lines with distances of 'a' and '-a'. The distance 'a' is referred to as epsilon. The 

regression function problem is based on the equations below [12]. 

The SVR regression function is represented by Equation (3.1): 

Y=Wx+b             (3.1) 

The decision boundary equations are based by Equation (3.2) and (3.3): 

𝑊𝑥 + 𝑏 = 𝑎 (3.2) 

𝑊𝑥 + 𝑏 = −𝑎 (3.3) 

Any equation must satisfy the conditions by Equation (3.4): 

−𝑎 < (𝑌 − 𝑊𝑥𝑥 + 𝑏) < +𝑎  (3.4) 

The loss function equation L (y f (x, w)) (3.5) is referred to as epsilon-loss: 

𝐿 = {
0 𝑖𝑓 |𝑦 − 𝑓(𝑥, 𝑤)| ≤ 𝜀
|𝑦 − 𝑓(𝑥, 𝑤)| 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.5) 

 This means that: 

+ Errors smaller than 𝜀 will not be included in the loss function. 

+ Errors greater than 𝜀 will be penalized. 

The SRV problem is formulated as an optimization problem defined by Equation (3.6). 

𝑚𝑖𝑛
1

2
||𝑤||

2
+ 𝐶.∑ (𝜁𝑖 + 𝜁𝑖

∗)𝑛
𝑖=1  (3.6) 

With the constraints defined by Equation (3.7): 

{

𝑦𝑖 − 𝑓(𝑥𝑖 , 𝑤) ≤ 𝜀 + 𝜁𝑖
∗

𝑓(𝑥𝑖 , 𝑤) − 𝑦𝑖 ≤ 𝜀 + 𝜁𝑖

𝜁𝑖𝜁𝑖
∗ ≻ 0∀𝑖 = 1, . . . , 𝑛

} (3.7) 

Applying the duality theorem to minimize the problem, we ultimately derive the function f(x) in Equation (3.8): 

𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗). 𝐾. (𝑥𝑖 , 𝑥) + 𝑏𝑚

𝑖=1  (3.8) 

Where nSV represents the number of support vectors, and the kernel function, denoted as K, is defined by Equation (3.9): 

𝐾(𝑥𝑖 , 𝑥) = ∑ 𝑔𝑗(𝑥𝑖). 𝑔𝑗(𝑥)𝑚
𝑗=1  (3.9) 

3.1.1 Defining the problem 

The specific optimization problem is as follows: Find X = [𝑋1, 𝑋2, 𝑋3] to minimize {𝑌1} and maximize {𝑌2} subject to the constraints 

in Equation (3.10): 

{

1000 ≤ 𝑋1 ≤ 1200
180 ≤ 𝑋2 ≤ 220
30 ≤ 𝑋3 ≤ 34

 

Using SRV to establish a regression model linking 𝑌1, 𝑌2 with the parameters  𝑋1, 𝑋2, 𝑋3. This model will serve as the foundation 

for multi-objective optimization using NSGA II. 

The data collected from the QForm simulation results is presented in (Table 3.1): 

 
Table 3.1. Simulation Results 

STT 𝑋1 (°∁) 𝑋2 (°∁) 𝑋3 (𝑚𝑚) 𝑌1 (𝑘𝑁) 𝑌2(𝑐ℎ𝑢 𝑘ỳ) 

1 1000 200 34 956 2857 

2 1000 180 32 870 3075 

3 1000 220 32 694 2485 

4 1000 200 30 997 2536 

5 1100 200 32 919 2968 

6 1100 200 32 919 2968 

7 1100 180 30 804 3175 

8 1100 220 34 848 2757 

9 1100 220 30 801 2763 

10 1100 200 32 919 2968 

11 1100 180 34 764 3400 

12 1200 180 32 815 2446 

13 1200 220 32 758 2778 

14 1200 200 30 770 3006 

15 1200 200 34 807 3195 

 

After applying SVR to establish the regression model for the problem and inputting the data into the software as detailed in 

Appendix 1, the results are presented in (Table 3.2). 

From the results table, the regression chart with two objective functions is obtained, as shown in Figure 3.2. 
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Table 3.2. SRV Results 

STT 
𝑋1  
(°∁) 

𝑋2  
(°∁) 

𝑋3  
(𝑚𝑚) 

𝑌1-simulated 

(𝑘𝑁) 

𝑌2-simulated 

(𝑐ℎ𝑢 𝑘ỳ) 
𝑌1 –Predict (𝑘𝑁) 

𝑌2-Predict 

(𝑠ả𝑛 𝑝ℎẩ𝑚) 

1 1000 200 34 956 2857 896.470 2883 

2 1000 180 32 870 3075 861.803 3049 

3 1000 220 32 694 2485 808.958 2556 

4 1000 200 30 997 2536 896.639 2684 

5 1100 200 32 919 2968 910.782 2942 

6 1100 200 32 919 2968 910.782 2942 

7 1100 180 30 804 3175 812.222 3105 

8 1100 220 34 848 2757 839.764 2783 

9 1100 220 30 801 2763 809.188 2769 

10 1100 200 32 919 2968 910.782 2942 

11 1100 180 34 764 3400 791.514 3199 

12 1200 180 32 815 2446 806.803 2894 

13 1200 220 32 758 2778 766.193 2804 

14 1200 200 30 770 3006 778.245 2980 

15 1200 200 34 807 3195 814.738 3113 

 

 
Figure 3.2. Chart of the objective functions: Forging Force and 5% Volume Wear Cycle of Tool 2 (product). 

 

From the figure, it shows that the simulated data is close to the predicted data. 

Analysis of the forging force chart shows two curves: 

+ 𝑌1- Simulated (blue): Data from simulations. 

+ 𝑌1-Predict (red): Predicted data. 

Analysis of the 5% volume wear cycle chart for Tool 2 shows two curves: 

+ 𝑌2- Simulated (green): Data from simulations. 

+ 𝑌2-Predict (red): Predicted data. 

The correlation between the two curves is very close across all simulations. The red curve demonstrates higher prediction accuracy 

for both the forging force and the 5% volume wear cycle compared to the actual simulation data. 

b. NSGA II 

From the SVR data combined with the NSGA-II algorithm, the multi-objective optimization results peak in a Pareto set, as 

shown in Figure 3.3. 
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Figure 3.3. Pareto Chart 

 

The horizontal axis represents the forging force 𝑌1 while the vertical axis represents the 5% volume wear cycle 𝑌2. The set of 

optimal points forms a concave Pareto curve, where a decrease in forging force (𝑌1) corresponds to a gradual decrease in the wear 

cycle of Tool 2 (𝑌2). This indicates a trade-off relationship between 𝑌1 and 𝑌2. If the goal is to increase the lifespan 𝑌2 the forging 

force 𝑌1 must decrease. Conversely, if the forging force 𝑌1 is to be increased, the 5% wear cycle will decrease. 

c.  TOPSIS 

Evaluating the Pareto set using TOPSIS requires entropy weights to determine the optimal values. 

The steps for the TOPSIS method [13] are as follows. 

Step 1: Construct the Decision Matrix with the Determined Elements. 

X =  

[
 
 
 
 
𝑥11 …
𝑥21 …
… …
𝑥𝑖1 …
… …

𝑥𝑚1 …

    

𝑥1𝑗 𝑥1𝑛

𝑥2𝑗 𝑥2𝑛
… …
𝑥𝑖𝑗 𝑥𝑖𝑛
… …

𝑥𝑚𝑗 𝑥𝑚𝑛]
 
 
 
 

 (3.10) 

Where:  

+ 𝑥𝑖𝑗: The value of the j criterion for the i alternative. 

+ n: Number of criteria. 

+ m: Number of alternatives. 

Step 2: Normalize the Decision Matrix, where 𝑝𝑖𝑗  is determined as follows: 

𝑝𝑖𝑗 =  
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑛

𝑖=1

, 𝑗 ∈ [1, 𝑛] (3.11) 

Step 3: The entropy 𝑒𝑖  of the i criterion is determined as follows: 

𝑒𝑖 = −
1

ln(𝑚)
∑ 𝑝𝑖𝑗 ln(𝑝𝑖𝑗) , 𝑖 = 1…𝑚; 𝑗 = 1… 𝑛𝑚

𝑖=1  (3.12) 

Where:   

+ entropy 𝑒𝑖 lies within the range [0, 1]. 

A higher 𝑒𝑖 indicates greater differentiation for the I criterion, meaning more information can be gathered from that criterion. 

Therefore, a higher weight should be assigned to that criterion. Subsequently, the weight 𝑤𝑖  for the i criterion is calculated using 

the following Equation 3.13: 

𝑤𝑖 =
1−𝑒𝑖

∑ (1−𝑒𝑖)
𝑚
𝑖=1

 (3.13) 

Step 4: Calculate and construct the weighted normalized decision matrix, which is computed using the following Equation 3.14 

𝑌 =  𝑤𝑗 . 𝑝𝑖𝑗  (3.14) 

Where: 

+ Wj is the weight of criterion j 

Step 5: Identify the Best and Worst solutions 

𝐴+ = {𝑦1
+, 𝑦2

+, … , 𝑦𝑗
+, … , 𝑦𝑛

+} (3.15) 

𝐴− = {𝑦1
−, 𝑦2

−, … , 𝑦𝑗
−, … , 𝑦𝑛

−} (3.16) 

Where: 

+ 𝑦𝑗
+ The best alternative for criterion j 
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+ 𝑦𝑖
− The worst alternative for criterion j 

Step 6: Calculate the positive ideal value Si
+ and the negative ideal value Si

− the following Equations: 

𝑆𝑖
+ = √∑ (𝑦𝑖𝑗 − 𝑦𝑗

+)
2𝑛

𝑗=1  i =  1, 2, … ,m (3.17) 

𝑆𝑖
− = √∑ (𝑦𝑖𝑗 − 𝑦𝑗

−)
2𝑛

𝑗=1 i =  1, 2, … ,m (3.18) 

Step 7: Determine the criteria and evaluate 𝐶𝑖
∗  

𝐶𝑖
∗ = 

𝑆𝑖
−

𝑆𝑖
++ 𝑆𝑖

−  i =  1, 2, … ,m; 0 ≤ 𝐶𝑖
∗ ≤ 1 (3.19) 

Step 8: Rank 𝐶𝑖
∗  to select the best alternative. 

The summary table of the optimization results using the combined SVR-NSGA II-TOPSIS algorithm is presented in (Table 3.3). 

 
Table 3.3 SVR-NSGA II-TOPSIS results 

STT 𝑋1 

(°∁) 

𝑋2 

(°∁) 

𝑋3 

(𝑚𝑚) 
𝑌1 –Predict (𝑘𝑁) 𝑌2-Predict (𝑐ℎ𝑢 𝑘ỳ) 

4 1098.27 181.90 33.93 801.449 3202 

6 1107.76 181.05 33.90 795.422 3199 

13 1128.83 182.31 33.92 794.125 3188 

22 1123.52 180.29 33.91 788.395 3185 

17 1129.06 180.23 33.92 786.951 3179 

5 1149.96 180.71 33.98 785.611 3154 

16 1152.23 180.45 34.00 784.694 3150 

25 1191.69 196.17 30.01 784.176 2998 

10 1197.48 194.23 30.01 782.486 2997 

2 1197.89 200.26 30.16 781.094 2974 

8 1195.66 201.56 30.07 779.939 2973 

1 1188.04 206.04 30.05 779.771 2949 

7 1188.53 206.34 30.06 779.316 2947 

11 1197.80 206.53 30.23 775.653 2939 

9 1198.35 210.38 30.09 770.839 2919 

18 1199.81 211.74 30.32 769.296 2901 

3 1197.18 213.79 30.04 768.790 2899 

24 1196.70 214.18 30.17 768.323 2891 

23 1199.90 213.60 30.48 767.435 2881 

21 1198.81 217.92 30.01 766.934 2877 

20 1196.41 217.93 30.24 765.824 2865 

14 1196.79 216.74 30.42 765.589 2863 

12 1199.97 218.99 30.24 764.470 2861 

15 1199.29 218.20 30.86 762.568 2834 

19 1199.08 219.82 31.52 762.544 2805 

 

Applying the TOPSIS method, the prediction errors for 𝑌1 and 𝑌2 are calculated based on the differences between the predicted 

and simulated values. The results, including the values of 𝑆𝑖
+, 𝑆𝑖

−, 𝐶𝑖
∗ are presented in (Table 3.4). 

 
Table 3.4. The values of 𝑺𝒊

+, 𝑺𝒊
−, 𝑪𝒊

∗, Rank 

STT 𝑌1 –Predict 

(𝑘𝑁) 

𝑌2-Predict 

(𝑐ℎ𝑢 𝑘ỳ) 
𝑆𝑖

+ 𝑆𝑖
− 𝐶𝑖

∗ 
TOPSIS 

Rank 

4 801.449 3202 0.00 1.41 1.00 1 

6 795.422 3199 0.16 1.30 0.89 2 

13 794.125 3188 0.19 1.26 0.87 3 

22 788.395 3185 0.34 1.17 0.78 4 

17 786.951 3179 0.38 1.13 0.75 5 

5 785.611 3154 0.42 1.06 0.71 6 

16 784.694 3150 0.45 1.04 0.70 7 

25 784.176 2998 0.68 0.74 0.52 8 

10 782.486 2997 0.71 0.70 0.50 9 

2 781.094 2974 0.78 0.64 0.45 10 

8 779.939 2973 0.80 0.62 0.43 11 

1 779.771 2949 0.85 0.57 0.40 12 

7 779.316 2947 0.86 0.56 0.39 13 

11 775.653 2939 0.94 0.48 0.34 14 

9 770.839 2919 1.06 0.36 0.25 15 

18 769.296 2901 1.12 0.30 0.21 16 

3 768.790 2899 1.13 0.29 0.20 17 

24 768.323 2891 1.16 0.26 0.18 18 

23 767.435 2881 1.19 0.23 0.16 19 



International Journal of Scientific Engineering and Science 
Volume 8, Issue 12, pp. 77-88, 2025. ISSN (Online): 2456-7361 

 

 

87 

http://ijses.com/ 

All rights reserved 

21 766.934 2877 1.21 0.21 0.15 20 

20 765.824 2865 1.25 0.17 0.12 21 

14 765.589 2863 1.26 0.17 0.12 22 

12 764.470 2861 1.28 0.15 0.10 23 

15 762.568 2834 1.36 0.07 0.05 24 

19 762.544 2805 1.41 0.00 0.00 25 

 

The results confirm that value 4 in the set of 25 optimal Pareto values shows a very far distance from the non-ideal solution and 

a very close distance to the ideal solution. The distance to the ideal solution ranges from 0 to 1.41. 

 
Figure 3.4. Pareto Front 

 

From the results in Table 3.4 and Figure 3.4 the author selects the most optimal solution with the following values: 

𝑋1 = 1098,27 (°∁) 
𝑋2 = 181,90 (°∁) 

𝑋3 = 33,93 (𝑚𝑚) 

IV. CONCLUSION 

This is a significant research direction in the mold manufacturing industry, helping to evaluate product quality and save time, 

thereby enhancing competitiveness. CAE software provides substantial efficiency in analyzing product quality, die durability, and 

forging force, which assists in selecting appropriate production lines and determining the optimal maintenance schedule for 

equipment.  

The NSGA II algorithm has been successfully applied to identify Pareto optimal solutions, while the multi-criteria decision-

making method TOPSIS has thoroughly resolved the issue, enabling the selection of the best solution. In this study, the author 

successfully demonstrated the effectiveness of combining SVR with NSGA-II and TOPSIS in the multi-objective optimization 

process of hot forging for SUS304 valve blanks. The integration of SVR, NSGA-II, and entropy-weighted TOPSIS holds potential 

for applications beyond the hot forging process, providing a powerful tool for multi-objective optimization in computational 

research. 

This research direction can be similarly applied to other components in the die, such as side punches, and to valves made from 

other materials like copper, aluminum alloys, and titanium. Furthermore, integrating advanced technologies, such as artificial 

intelligence (AI), can improve the performance of the NSGA II algorithm, bringing greater value in decision-making processes. 
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