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Abstract— OCT-2, a member of the POU family of transcription factors, plays a critical role in regulating B-cell-specific genes and 

immunoglobulin transcription, essential for B-cell proliferation and differentiation. This study investigates the regulation of OCT-2 through 

promoter analysis and transcription factor identification. Using computational tools (PROMO and TESS) and DNA microarray data, five 

transcription factors—EGR2, Smad3, FOXJ2, TCF-7, and RXR alpha—were identified as potential regulators of OCT-2. Differential expression 

analysis suggests that RXR alpha, TCF-7, EGR2, and FOXJ2 may act as repressors in CBMI-Ral-STO cells, while Smad3 functions as an activator 

in RAEL cells, potentially mediated via the TGF-beta signaling pathway. OCT-2's involvement in Epstein-Barr Virus (EBV) latency regulation is 

also hypothesized, particularly its interplay with EBNA-1 in promoter regulation. These findings provide insights into OCT-2's transcriptional 

regulation and propose experimental pathways to validate its regulatory mechanisms. Understanding OCT-2 regulation may illuminate its 

broader implications in immune response and viral latency. 

 

I. INTRODUCTION  

Oct-2 is an octamer transcription factor which is part of the 

POU family, where the proteins have a well-conserved 

homeodomains. The POU proteins are eukaryotic transcription 

factors. They contain a bipartite DNA binding domain (POU 

domain) in which the POU homoeo and POU-specific regions 

form two subdomains that are both required for DNA binding 

but are held together by a flexible linker. The different members 

of the POU family possess a diverse range of functions, each 

associated with the growth of an organism. Oct 2 is necessary 

for octamer-dependent transcription of immunoglobulin and 

other important lymphoid-specific genes of B cells. The 

expression of Oct 2 is restricted to B cells 4and neuronal cells. 

It has an important role to modulate transactivation of IG 

promoter. In addition, Oct 2 participate in controlling B-cell 

specific genes which are used in proliferation and 

differentiation of CD20, CD79a and J. Chain (1). Oct 2 

specifically binds to the octamer motif (5'-ATTTGCAT-3') (2) 

(3). The Isoform 5 of Oc2 activates the U2 small nuclear RNA 

(snRNA) promoter. (4) It also interacts with NR3C1, AR and 

PGR (5). 

II. RESULTS 

Before we start to the results, let’s motivate our decision of 

taking two different software to predict TF binding sites. The 

reason behind this lies in collective intelligence, where a shared 

or group of intelligence, in our case predictions, that emerges 

from the collaboration of two or many individuals. (14) Also 

this is one of the ways doing collaborative filtering, when 

filtering information with the help of multiple agents and 

viewpoints, and data sources. (14)  

Binding site prediction 

In my work I have taken the promoter region of Lymphoid-

restricted immunoglobulin octamer-binding protein (OCT2) 

which is encoded by POU2F2 gene to predict the Transcription 

Factors (TF) binding sites that can have influence on OCT2 

regulation and expression. The size of the promoter region was 

selected from 2000 bp upstream and 200 bp downstream after 

the transcription start site which is in total make the sequence 

consisting of 2200bp long. Since the research is targeted on 

human cell lines the transcription factors are selected among the 

human factors and binding sites also predicted for human 

organism.  The predictions were performed with both software 

PROMO and TESS.   

Input data 

The promoter sequence with 2000bp for TESS, since TESS 

supports to process only the sequence of 2000 bp, the procedure 

was done the following way. First 2000 bp upstream from 

transcription start site was processed, then the other 2000bp 

with 1800bp upstream and 200bp downstream from 

transcription start site were analyzed. For Promo I have inserted 

the whole sequence of 2200bp, since there is no limit for input 

sequence. 966 transcription factors for TESS and 156 

transcription factors for PROMO were selected to predict 

binding sites for them.  

 
TABLE 1. The number of binding sites predicted for different similarity rates, 

from two software based only on TRANSFAC database. 

Similarity rate TESS PROMO 

1% 228 161 

5% 249 331 

10% 371 654 

15% 1612 826 

0%   

 

The results of binding sites (Table 1), according to different 

similarity rates are derived from only using TRANSFAC 

weight matrices and string matches for both software.  

Unlike TESS PROMO resulted in more than 2 fold 

difference in each similarity rate change. The reason why TESS 

behaves differently is because TESS in addition to weight 

matrices provides string models. There are 223 binding sites for 

string models that bind with 100% similarity to the promoter 

region. Also one can say TESS has very few binding sites for 

weight matrices compared to PROMO. Explanation to this is 

that the cut off for TESS weight matrices are very strict. The 

minimum matrix similarity and core similarity are set to have 

equal values. For 1% dissimilarity rate minimum matrix core 

similarity and matrix similarity set to 0.99, for 5%, 10%, and 

15% have been set 0.95, 0.90, and 0.85 respectively.  

For the next prediction I used better and more justified input 

parameters. On the next table 2, the results are shown for all 
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available databases of TF binding sites. Both PROMO and 

TESS have not much overlaps of TF weight matrices and 

considering taking an overlap between them is not appropriate 

for our case. We are looking for any kind of TF from 

computational perspective taking into account the real 

biological behavior could possible bind to our promoter region. 

Even though let’s have a look to the results of taking overlap 

between two software. 

 

a)  

b)  

c)  

d)  

e)  

f)  
Figure 1. a) Binding site map of 15 % dissimilarity rate predicted by TESS, b) Binding site map of 15 % dissimilarity rate predicted by PROMO, c) Binding site 

map of 10 % dissimilarity rate predicted by PROMO, d) Binding site map of 10 % dissimilarity rate predicted by TESS, e) Binding site map of 5 % dissimilarity 

rate predicted by PROMO, f) Binding site map of 5 % dissimilarity rate predicted by TESS. Position 0bp is a transcription start site. 

 

 
Figure 2. Overlap of binding sites, predicted with 10% dissimilarity rate, between TESS and PROMO. 

 

To secure from different position numbering and also in a 

string length the overlap was taken with +/- 3 base pairs shift in 

position. 

The predictions for the binding sites were conducted for 

different dissimilarity rates. The rates like 1%, 5%, 10%, and 

15% were chosen. The numbers of predicted binding sites are 

shown on table 2.  

1% input parameters: 

For 1% dissimilarity rate the following parameters were 

given to TESS. There are 2 different kinds of parameters are 

considered. First initial settings for string matches are given the 

maximum allowed mismatch 1%, the minimum log-likelihood 
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ratio of 12 and minimum string length consisting of 6bp. The 

last 2 are default settings and recommended by TESS software.  

 
TABLE 2. a) Table provides the name of the TF names the binding sites of 

which have been overlapped, b) comparative display of biding sites number 
that have been found in TESS (+200bp and -1800bp range) and PROMO 

(+200bp to -2000bp), c) shows the number of binding sites found with TESS 

for two ranges from -1800bp to +200bp and -2000bp to 0, also the last column 
shows the combined amount of binding sites from both ranges. 

a) 

Factor Name Factor ID Factor Name Factor ID 

Sp1 T00759 HOXD9 T01424 

USF2 T00878 LEF-1 T02905 

AP-2alphaA T00035 MAZ T00490 

ATF-2 T00167 NF-1 T00539 

C/EBPbeta T00581 NF-AT1 T00550 

c-Ets-1 T00112 NF-kappaB T00590 

c-Ets-2 T00113 NF-Y T00150 

c-Jun T00133 p53 T00671 

c-Myb T00137 PEA3 T00685 

c-Myc T00140 Sp1 T00759 

CREB T00163 SRY T00997 

CTF T00174 TCF-4 T02918 

Elk-1 T00250 TCF-4E T02878 

GATA-1 T00306 TFIID T00820 

GATA-2 T00308 USF1 T00874 

GCF T00320 USF2 T00878 

HOXD10 T01425 YY1 T00915 

b) 

 TESS 1800 200 PROMO 

1 355 162 

5 525 368 

10 896 724 

15 2277 914 

c) 

 TESS 1800 200 TESS 2000 Combined 

1 355 331 381 

5 525 492 565 

10 896 862 976 

15 2277 2109 2459 

 

 
Figure 3. A graphical representation of two sets of predicted binding sites by 

TESS for regions from -2000 to 0 and -1800 to +200 which are combined 

together. 

 

As for the weight matrices there are several factors are 

considered. I have chosen the scoring method according to 

matrix similarity and core similarity of weight matrix.  The core 

similarity is given the value 0.9 which represents 90% of 

matches, and minimum matrix similarity 0.99 which denotes of 

1% dissimilarity of whole sequence.   

Other parameters like pseudocount were set by default as it 

is recommended by software. And also background probability 

of nucleotides in sequence was set by me and is taken from 

sequence distribution.  

 

 
Figure 4. Distribution of the nucleotides over the given chain (sequence of 

2200 bp). 

 

On the table 3 the input parameters for different 

dissimilarity rate are shown. Parameters have been adjusted in 

order to optimize the output.  

 
TABLE 3. Input parameters for different dissimilarity rate, both for string 

model and weight matrix. 

Input parameters     

Maximum allowed 

mismatch 
1% 5% 10% 15% 

Minimum log-likelihood 
ratio 

12 12 12 12 

Minimum string length 

6bp 
6bp 6bp 6bp 6bp 

Minimum core similarity 

(tc) 
0.90 0.85 0.8 0.75 

Minimum matrix 
similarity (tm) 

0.99 0.95 0.9 0.85 

Pseudocounts 0.1 0.1 0.1 0.1 

Background probabilities 
Seq. 

distr. 

Seq. 

distr. 

Seq. 

distr. 

Seq. 

distr. 

Matching With Microarray Data 

Both software predicted and gave many binding sites. Next 

step was to compare and match the transcription factor list with 

affymetrix microarray data, which is an experimental data of 

transcriptome profiling of latency I and latency III cells.   Some 

constraints were encountered with converting the TF ID to the 

gene id with the one in affymetrix data. The process was done 

manually one by one for each TF. As the result 141 TF from 

TESS and 81 from PROMO were successfully converted, 

which are in total make 222 TF.  All data were converted to the 

Uniprot accession number and after to refseq nucleotide mRNA 

ID. Almost all accession numbers were successfully converted. 

Only one Uniprot accession number was not mapped. Totally 

they resulted in 356 unique Gene IDs which tells us that several 

of them have mapped to more than one ID. 

Out of 356 TF from predicted binding sites 317 were 

matched with microarray data. Even if some IDs didn’t match 

with microarray data there was an alternative ID from the same 

TF that have matched. As the result only 2 TF were not matched 

to the microarray. From top 20 matched TFs to the microarray 

data, which have differed significantly in expression between 

two latencies, 5 TFs that appeared to be biologically interesting 

and significant, and have good quality of binding site, have 

0% 20% 40%

A

C

G

T

Distribution of the 
nucleotides

Distribution in %
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been selected for further processing. In table 4 the reference list 

of 5 candidates are given. 

 
TABLE 4. Five transcription factors listed on the table, which have been 

selected for further investigation. Here the expression according to affymetrix 
array and quality of binding site is shown. 

Factor Name CBMI-Ral-STO RAEL Quality 

EGR2 1359.56 58.34 0.9 

Smad3 232.78 1357.58 0.92 

FOXJ2 1460.78 332.48 0.9 

TCF 1750.95 26.13 1 

RXR alpha 1058.1 103.14 1 

 

The field “Quality” indicates the quality of binding site 

according to the method described in introduction. Since there 

are several binding sites along the promoter sequence predicted, 

here given the quality value of one the best matches.  

Pathways 

Next stage in the project was to find the pathways for 

selected transcription factors and look through the pathway up 

to the membrane in order to find and locate factors and proteins 

that could have influence the activation or inhibition of any 

selected 5 transcription factors. In order to elevate the pathway 

search for given factors, the current Affymetrix gene ids has 

been converted to KEGG gene ids. I have used DAVID id 

converter and Uniport’s gene map to convert those ids that 

matches with KEGG database. One should make sure while 

converting genes they should belong to the same species, 

otherwise something wrong with input parameters for the 

converter. On table #X, one can find the reference table for each 

gene id in Affymetrix and ref.seq format converted to the 

KEGG database format.  
 

TABLE 5. On table A the conversion of IDs from Affymetrix to Uniprot is 
shown. Table B shows mapped gene IDs to the KEGG database ID. This table 

provides IDs of different databases for selected 5 candidates. 

A)  

From To Species David Gene Name 

7984364 SMAD3_HUMAN 
Homo 

sapiens 
SMAD family member 3 

7984364 Q9P0T0_HUMAN 
Homo 

sapiens 
SMAD family member 3 

7984364 B7Z4Z5_HUMAN 
Homo 
sapiens 

SMAD family member 3 

7984364 Q68DS8_HUMAN 
Homo 

sapiens 
SMAD family member 3 

7984364 Q59F45_HUMAN 
Homo 
sapiens 

SMAD family member 3 

7984364 B7Z9Q2_HUMAN 
Homo 

sapiens 
SMAD family member 3 

8108050 TCF7_HUMAN 
Homo 

sapiens 

transcription factor 7 (T-

cell specific, HMG-box) 

8159127 RXRA_HUMAN 
Homo 
sapiens 

retinoid X receptor, alpha 

8159127 Q6ZNL3_HUMAN 
Homo 

sapiens 
retinoid X receptor, alpha 

8159127 Q6P3U7_HUMAN 
Homo 
sapiens 

retinoid X receptor, alpha 

8159127 Q8NF63_HUMAN 
Homo 

sapiens 
retinoid X receptor, alpha 

8159127 Q2NL52_HUMAN 
Homo 

sapiens 
retinoid X receptor, alpha 

7933872 EGR2_HUMAN 
Homo 

sapiens 
early growth response 2 

7953699 FOXJ2_HUMAN 
Homo 

sapiens 
forkhead box J2 

B) 

Name NCBI Uniprot KEGG 

EGR 2 NM_000399 EGR2_HUMAN hsa1959 

FOX J2 NM_018416 FOXJ2_HUMAN hsa55810 

RXRA NM_002957 RXRA_HUMAN hsa6256 

SMAD 3 NM_005902 SMAD3_HUMAN hsa4088 

TCF 7 NM_003202 TCF7_HUMAN hsa6932 

III. DISCUSSION AND CONCLUSION 

Our analysis revealed several potential transcription factors 

(TFs) that may play critical roles in regulating OCT-2 gene 

expression. 

Firstly, we identified several TFs that are likely to act as 

repressors of OCT-2, including RXRα (6, 7), TCF7 (8), EGR2, 

and FOXJ2. These TFs exhibit higher expression levels in 

CBMI-Ral-STO cells compared to RAEL cells, suggesting an 

inverse correlation with OCT-2 expression. 

Interestingly, we found evidence that the TGF-beta 

signaling pathway might activate OCT-2 expression. This is 

supported by the higher expression of SMAD3 (9), a key 

component of this pathway, in RAEL cells. However, it's 

important to note that EBV-encoded proteins can inhibit the 

TGF-beta signaling pathway (10, 11, 12), which could 

contribute to decreased OCT-2 expression in certain contexts. 

Furthermore, our data suggests that the Wnt signaling 

pathway, particularly the canonical pathway involving TCF7 

(8), may also repress OCT-2 expression. While core 

components of this pathway are expressed in both cell lines, 

potential differences in Frizzled receptors and Wnt ligands 

might influence pathway activity and its impact on OCT-2. 

To experimentally validate these findings, we propose 

several approaches. These include manipulating signaling 

pathways by introducing TGF-beta ligands, activating the Wnt 

pathway, or treating cells with retinoic acid to observe the 

impact on OCT-2 expression levels. Additionally, techniques 

like ChIP-seq can be employed to directly determine the 

binding sites of these TFs on the OCT-2 promoter in vivo. 

It is crucial to acknowledge the limitations of our 

microarray data analysis, such as the potential for unreliable 

results from low signal intensities (13). To address this, we 

suggest performing multiple microarray analyses to increase the 

reliability of our findings. 

In conclusion, our results indicate that OCT-2 gene 

expression is likely regulated by a complex interplay of 

multiple TFs and signaling pathways, including the TGF-beta 

and Wnt pathways. Further research is necessary to fully 

elucidate these regulatory mechanisms and their implications in 

various biological processes. 
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