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Abstract— This paper mainly focuses on the numerical solution of the two-dimensional second-kind Fredholm integral equation by the Jacobi-

Legendre Spectral-Galerkin method. Based on the Gauss points related to the Jacobi weight function as the collocation points, and applying the 

Gauss orthogonal quadrature formula to deal with the integral term. When the kernel function and source function are smooth enough, according 

to the weighted discrete inner product form, the weak form of the numerical algorithm is further realized. Finally, numerical examples are given 

to prove the advantages of our algorithm, The results show that the effectiveness and spectral accuracy correctness of the proposed algorithm. 
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I. INTRODUCTION  

With the wide application of engineering disciplines, the 

importance of integral equations in modern society has become 

more and more prominent, and many models abstractly 

summarized in production and life practice are either integral 

equations or can be transformed into integral equations to solve. 

After years of development, the study of integral equations has 

entered a new height. The theory of integral equations was 

mainly established by Fredholm and Volterra at the end of the 

19th century. Their work has deeply influenced the research of 

integral equations in the 20th century. Its research significance 

is not only reflected in mathematics but also has very high 

practical application value, such as in the fields of atmospheric 

physics, engineering mechanics, and image processing. Many 

mathematical model projects in science and engineering can 

also be described by integral equation models, such as 

population prediction models, biological population ecological 

models, nerve impulse propagation, medical scanning, 

abnormal diffusion problems, and heat conduction problems of 

memory materials. For references, see [1]-[6]. Therefore, many 

scholars pay attention to and study Fredholm integral equations. 

Han and Atkinson’s work [7] introduce the relevant theories of 

integral equations and sort out the numerical algorithms of 

Fredholm integral equations, such as the collocation method, 

Galerkin method, iterative Galerkin method, iterative 

collocation method, Nystrom method, and product integration 

method. 

Brambilla et al [8] described the implementation of one-

dimensional integral equations in finite element models. Xiang 

Xinmin [9] gave the numerical analysis of spectral methods and 

introduced the stability and convergence theory of spectral 

methods and the latest progress in spectral method research in 

recent years. Shen and Tang et al. introduced in their works [10, 

11] the theory of orthogonal polynomials closely combined 

with spectral methods, spectral collocation method and spectral 

Galerkin method, Fourier spectral method for solving periodic 

problems, and the numerical formats and proofs of convergence 

analysis of various equations. Maleknejad and Sohrabi used 

Legendre-like wavelets to give the numerical solution of the 

first kind of Fredholm integral equation [12]. Yin Yang and et 

al utilized the spectral collocation method to solve the second 

kind of Fredholm integral equations with weakly singular 

kernels[13]. Peng Guo proposed a high-precision 

approximation method based on the Gauss-Lobatto quadrature 

formula, analyzed the errors, and proved the effectiveness of 

the algorithm[14]. The research conducted by numerous 

authors sufficiently demonstrates that the accuracy of numerical 

algorithms for Fredholm integral equations is improving. 

The rest of this article is arranged as follows. In Section 2, 

we demonstrate the implementation of the spectral Jacobi-

Galerkin method for two-dimensional Fredholm integral 

equations. In Section 3, we will list the numerical results in the 

L norm and weighted l2-norm for two numerical examples. 

Finally, a summary and outlook are given for the full text. 

II. THE SPECTRAL GALERKIN METHODS 

In this paper, we consider defining the domain 2( 1,1) = − , 

define element ( , )x y in 2R , 
N

X is a space composed of Jacobi 

orthogonal polynomials defined on  , 
, 2 2( , ) (1 ) (1 )x y x y    = − − is the Jacobi weight function on , 

where 1 , 1 −   . From this, let 

 ( ) ( ),    span , 0,1, ,i jN
x yX i j N = = . 

We denote by
,

2 ( )L  
 the space of the measurable functions 

:u R→ such that 
2 , ( , )( , ) x y dxdyu x y  


  , 

which is a Banach space endowed with the norm 

( )2
,

1

2 2,

( )
( , )( , )

L
x y dxdyu x yu

 

 



=  , 

and is a Hilbert space for the inner product 

( ) ,

,( , ) ( , ) ( , ), u x y v x y x y dxdyu v  

 





=  . 

( )L   is the Banach space of the measurable functions 

:u R→ that are bounded outside a set of 

measure zero, equipped with the norm 
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2
,

( )
( , )

ess sup ( , )L
x y

u x yu
 




= . 

Given a two-index
1 2

( , )  = of nonnegative integers, we set

1 2
  = + , and 

1 2

x y

u
D u




 


=
 

, 

define 





,

,

2

2

( ) ( ) :   for each nonnegative two-index  with ,  

the distributional derivative   belongs to ( )                   ,

m u LH m

D u L

  

 







  =  



，

 

this is a Hilbert space for the inner product 

( ) ,

,

,
( , ) ( , ) ( , ),

m
m

D u x y D v x y x y dxdyu v  

   










=   , 

it is convenient to introduce the seminorms 

( )2
,

,

1
2 2

( )
( )

m N L
H

m

D uu 
 










=  . 

The Two-dimensional Fredholm integral equation model is as 

follows 

( ) ( ) ( ) ( )    
0 0

( , , , ) ,      , , ,, 0, 0,
a b

z k x y s t z dsdt fx y x y x ys t a b+ =   

. (2.1) 
To facilitate the use of Jacobi orthogonal polynomials, first 

perform variable substitutions on x  and y  in the Fredholm 

integral equation (2.1) 

( )  
2

,      x= 1,      x 1,11
2

a x
x x

a
= −  −+ , 

( )  
2

,      y= 1,      y1 1,1
2

b y
y y

a
= − + − , 

let 

( ) ( ) ( ) ( )( , ) ,    ( , ), ,1 11 1
2 2 2 2

a b a b
u x y z g x y fy yx x

   
= =+ ++ +   

   
. 

Similarly, in order to facilitate the use of Jacobi Gaussian 

quadrature rules, perform substitutions on the 

integration variables s and t 

( ) ( )  ,     1,11
2

a
s s  = =  −+ , 

( ) ( )  ,     1 1,1
2

a
t t  = = + − , 

let 

( ) ( )( ), , , ( , , , )
4

ab
k x y s t k x y s t = . 

So Eq.(2.1) becomes 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )
1 1 2

1 1
( , ) , , , , ,       , , 1,1u x y k x y s t u s t d d g x y x y   

− −
+ =  = −  .

 (2.2) 
By introducing the integral operator T defined by 

( ) ( )( ) ( ) ( )( )
1 1

1 1
( , ) , , , ,T u x y k x y s t u s t d d   

− −
=   , 

(2.2) can be reformulated as 

( ) ( ) ( )( , ) ,         , , ,u T u x y gx y x y x y+ =  . (2.3) 

Then, we can deduce a discrete scheme of (2.3) reads: Find a

 
N N

u X  , such that 

( ) ( ) ( ), , , ,        
N N N N N N N

u v T u v g v v X
  
+ =   .(2.4) 

Select a set of orthogonal bases

( , ) ( ) ( ),    , 0,1, ,
ij i j

x y x y i j N  = = in space
N

X , approximate 

the 

Solution 

, 0 , 0

( , ) ( ) ( )
N N

N ij ij ij i j

i j i j

u u x y u x y  
= =

= =  , (2.5) 

Let 

( , ) ( ) ( )
N pl p l

v x y x y  = = . (2.6) 

So on the region [−1,1] × [−1,1], we obtain the following linear 

equation 

( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )( )( )

( ) ( ) ( )

1 1
,

1 1
, 0

1 1 1 1
,

1 1 1 1
, 0

1 1
,

1 1

, , ,

, , , , , ,

., , ,

N

ij pl ij

i j

N

pl ijij
i j

pl

dxdy ux y x y x y

dxdy ux y x y k x y s t s t d d

g dxdyx y x y x y

 

 

 

  

      

 

− −
=

− − − −
=

− −



+ 

=

 

    

 
(2.1) 
Using the orthogonal rule of (N + 1)-Legendre Gauss points to 

calculate the integral of the above 

equation. Firstly, note that 1 2

0 0 0 0
{ } ,  { }  and { } ,  { }N N N N

m m n n m m n n
v v 

= = = =
are 

Legendre Gauss points and their corresponding Legendre 

weight functions, respectively, clearly obtained 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )1 2

0 0

, , , ,, , ,
N N

N m n ij m n m n

m n

T u T u k x y s t u s t v v Kx y x y x y   
= =

 = =

Next, we implement the discrete inner product 

( ) ( ) ( ) ( ) 1 2

,
, 0

, ,, ,
N

d h d h d hN
d h

u x y v x yu v u v
 

 
=

 =  , 

where 
0 0

{ } ,  { }  N N

d d h h
x y

= =
are ( )1N + -Jacobi Gauss points, and the 

corresponding weight functions are 1 2

0 0
{ } ,  { }N N

d d h h
 

= =
. Thus the 

discrete form of equation (2.4) is as follows 

( ) ( ) ( )
, , ,

, , , ,        
N N N N N N N NN N N

u v T u v g v v X
  

+ =   .(2.8) 

Substituting (2.5) and (2.6) into the above equation gives the 

discrete form of Eq.(2.7) as follows 

( ) ( ) ( )
, , ,

, 0 , 0

, , ,
N N

ij pl N ij pl plij ijN N N
i j i j

T gu u
  

    
= =

+ =  , (2.9) 

where 

( ) ( )( ) ( )( ) ( )( ) ( )1 2

0 0

, , , ,
N N

N ij i m j n m n ij

m n

T k x y s t s t v v K x y    
= =

= = , 

and 

( ) ( ) ( ) ( ) 1 2

,
0 0

, ,
N N

pl

N ij pl ij d h p d l h d h ijN
d h

T K x y x y K


     
= =

= = , 

( ) ( ) ( ) ( ) ( ) 1 2

,
0 0

,
N N

pl

ij pl i d j h p d l h d h ijN
d h

x y x y A


       
= =

= = , 

( ) ( ) ( ) ( ) 1 2

,
0 0

, ,
N N

pl d h p d l h d h plN
d h

g g x y x y F


    
= =

= = . 

Hence, the discrete version of equation (2.9) can be represented 

in matrix form as shown below 

( )A K U G+ = , 

where 
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00 00 00 00 00 00

00 01 0 10 0

01 01 01 01 01 01

00 01 0 10 0

00 01 0 10 0

N N NN

N N NN

NN NN NN NN NN NN

N N NN

A A A A A A

A A A A A A
A

A A A A A A

 
 
 =
 
 
  

, 

00 00 00 00 00 00

00 01 0 10 0

01 01 01 01 01 01

00 01 0 10 0

00 01 0 10 0

N N NN

N N NN

NN NN NN NN NN NN

N N NN

K K K K K K

K K K K K K
K

K K K K K K

 
 
 =
 
 
  

, 

 00 01 0 10 0N N NN
U u u u u u u= , 

00 01 0 10 0N N NN
F F F F F F F=    . 

III. NUMERICAL EXPERIMENTS 

In this section, illustrative examples are given to show the 

effectiveness of the method proposed in Section 2. We give 

numerical examples to confirm our analysis, 𝐿𝜔
2 (Ω) and 𝐿∞(Ω) 

errors are employed to assess the efficiency of the method. All 

numerical calculations are implemented through MATLAB 

R2021a platform. 

Example 1: Consider the following two-dimensional Fredholm 

integral equation 

( ) ( )
1 1

1 1

4sin(x) 4sin(1)
(tsin(x)+ys) xcos(y)+ -y(1+ ), ,

3 3
u u dsdtx y s t

− −
+ =  , 

with exact solution is given by ( ) x.cos(y)-y,u x y = . By 

calculating the approximate solution, we obtain the 𝐿𝜔
2 (Ω)  and 

𝐿∞(Ω) errors results of the spectral Jacobi-Legendre-Galerkin 

method: for different N , the errors between approximate 

solution and exact solutions are listed in Tables 1. To 

demonstrate the effectiveness of our algorithm intuitively, we 

present the images of both the exact and approximate solution 

in Figures 1. It is observed that the desired exponential rate of 

convergence is obtained. 

 

Figures. 1. The error function under the 
2L


 and L  norms 

 

Observing the numerical examples, by calculating the 

approximate solution, we obtain the 𝐿𝜔
2  and the 𝐿∞ error results 

of the spectral Jacobi-Galerkin method. For different 𝑁 , the 

errors between the approximate solution and the exact solution 

are listed in Table 1. To intuitively demonstrate the 

effectiveness of our algorithm, we present the error images 

under 𝐿𝜔
2  and the 𝐿∞  for 2 ≤ 𝑁 ≤ 16 in Figure 1. When 𝑁 ≥

12 , it can be intuitively seen that the accuracy of the 

approximate solution is approximately 10−14. 

Tables 1. The errors 
2 ( )N L

u u
 

− and 
( )N L

u u  
−  

N 2 4 6 8 10 

𝑳𝝎
𝟐 - 

error 

3.9100e-

02 

1.2779e-

04 

1.2710e-

07  

1.6591e-

10  

1.8020e-

13  

𝑳∞- 

error 

4.7900e-
02 

1.5994e-
04 

1.6238e-
07  

2.1451e-
10  

2.3870e-
13  

N 12 14 16 18 20 

𝑳𝝎
𝟐 - 

error 
1.1759e-

14 

1.4569e-

14  

6.7628e-

15  

1.1601e-

14  

1.8941e-

14  

𝑳∞- 

error 

1.9651e-

14 

2.2982e-

14  

1.1380e-

14  

3.3352e-

14  

3.6023e-

14  

IV. CONCLUDING REMARKS 

In this paper, we propose a spectral Jacobi-Galerkin 

method based on the Jacobi-Legendre Gauss point to obtain the 

numerical solution of the two-dimensional Volterra integral 

equation, this method exhibits exponential decay in both the 2L


norm and the L norm, which is characteristic of the spectral 

method. In addition, it is expected that the method in this paper 

can be applied to integral equations that are nonlinear in two 

dimensions.  
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