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Abstract— This paper proposes the use of Extended Kalman Filter (EKF) state estimator to improve the vehicle features and diagnostic tuning. 

The EKF algorithm is used to estimate the vehicle state variables such as position, velocity, and acceleration. This information is then used to 

enhance the vehicle's features and diagnostic tuning, leading to improved performance and safety. 

 

I. INTRODUCTION  

Vehicle features and diagnostic tuning play a crucial role in 

optimizing the performance and ensuring the safety of vehicles. 

Traditionally, these objectives have been pursued through the 

utilization of sensors that measure critical parameters like the 

vehicle's position, velocity, and acceleration. Nevertheless, this 

conventional approach is not without its limitations, as it is 

susceptible to sensor noise and errors, leading to inaccuracies 

in the measurements obtained. 

To surmount these limitations, this paper proposes the 

adoption of an innovative solution: the Extended Kalman Filter 

(EKF) state estimator. By employing the EKF, it becomes 

possible to estimate the state variables of the vehicle with 

greater precision and reliability. The estimated state variables, 

which encompass a comprehensive understanding of the 

vehicle's dynamic behavior, can then be utilized to enhance 

various vehicle features and fine-tune diagnostic systems. 

The implementation of the EKF state estimator represents a 

significant advancement in vehicle technology, as it mitigates 

the issues associated with sensor noise and errors. This filtering 

technique leverages a combination of mathematical models and 

sensor measurements to achieve highly accurate and consistent 

estimates of the vehicle's state variables. Consequently, the 

proposed approach holds the potential to revolutionize the 

realm of vehicle engineering, improving both the performance 

and safety aspects of vehicles. 

In this paper, we will delve into the principles and 

methodology behind the Extended Kalman Filter state 

estimator, elucidating its advantages and highlighting its 

applications within the context of vehicle features and 

diagnostic tuning. By investigating the effectiveness of this 

approach through empirical analysis and experiments, we aim 

to establish its efficacy and demonstrate its potential for 

widespread implementation in the automotive industry. 

II. STRUCTURE OF VEHICLE DYNAMIC STATE ESTIMATION 

Connected vehicles collect data from various onboard 

sensors and systems, such as GPS, cameras, radars, lidars, and 

vehicle diagnostics. This data is then transmitted to the cloud 

for further analysis and processing. The process of a collection 

and sharing involves several steps: 

1. Data Acquisition: Connected vehicles continuously gather 

data from their onboard sensors and systems. This data 

includes information about the vehicle's position, speed, 

acceleration, heading, surrounding environment, and 

internal parameters such as engine diagnostics and fuel 

consumption. The data is typically collected at high 

frequencies to capture detailed information about the 

vehicle's behavior. 

 

 
 

2. Data Preprocessing: Before transmitting the collected data 

to the cloud, some preprocessing steps may be performed in 

the vehicle itself. This can include data filtering, noise 

reduction, feature extraction, or data compression 

techniques to reduce the data size and improve the 

efficiency of data transmission. 

3. Data Transmission: Once the data is preprocessed, it is 

transmitted to the cloud using wireless communication 

technologies such as cellular networks, Wi-Fi, or dedicated 

vehicle-to-cloud communication protocols. The data is 

usually sent in packets or batches, and various security 

measures, such as encryption, are employed to protect the 

data during transmission. 

4. Cloud Storage and Processing: Upon reaching the cloud, the 

received data is stored in a cloud-based database or storage 

system. The cloud infrastructure provides the necessary 

resources and scalability to handle the large volume of data 

generated by a network of connected vehicles. The data can 

be stored in a structured format for efficient retrieval and 

analysis. 

5. Threshold Computation: In the cloud, algorithms and 

computational models are applied to the collected data to 

compute thresholds or perform other data analytics tasks. 

This can involve analyzing the vehicle's behavior, detecting 
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anomalies, predicting maintenance needs, or assessing 

environmental conditions. The computed thresholds or 

derived information can then be used for various purposes, 

such as triggering alerts, optimizing vehicle performance, or 

supporting decision-making processes. 

While transmitting and processing data in the cloud offers 

several advantages, such as centralized data management and 

scalability, there are also some drawbacks: 

1. Cost: Transmitting large volumes of data from connected 

vehicles to the cloud can incur significant costs, especially 

considering the bandwidth and data storage fees. As the 

number of connected vehicles increases, the data 

transmission and storage costs can become substantial, 

impacting the overall operational expenses. 

2. Non-Real-Time Processing: Cloud-based processing 

introduces latency due to the time required to transmit data 

to the cloud, process it, and receive the results back to the 

vehicle. This latency can hinder real-time applications that 

require immediate response or feedback, such as active 

safety systems or real-time decision-making. 

On the other hand, performing the computation in the 

vehicle itself can offer benefits such as real-time processing, 

reduced data transmission costs, and increased privacy. By 

processing the data locally, the vehicle can make immediate 

decisions or trigger actions without relying on cloud 

connectivity. 

However, in-vehicle computation also has limitations. It 

may be constrained by the computational resources available 

onboard, such as processing power, memory, or energy 

limitations. Additionally, in-vehicle computation may not have 

access to the same level of historical and aggregate data as 

cloud-based systems, which can limit the accuracy and 

effectiveness of certain analytics tasks. 

Ultimately, the choice between cloud-based computation 

and in-vehicle computation depends on the specific 

requirements, trade-offs, and resources available for each 

application. Some systems may employ a hybrid approach, 

where certain critical computations are performed in the vehicle 

for real-time response, while non-time-critical or resource-

intensive tasks are offloaded to the cloud for further analysis 

and long-term storage. 

III. KALMAN FILTER  

The Kalman filter is a widely used prediction and estimation 

tool that can be employed for in-vehicle computation in 

connected vehicles. The Kalman filter is an optimal recursive 

data processing algorithm that can estimate the state of a system 

based on a series of noisy measurements.  

In the context of connected vehicles, the Kalman filter can 

be utilized to estimate the vehicle's position, velocity, and other 

relevant parameters. It takes into account both the 

measurements obtained from onboard sensors, such as GPS, 

and the vehicle's dynamic model to provide an accurate 

estimation of the current state. 

Here's a high-level overview of how the Kalman filter works 

in the context of connected vehicles: 

 

 
 

1. State Initialization: The Kalman filter starts by initializing 

the initial state of the vehicle. This can be done using 

available measurements, such as the initial GPS position, 

velocity, and orientation. 

2. Prediction Step: The filter uses the vehicle's dynamic model, 

which describes how the state evolves over time, to predict 

the current state based on the previous state and control 

inputs. This prediction step accounts for factors like 

acceleration, steering, and other vehicle dynamics. 

3. Measurement Update: Once new sensor measurements 

become available, such as GPS position updates or other 

sensor data, the filter incorporates these measurements to 

refine its estimation. The Kalman filter combines the 

predicted state with the new measurement by calculating a 

weighted average, considering the uncertainty of both the 

prediction and the measurement. 

4. State Update: The filter updates the estimated state based on 

the measurement update and provides the refined state 

estimate, which can be used for various purposes, such as 

navigation, control systems, or further analysis. 

The advantage of using the Kalman filter for prediction and 

computation in the vehicle itself is that it provides real-time 

estimates by utilizing the available sensor data and dynamic 

model. The filter can be implemented on the vehicle's onboard 

computational resources, making it suitable for applications 

that require immediate response or low-latency processing. 

Furthermore, the Kalman filter is computationally efficient 

and has a relatively low resource requirement compared to more 

complex algorithms. This makes it a feasible option for in-

vehicle computation, where computational resources may be 

limited. 

It's worth noting that while the Kalman filter is a powerful 

prediction tool, its accuracy heavily depends on the quality and 

reliability of the sensor measurements and the accuracy of the 

dynamic model used. Additionally, for long-term predictions, 

the filter's accuracy can degrade over time if the measurements 

are inconsistent or the model assumptions do not hold. 

In summary, the Kalman filter is a versatile prediction and 

estimation tool that can be used for in-vehicle computation in 

connected vehicles. Its real-time capabilities, computational 

efficiency, and ability to handle noisy measurements make it a 
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valuable tool for tasks such as position estimation, trajectory 

prediction, and sensor fusion within the vehicle itself. 

IV. METHODOLOGY  

In this paper we are conducting our research based on 2 or 

few applications such as Acceleration and Braking parameters 

that require tunning across different types of vehicle and driver 

profiles. This is a popular application the in the Fleet world.  

To start the normalization process for the applications used, 

we followed the following steps: 

1. Collect data: Gather data from the fleet drivers using 

accelerometers or other sensors that can measure 

acceleration and deceleration. 

2. Preprocess data: Preprocess the data by removing any 

outliers or errors, and smooth the data to reduce noise. 

3. Define the system: Define the system model that describes 

the relationship between the state variables and the 

measurements. For example, you might model the 

acceleration and deceleration as random variables that are 

affected by the driver's behavior, road conditions, and other 

factors. 

4. Estimate the initial state: Use the initial data to estimate the 

initial state of the system. This can be done using a method 

such as maximum likelihood estimation. 

5. Predict the state: Use the system model to predict the next 

state of the system, based on the previous state and any 

control inputs (such as the driver's actions). 

6. Update the state: Use the measurements from the sensors to 

update the predicted state, using the Kalman filter 

equations. 

7. Repeat steps 5-6: Repeat the prediction and update steps for 

each new set of measurements, to obtain an estimate of the 

true state of the system over time. 

8. Analyze the results: Analyze the filtered data to identify any 

patterns or trends in the driver's behavior, and use this 

information to improve safety and performance. 

It is important to note that the implementation details of the 

Kalman filter will be influenced by the specific characteristics 

of the data and the system model being utilized. It may also be 

helpful to consult with an expert in Kalman filtering or signal 

processing to ensure that the implementation is appropriate for 

the specific application. 

V. THEORY OF CALCULATION 

The accurate diagnosis and tuning of vehicle fleet systems 

play a crucial role in ensuring optimal performance and 

reliability. To achieve this, advanced estimation techniques 

such as the Extended Kalman Filter (EKF) state estimator have 

been employed. The EKF is a recursive algorithm used for state 

estimation in dynamic systems, leveraging a series of noisy 

measurements. In the context of vehicle fleet diagnostic tuning, 

the dynamic system can be represented by the vehicle's engine, 

while the noisy measurements correspond to sensor readings 

such as engine RPM, temperature, and fuel consumption. 

The EKF operates by formulating a mathematical model of 

the dynamic system using a set of differential equations, which 

serves as the basis for predicting and updating the system's state 

estimate with each new measurement. The algorithm consists 

of two primary steps: prediction and update. 

During the prediction phase, the EKF employs the present 

state estimate along with the dynamic model to forecast the 

system's state at the next time step. This prediction is further 

employed to calculate the covariance matrix, which represents 

the uncertainty associated with the projected state estimate. 

In the subsequent update step, the EKF refines the state 

estimate using the predicted state and the actual sensor 

measurements. This process involves employing the Kalman 

gain, which assigns weights to the predicted state and the sensor 

measurements based on their relative importance in the update 

step. 

The EKF equations governing these prediction and update 

steps are as follows: 

1. Prediction step: 

• State prediction: x̂_k|k-1 = f(x̂_k-1|k-1, u_k-1) 

• Covariance prediction: P_k|k-1 = F_k-1 * P_k-1|k-

1 * F_k-1^T + Q_k-1 

 

2. Update step: 

• Innovation or measurement residual: y_k = z_k - 

h(x̂_k|k-1) 

• Innovation covariance: S_k = H_k * P_k|k-1 * 

H_k^T + R_k 

• Kalman gain: K_k = P_k|k-1 * H_k^T * S_k^-1 

• State update: x̂_k|k = x̂_k|k-1 + K_k * y_k 

• Covariance update: P_k|k = (I - K_k * H_k) * 

P_k|k-1 

In the equations above: 

• x̂_k|k-1 represents the predicted state at time k given 

the estimate at time k-1 

• f denotes the state transition function 

• u_k-1 represents the control input at time k-1 

• P_k|k-1 denotes the predicted covariance matrix at 

time k given the covariance matrix at time k-1 

• F_k-1 represents the Jacobian matrix of the state 

transition function evaluated at x̂_k-1|k-1 and u_k-1 

• Q_k-1 stands for the covariance matrix of the process 

noise 

• z_k represents the measurement at time k 

• h denotes the measurement function 

• R_k represents the covariance matrix of the 

measurement noise 

By leveraging the EKF's prediction and update steps along 

with the associated equations, vehicle fleet diagnostic tuning 

can be enhanced by accurately estimating the system's state 

based on noisy sensor measurements. This research paper aims 

to explore the application of the Extended Kalman Filter state 

estimator for vehicle fleet diagnostic tuning, thereby facilitating 

improved performance and reliability across fleet systems. 

In the context of vehicle fleet diagnostic tuning, the state 

variables could include engine speed, throttle position, fuel 

consumption rate, etc., and the sensor measurements could 

include sensor readings from engine control modules or other 

diagnostic tools. By estimating the state of the system using the 
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EKF, vehicle fleet operators can diagnose engine problems, 

predict maintenance needs, and optimize vehicle performance. 

VI. SIMULATION & RESULTS 

Let's Consider a scenario where you are managing a fleet of 

vehicles and have a vested interest in monitoring the 

acceleration and hard braking patterns exhibited by each driver. 

To facilitate this analysis, you equip each vehicle with a sensor 

that captures acceleration and braking data in the form of time-

series measurements. However, due to inherent noise and 

measurement errors, the acquired data poses challenges when it 

comes to accurately assessing and comparing driver behaviour. 

To normalize the data, you can use a Kalman filter with the 

following state variables: 

• True acceleration (a_t) 

• True braking (b_t) 

And the following measurement model: 

• Acceleration measurement (a_m) = a_t + w_a 

• Braking measurement (b_m) = b_t + w_b 

Where w_a and w_b are measurement noise terms that are 

normally distributed with mean 0 and standard deviation σ. 

We then implement the Kalman filter algorithm to estimate 

the true acceleration and braking values: 

Step 1: Define the state variables 

We have already defined the state variables as true 

acceleration:  

(a_t) and true braking (b_t). 

Step 2: Set up the measurement model 

We have already set up the measurement model as: 

• Acceleration measurement (a_m) = a_t + w_a 

• Braking measurement (b_m) = b_t + w_b 

Where w_a and w_b are measurement noise terms that are 

normally distributed with mean 0 and standard deviation σ. 

Step 3: Initialize the filter 

The filter must be initialized by defining the initial state 

estimate and the initial error covariance matrix. Let's assume 

that the initial true acceleration and braking values are 0, and 

that we have some prior knowledge that the standard deviation 

of the measurement noise is 1. 

So we can set: 

• Initial state estimate: a_0 = 0, b_0 = 0 

• Initial error covariance matrix: P_0 = [1 0; 0 1] 

Step 4: Update the filter 

For each new measurement of acceleration or braking, we 

need to update the Kalman filter. This involves a prediction 

step, where we predict the new state estimate based on the 

previous estimate and any external inputs or measurements. 

This is followed by a correction step, where we use the new 

measurement to correct the state estimate and update the error 

covariance matrix. 

Let's say we receive a new acceleration measurement  

a_m = 2.5 and a new braking measurement 

b_m = -1.8. We can update the filter as follows: 

Step 5: Prediction step: 

• State prediction: a_t = a_{t-1}, b_t = b_{t-1} 

• Error covariance prediction: P_t^- = P_{t-1} + Q,  

where Q is the process noise covariance matrix. Since we 

don't have any external inputs or prior knowledge about how 

the true acceleration and braking values change over time, we 

can assume that the process noise is small and set Q to a small 

value, like [0.01 0; 0 0.01]. 

Step 6: Correction 

• Calculate the Kalman gain: K_t = P_t^- H^T (H P_t^- 

H^T + R)^-1, where H is the measurement model Jacobian 

matrix and R is the measurement noise covariance matrix. Since 

our measurement model is linear, the Jacobian matrix H is just 

the identity matrix, and the measurement noise covariance 

matrix R is diagonal with elements σ^2. So we can calculate 

K_t as: K_t = P_t^- / (P_t^- + σ^2) 

• Calculate the state estimate update: delta_x_t = K_t 

(z_t - H x_t^-), where z_t is the measurement 

We then further calculate state estimate of the above using 

random numbers:  

Next Simulation Model:  

 
We can initialize the filter with the following values: 

• Initial state estimate: a_0 = 0, b_0 = 0 

• Initial error covariance matrix: P_0 = [1 0; 0 1] 

• Process noise covariance matrix: Q = [0.01 0; 0 0.01] 

• Measurement noise standard deviation: σ = 1 

 
Hence our updated state estimate is a_t = 1.3525 and b_t = 

-0.7525. We can repeat this process for each new acceleration 

and braking measurement to continuously update our state 

estimate and reduce the noise and uncertainty in the data. 

We then continue to simulate our model using random 

numbers and summarize our results in the following table:  

As we can see from the table, the state estimate (a_t and b_t) 

becomes more accurate and closer to the true values as more 

measurements are taken and processed through the Kalman 

filter. The error covariance matrix, which represents the 

uncertainty of our state estimate, also becomes smaller and 

more tightly constrained with each iteration. 
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Overall, the Kalman filter is an effective tool for reducing 

noise and improving the accuracy of state estimates in a 

dynamic system, such as the acceleration and braking behaviour 

of a fleet of drivers. However, it is important to note that the 

filter's performance is highly dependent on the accuracy of the 

underlying models and assumptions used to generate the 

prediction and measurement equations. 

VII. ACCURACY & APPLICATION  

To test the accuracy and feasibility of the Extended Kalman 

Filter (EKF) in a real application using the results in the table, 

you can perform the following steps: 

1. Collect real-world data: Gather actual acceleration and hard 

braking measurements from a fleet of vehicles. The more 

data you have, the better you can evaluate the accuracy of 

the EKF. 

2. Implement the EKF: Program the EKF using the same 

equations and models used in the example. Use the collected 

real-world data as inputs to the EKF, and compare the 

output state estimates to the actual states of the system. 

3. Evaluate the accuracy: Use metrics such as mean squared 

error or root mean squared error to quantify the accuracy of 

the EKF's state estimates. These metrics can help you 

determine how well the EKF is able to estimate the true 

states of the system given the noisy input data. 

4. Refine the model: If the EKF is not accurate enough, you 

can refine the model by adjusting the system and 

measurement models used in the filter. This can involve 

adding or removing parameters, adjusting the noise levels, 

or modifying the equations used in the filter. 

5. Validate the feasibility: Evaluate the feasibility of the EKF 

by assessing the computational resources required to run it. 

If the filter requires too much processing power or memory, 

it may not be practical to use in a real-world application. 

By following these steps, you can test the accuracy and 

feasibility of the EKF in a real-world application using the 

results from the table. This can help you determine whether the 

EKF is suitable for your specific use case, and whether further 

refinement or optimization is required 

VIII. SUMMARY RESULTS 

Based on the analysis of the fleet driver behavior estimation 

using Kalman filter, the following observations can be made: 

• The Kalman filter model was able to accurately estimate the 

acceleration and hard braking of the fleet vehicles with an 

average error of less than 10%. 

• The addition of other parameters, such as speed, RPM, and 

fuel consumption, could provide additional insight into 

driver behavior and further improve the accuracy of the 

estimation model. 

• The estimation model could be applied in real-world fleet 

management scenarios to monitor and improve driver 

behavior, ultimately leading to increased safety, efficiency, 

and cost savings. 

• Further research could explore the use of machine learning 

and other advanced techniques to improve the accuracy and 

efficiency of the estimation model. 

Overall, the results of this study demonstrate the feasibility 

and potential benefits of using Kalman filter and other 

parameters for fleet driver behavior estimation, which could 

have significant implications for the field of fleet management. 

 

 
 

 

IX. CONCLUSION 

The results of our Kalman filter implementation 

demonstrate its effectiveness in reducing noise and uncertainty 
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in a system's measurements over time. As we continuously 

update our state estimate using the filter, the predicted state 

estimate becomes closer to the true state of the system, and the 

error covariance matrix decreases, indicating that we are 

reducing the uncertainty in the measurements. 

In our specific example, we applied the Kalman filter to 

normalize acceleration and hard braking measurements from a 

fleet of drivers. By doing so, we were able to produce a more 

accurate estimate of the true acceleration and braking behaviour 

of the drivers, which could be used to improve safety, reduce 

fuel consumption, and lower maintenance costs. 

Overall, the Kalman filter is a powerful tool in data analysis 

and control systems, and its ability to filter out noise and 

provide more accurate estimates of a system's state makes it 

valuable in a variety of applications, from finance to aerospace 

engineering. 
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