
International Journal of Scientific Engineering and Science
Volume 8, Issue 11, pp. 116-120, 2024. ISSN (Online): 2456-7361

116

http://ijses.com/

All rights reserved

Testing and Verification of Complex Systems Using

Unittest and Pytest in Python

Kokalko Mykola

Senior Software Engineer at Uvik

Hollywood, FL

Abstract— This paper discusses the features of using the unittest and pytest libraries for testing and verifying complex systems in the Python

programming language. The purpose of the study is to analyze the testing methodology and compare the various approaches to modular and

integration testing used by these frameworks. The main focus is on the methods of writing, organizing and executing tests, ensuring flexibility,

repeatability and efficiency of testing, as well as the possibility of asynchronous and parameterized testing. The paper describes the advantages

and limitations of each of the libraries: unittest provides a strict test structure, which contributes to standardization and increases code readability,

which is especially important for team development. At the same time, pytest offers more flexible features due to extensibility, plugin support and

parallelization of test execution, which makes it more suitable for complex systems that require integration with external components and faster

testing. The analysis also examines examples of using fixtures and plug-ins, such as pytest-mock and pytest-asyncio, which expand testing

capabilities. It is concluded that the choice of the tool should be based on the specifics of the project and testing requirements, and for scalable

systems and process automation it is preferable to use pytest, while for small and strictly structured projects unittest is suitable.

Keywords— Testing, verification, unittest, pytest, Python, unit testing, integration testing, automation, parameterization, asynchronous testing.

I. INTRODUCTION

Software testing and verification are critical stages in the

development of complex systems, upon which the stability and

reliability of the final product depend. Modern systems

comprise numerous interrelated modules, and their correct

interaction necessitates a comprehensive approach to testing.

Traditional methods, which typically involve manual testing,

fail to provide the required level of reliability and do not meet

scalability and flexibility demands. Under these circumstances,

automated testing tools take precedence, enabling the creation

and execution of tests with minimal time and resource

investment. Among such tools, the unittest and pytest libraries

stand out, widely adopted in Python development due to their

functional capabilities and adaptability to diverse testing

scenarios.

The relevance of this topic is underscored by the need for a

high level of reliability in complex software products used

across various sectors, including finance, healthcare, industry,

and information technology. Automated testing tools facilitate

the timely identification and correction of errors, significantly

accelerating the development process and improving the quality

of the final product. However, the choice of an appropriate tool

depends on the project's characteristics, its structure, and its

scope. Unittest and pytest are two popular solutions, each with

its advantages and limitations, warranting detailed examination

and analysis.

The aim of this study is to analyze the testing methodology

using the unittest and pytest libraries, identify their features and

comparative advantages, and establish approaches to

optimizing testing for complex systems based on project-

specific characteristics and development requirements.

II. MATERIALS AND METHODS

The theoretical aspects of testing and verifying complex

systems using unittest and pytest in Python have been explored

in the works of authors such as García de la Barrera A., Yuan

Z., Erni N., Lukasczyk S., Kroiß F., Fraser G., and Devroey X

[1].

Software testing, in turn, is a process of analyzing the

functionality of the final product version to assess its

compliance with established specifications. Due to the potential

inclusion of thousands of lines of code and numerous

interconnected components, even a single coding error can

trigger cascading failures in other parts of the system.

Therefore, it is crucial to conduct testing to verify the program’s

correct functioning according to specified requirements.

The complexity of modern software solutions necessitates

multiple testing levels to verify various aspects of their

correctness. According to the ISTQB Certified Test Foundation

Level certification program, there are four main levels of

testing:

- Unit Testing — assessment of individual lines of code;

- Integration Testing — verification of interaction between

individual modules;

- System Testing — testing of the complete system;

- Acceptance Testing — validation against business

requirements.

Developing a testing strategy requires a clear understanding

of the application domain to be tested. It is essential to

determine which parts of the software system should undergo

testing. Complete testing of all possible scenarios is unfeasible,

so testing priorities should be established based on risk

assessment.

Once the areas to be tested are defined, attention can be

turned to the characteristics that high-quality unit tests should

possess [1].

International Journal of Scientific Engineering and Science
Volume 8, Issue 11, pp. 116-120, 2024. ISSN (Online): 2456-7361

117

http://ijses.com/

All rights reserved

In Yuan Z.'s study [2], the capabilities and limitations of

using ChatGPT for the automatic generation of unit tests are

examined in detail. The main objective of this work was to

evaluate the quality of generated tests and identify weaknesses

in the automated approach. The authors proposed improvement

strategies aimed at enhancing the accuracy and completeness of

the generated tests through the application of machine learning

methods and program code analysis techniques.

Scientific work by Erni N. [3] describes the results of the

SBFT (Search-Based and Fuzz Testing) tool competition,

emphasizing tasks related to test generation for Python. The

primary contribution of the study lies in a comparative analysis

of various tools and methods aimed at the automated generation

of test cases. The authors assessed the performance and

accuracy of each method, which helped identify the most

effective approaches.

The publication by Lukasczyk S., Kroiß F., and Fraser G.

[4] presents an empirical study on the automated generation of

unit tests for Python, focusing on the issues of test

incompleteness and non-determinism, and proposes solutions

to enhance the quality of automatic generation.

The work of Devroey X. [5] introduces the JUGE

infrastructure, designed for comparative analysis of unit test

generators in Java. The primary goal of this work was to

improve the transparency and reliability of research related to

automated test generation and to propose metrics for objective

result evaluation.

Practical aspects of testing Python applications are

extensively discussed across several electronic resources.

Reference [6] covers various approaches to testing CLI

applications, including the use of unittest and pytest libraries.

Source [7] is a guide to the fundamentals of unit testing,

focusing on essential concepts and tools. For a deeper

understanding of the capabilities of the pytest framework,

"Pytest Beginner's Guide" [8] is recommended, where effective

practices for writing and organizing tests with this tool are

thoroughly outlined.

Collectively, the reviewed sources indicate substantial

progress in the field of software testing automation. The

development of tools and methodologies for generating unit

tests in Python contributes to improved software quality and

greater efficiency in the development process.

III. RESULTS AND DISCUSSION

In testing complex systems, the importance lies not only in

the correctness of individual components but also in their

interaction with each other. Here, testing frameworks for unit

testing in Python are examined in detail. The Python unittest

module enables structured and efficient testing by providing

tools for creating and organizing tests [2].

Unit testing with the unittest library offers a convenient way

to verify the correct operation of classes and methods. Consider

the example of testing a class BankAccount:

import unittest

class BankAccount:

 def __init__(self, id):

 self.id = id

 self.balance = 0

 def withdraw(self, amount):

 if self.balance >= amount:

 self.balance -= amount

 return True

 return False

 def deposit(self, amount):

 self.balance += amount

 return True

This class allows deposits and withdrawals, with the

withdrawal operation limited by the current balance. To ensure

the class correctly handles such cases, the following test should

be written:

class TestBankOperations(unittest.TestCase):

 def test_insufficient_deposit(self):

 # Setup

 account = BankAccount(1)

 account.deposit(100)

 # Action

 result = account.withdraw(200)

 # Verification

 self.assertFalse(result)

A TestBankOperations class is then created, inheriting from

unittest.TestCase, which allows for the writing of test functions.

Within the test function, it is verified that an attempt to

withdraw more than the available balance returns False. When

an error occurs, a new test is added. If the test fails, the output

will be as follows:

def test_negative_deposit(self):

 # Setup

 account = BankAccount(1)

 # Action

 result = account.deposit(-100)

 # Verification

 self.assertFalse(result)

FAIL: test_negative_deposit (example.TestBankOperations)

--

Traceback (most recent call last):

 File "example.py", line 35, in test_negative_deposit

 self.assertFalse(result)

AssertionError: True is not false

This result indicates a failure in handling a negative deposit,

signaling a need for code correction. Using unittest, test cases

are developed to cover various aspects of module functionality,

including boundary tests, exception handling, and performance

testing. The structured nature of unittest facilitates the

implementation of standardized tests, which is especially

valuable in team-based development where a unified testing

style is essential.

International Journal of Scientific Engineering and Science
Volume 8, Issue 11, pp. 116-120, 2024. ISSN (Online): 2456-7361

118

http://ijses.com/

All rights reserved

For example, if a data processing module needs testing, a

class can be created with methods to verify the handling of both

valid and invalid data, thus ensuring module reliability across

different scenarios:

import unittest

from data_processor import DataProcessor

class TestDataProcessor(unittest.TestCase):

 def setUp(self):

 self.processor = DataProcessor()

 def test_process_valid_data(self):

 result = self.processor.process("valid_input")

 self.assertEqual(result, "processed_output")

 def test_process_invalid_data(self):

 with self.assertRaises(ValueError):

 self.processor.process("invalid_input")

if __name__ == '__main__':

 unittest.main()

In this example, the TestDataProcessor class verifies correct

behavior for both valid and invalid data, helping prevent

production errors.

When testing interactions among multiple components of a

complex system, pytest proves to be a more suitable tool due to

its flexibility and support for integration testing. Pytest enables

testing of integrations between various modules or services,

such as databases, web services, external APIs, or message

queues [6].

An example involves testing microservices architecture,

where different services interact with one another through APIs.

In such systems, it is crucial to test not only the functionality of

individual services but also their integration, including data

exchange and error handling.

To illustrate Pytest usage, consider a basic example. Pytest

automatically identifies test functions in files starting with

"test_" or ending in "_test.py." As an example, a function

`reverse_text()` is created to reverse a string, and it is tested

using `test_reverse_text()`. The test asserts that the output of

`reverse_text('python')` should equal 'nohtyp.' If this condition

is met, the test passes; otherwise, Pytest reports a failure.

test_reversal.py

def reverse_text(text):

 return text[::-1]

def test_reverse_text():

 assert reverse_text('python') == 'nohtyp'

Fixtures in Pytest are intended to create and provide fixed

conditions for tests, necessary for their correct execution. These

can include, for example, database connections, file system

setups, or the preparation of complex objects. Such fixtures are

used to enhance the reproducibility and reliability of testing. An

example is the fixture `my_fixture`, which returns a list of

numbers:

import pytest

@pytest.fixture

def my_fixture():

 return [1, 2, 3]

def test_sum(my_fixture):

 assert sum(my_fixture) == 6

However, despite the importance of fixtures, their use may

be unwarranted in certain cases. This applies to situations where

the setup is overly simple, used only once, or when a fixture

complicates code readability, reducing clarity. They may also

introduce unnecessary dependencies between tests,

compromising isolation and complicating debugging [4].

Effective management of fixtures becomes essential in large

projects. For example, a `conftest.py` file can contain shared

fixtures accessible across multiple tests, improving

convenience and reducing code redundancy. It is important to

define the scope of a fixture correctly — whether for a single

function or an entire module — to optimize the testing process.

In more complex scenarios, such as testing class methods,

fixtures play a crucial role [5]. For instance, a ̀ Calculator` class,

which includes methods for arithmetic operations, can be tested

using Pytest as follows:

calculator.py

class Calculator:

 def add(self, a, b):

 return a + b

 def subtract(self, a, b):

 return a - b

 def multiply(self, a, b):

 return a * b

 def divide(self, a, b):

 if b == 0:

 raise ValueError("Cannot divide by zero.")

 return a / b

Tests for this class include verifying each operation:

test_calculator.py

import pytest

from calculator import Calculator

@pytest.fixture

def calc():

 return Calculator()

def test_addition(calc):

International Journal of Scientific Engineering and Science
Volume 8, Issue 11, pp. 116-120, 2024. ISSN (Online): 2456-7361

119

http://ijses.com/

All rights reserved

 assert calc.add(2, 3) == 5

def test_subtraction(calc):

 assert calc.subtract(5, 3) == 2

def test_multiplication(calc):

 assert calc.multiply(3, 4) == 12

def test_division(calc):

 assert calc.divide(8, 2) == 4

def test_division_by_zero(calc):

 with pytest.raises(ValueError):

 calc.divide(10, 0)

Practical use of pytest for integration testing may involve

fixtures to set up the testing environment, simulating third-party

services with mock objects, and using plugins for database

testing.

An example fixture for database setup in tests:

import pytest

from myapp import create_app, db

@pytest.fixture(scope='module')

def test_client():

 app = create_app()

 with app.test_client() as client:

 with app.app_context():

 db.create_all()

 yield client

 with app.app_context():

 db.drop_all()

def test_database_integration(test_client):

 response = test_client.post('/create_record',

data=dict(name="Test"))

 assert response.status_code == 200

 assert b"Record created" in response.data

In this example, the `test_client` fixture creates a test

environment with a database where API integration with the

database can be verified, as well as the accuracy of record

handling. This approach allows for testing the entire system’s

functionality rather than individual components.

One of the significant advantages of pytest is the ability to

use parameterized tests. In real-world systems, especially

complex ones, it is necessary to test a wide range of inputs and

their effects on the system. For example, testing a payment

system might involve verifying different currencies, payment

methods, transaction statuses, etc.

An example of using parameterization in pytest to check

different data sets:

import pytest

from payment_processor import PaymentProcessor

@pytest.mark.parametrize("payment_method, amount,

expected_status", [

 ("credit_card", 100, "approved"),

 ("debit_card", 50, "approved"),

 ("crypto", 200, "pending"),

])

def test_process_payment(payment_method, amount,

expected_status):

 processor = PaymentProcessor()

 status = processor.process(payment_method, amount)

 assert status == expected_status

In this case, a single test function evaluates different

payment processing scenarios, significantly reducing code

volume and increasing test coverage.

Complex systems often use multithreading or asynchronous

processes to enhance performance. Pytest supports testing

asynchronous functions via the pytest-asyncio plugin, which is

especially useful for testing web services that rely on

asynchronous requests or systems interacting with external

APIs [7].

Example of testing asynchronous functions with pytest:

import pytest

import asyncio

from myasyncapp import async_process_data

@pytest.mark.asyncio

async def test_async_data_processing():

 result = await async_process_data("input_data")

 assert result == "processed_output"

The main distinction between unittest and pytest lies in

flexibility and extensibility. While unittest is more traditional

and structured, pytest offers greater freedom in organizing tests.

For instance, pytest allows for test writing based on advanced

data structures and context managers, enabling more accurate

modeling of complex scenarios and conditions.

Additionally, pytest supports an extensive plugin

ecosystem, including pytest-django, pytest-flask, and pytest-

mock, making it more suitable for verifying complex systems

involving databases, networks, or external services. This

enables the creation of more detailed and precise tests that cover

interactions with various system components [8].

Example of using a fixture to test database interactions:

import pytest

from myapp import create_app, db

@pytest.fixture(scope='module')

def test_client():

 app = create_app()

 with app.test_client() as client:

 with app.app_context():

 db.create_all()

 yield client

 with app.app_context():

 db.drop_all()

International Journal of Scientific Engineering and Science
Volume 8, Issue 11, pp. 116-120, 2024. ISSN (Online): 2456-7361

120

http://ijses.com/

All rights reserved

IV. CONCLUSION

The analysis of using unittest and pytest libraries for testing

and verifying complex systems in Python has confirmed their

relevance and importance for modern development processes.

This study has identified the key features and differences

between these tools. Unittest is characterized by its structured

format, making it ideal for standardizing tests in team-based

projects where adherence to a unified development style is

required. It provides tools for creating unit tests, ensuring a high

degree of isolation and test repeatability.

Conversely, pytest has demonstrated its effectiveness in

offering flexibility and extensibility. The ability to use plugins,

such as pytest-asyncio for asynchronous function testing or

pytest-xdist for test parallelization, enables adaptation of testing

to specific project requirements. With its support for

parameterization and user-friendly syntax, pytest accelerates

the process of writing and executing tests, which is especially

crucial when working with large, complex systems.

Thus, the choice between unittest and pytest should be

based on the project's specific features and needs. Unittest is

preferable for smaller, well-structured projects that require

strict adherence to standards. In contrast, pytest, with its

flexibility and integration capability with external tools, is the

optimal choice for large, scalable systems that require

automation and quick adaptability to changes. The general

conclusion is that the proper application of these tools enhances

software reliability, reduces development time, and minimizes

errors in the final stages of implementation.

REFERENCES

[1] García de la Barrera A. et al. Quantum software testing: State of the art

//Journal of Software: Evolution and Process. – 2023. – Vol. 35. – No. 4.
– p. e2419.

[2] Yuan Z. et al. Evaluating and improving chatgpt for unit test generation

//Proceedings of the ACM on Software Engineering. - 2024. – Vol. 1. –
No. FSE. – pp. 1703-1726.

[3] Erni N. et al. Softool competition 2024-python test case generation track

//Proceedings of the 17th ACM/IEEE International Workshop on Search-
Based and Fuzz Testing. – 2024. – pp. 37-40.

[4] Lukasczyk S., Kroiß F., Fraser G. An empirical study of automated unit

test generation for Python //Empirical Software Engineering. – 2023. –
Vol. 28. – No. 2. – p. 36.

[5] Devroey X. et al. JUGE: An infrastructure for benchmarking Java unit test

generator //Software Testing, Verification and Reliability. – 2023. – vol.
33. – No. 3. – p. e1838.

[6] 4 methods for testing Python applications with the command line.

[Electronic resource] Access mode:
https://habr.com/ru/companies/otus/articles/755460 / (accessed

10/15/2024).

[7] Python Unit Tests: A quick start. [Electronic resource] Access mode:
https://habr.com/ru/companies/otus/articles/481806 / (accessed

10/15/2024).

[8] Pytest beginners guide. [Electronic resource] Access mode:
https://medium.com/plusteam/pytest-beginners-guide-9fb9451706bf

(accessed 10/15/2024).

