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Abstract—Nonlinear models have always been a focal point of study in disciplines such as statistics, finance, and econometrics, with threshold 

models being a typical example of nonlinear models. This paper applies the Dirichlet process to threshold models to guarantee the flexibility of 

the approach. The threshold value, lag parameter, and the order of the autoregressive model can be directly estimated from the data. In this 

paper, the innovation of the threshold model is also considered. Instead of following a zero-mean normal distribution, it follows any distribution. 

In combination with the MCMC algorithm, and through numerical simulation and comparison with the Ordinary Least Squares method, it is 

demonstrated that the estimation in this paper is more effective. 
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I. INTRODUCTION  

In nonlinear time series, the Threshold Autoregressive (TAR) 

model is considered an approximation of nonlinear 

autoregressive models. In fact, it is a piecewise linear model on 

the state space, being linear in each threshold value's domain. 

This paper will investigate the Self-Exciting Threshold 

Autoregressive (SETAR) model within the Threshold 

Autoregressive (TAR) framework. For further descriptions of 

this model, references can be made to Tong [9]. In the study of 

threshold autoregressive models, many scholars have 

conducted research on the estimation of various parameters. 

Tsay [12] used the method of least squares to estimate the 

parameters and developed a simple statistical measure to 

specify the threshold values. In the Bayesian estimation 

approach, Chen and Lee [10] conducted Bayesian estimation on 

the two-regime threshold model and utilized Gibbs sampling to 

obtain the expected marginal posterior densities for the 

threshold values and other parameters, thereby avoiding 

complex analysis and numerical multiple integrations. 

Furthermore, Chen [11] constructed a Bayesian framework for 

the generalized threshold autoregressive model, demonstrating 

that the MCMC algorithm could be successfully applied to 

parameter estimation. In the study of panel data threshold 

models. Zhang [14] compared the Bayesian estimation with the 

maximum likelihood estimation in the threshold autoregressive 

model. The results indicate that the regression parameters share 

the same distribution as the Maximum Likelihood Estimation 

(MLE), while the Bayesian estimation converges to a function 

of a compound Poisson process, which can be regarded as the 

time domain mean of the compound Poisson process. Pan [13] 

considered the multi-threshold autoregressive model, without 

the need to preset the number of thresholds, and developed a 

Bayesian random search selection method to identify the 

number and location of thresholds. 

Due to the decisive role of the unknown parameter  in 

determining the number of clusters, Escobar & West [16] 

calculated the posterior distribution of parameter to be a 

mixture of two gamma distributions, assuming that the prior of 

parameter  follows a gamma distribution. With continuous 

refinements by subsequent researchers, the Dirichlet process 

has found extensive applications in many fields. Liang Hong & 

Ryan Martin [17] developed a flexible nonparametric Bayesian 

model for modeling insurance losses to predict future claim 

amounts. Adesina [18] proposed a Bayesian Dirichlet process 

mixture prior for Generalized Linear Mixed Models (GLMMs) 

and applied it to fit both over dispersed and equidispersed count 

data. Zhang Yongxia [19] established a flexible semiparametric 

Bayesian hierarchical quantile regression model, employing a 

Dirichlet process prior for the estimation of the nonparametric 

part of the model, and conducted an empirical analysis based on 

actual insurance company data. The Dirichlet process mixture 

model has also been widely applied in time series 

analysis.[20][21][22][23]. 

This paper applies the Dirichlet process to the threshold 

autoregressive model, with the innovation lying in considering 

that the autoregressive model is not only subject to a single 

normal distribution but may follow other distributions or a 

mixture distribution. Therefore, the parameters of this 

distribution and the weights of the mixture distribution are 

calculated, and the posterior distribution of the parameters is 

derived. This method does not require pre-specification of the 

form and number of distributions, offering great flexibility. 

The structure of this paper is as follows: Section 2 

introduces threshold models and the Dirichlet process, Section 

3 estimates the parameters of the model, Section 4 uses the set 

threshold autoregressive model for data simulation, and Section 

5 applies the model to estimate real-world data. 

II. METHOD INTRODUCTION  

2.1: Threshold Autoregressive Model 

The Threshold Autoregressive (TAR) model, proposed by 

Tong [1] in 1978 and systematically outlined by Tong [3] in 

1983, is a class of nonlinear time series models. However, due 

to the complexity of the modeling steps, these models were not 

easily applied to real-world problems until Ruey S. Tsay [5] 

(1989) introduced relatively simpler modeling and testing 

methods, which led to their widespread application. The Self-
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Exciting Threshold Autoregressive (SETAR) model, which is 

strictly speaking, uses a piecewise linear model to describe 

nonlinear models, is a part of this family. The SETAR model is 

characterized by: 

 

Where  is the real number, 

 is the threshold variable,  is the lag parameter, 

are all positive integers,  is the threshold 

value,  is an assumed independent and identically distributed 

sequence, i.e., . The above threshold model can 

also be represented by a single formula: 

 

 

2.2: Dirichlet Process 

2.2.1: Concept Introduction 

The Dirichlet Process (DP) is a stochastic process defined 

in measure theory as follows: is a positive real number, 

is a measurable space, and  is a probability 

distribution on the measurable space . For any finite 

partition of the measurable space , if the 

discrete random measure on the measurable space  

satisfies the following condition:  

 

Then  is said to follow a Dirichlet Process, denoted as 

, where  is called the precision parameter, 

and  is referred to as the base distribution. The parameter  

controls the degree of discreteness of the distribution . The 

distribution is typically a discrete distribution, which can be 

defined by the following formula: 

 

In the formula, is the indicator function, which takes the 

value of 1 if and only if , and 0 otherwise. 

corresponds to the parameter of the region, and   represents 

the weight, which can be obtained from the following formula: 

 

is a sequence of independent and identically distributed 

random variables, and the produced by the aforementioned 

process can be denoted as

representing a random probability measure (  stands for 

Griffiths, Engen, and McCloskey). 

Blackwell (1973) derived an important formula, which 

subsequent Dirichlet process mixture models introduced into 

threshold models have been based on for the derivation of the 

posterior distribution of parameters: 

 

2.2.1: Dirichlet Process Mixture Model 

 
Fig. 2.2.1. The measure model of DPMM. 

 

In the Dirichlet mixture model, the notation indicates that 

the operations within the box are repeated times. Figure 2-1 

illustrates the Dirichlet mixture model as follows: 

 

Where  One of the most important 

applications of the Dirichlet process is as the prior for the 

parameters in a Dirichlet Process Mixture Model (DPMM) [25]. 

III. BAYESIAN PARAMETER ESTIMATION. 

Consider the SETAR model of formula (2): 

 

In which,  and are real numbers, and are positive 

integers. It is assumed that the innovation term is 

independent and comes from different mixtures of normal 

distributions, i.e., where is 

a positive integer. 

This paper divides the observed values of the sample 

 into multiple subsets (where is the 
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total sample size), denoted as with 

and 

The sample sizes of 

are  respectively, with 

and  

Each segment  is further divided into smaller segments 

according to the different distributions that the variances follow, 

denoted as with the sample size of each small 

segment  being  and for 

The equation (1) can be rewritten in matrix 

form: 

 

Among them, the dimension of is 

 is the sample size of the model for 

the -th small segment of the -th segment, and 

 its dimension is

and   

Next, given the sample observations 

and 

this paper will 

 calculate the Bayesian estimates of the various parameters. 

3.1: Estimation of  

Assuming that  and 

given that 

and are known, the estimation of begins in the 

following. Suppose that the prior for each segment's  follows 

a multivariate normal distribution: 

 
The likelihood function for is: 

 

Thus, the conditional posterior density of  is: 

 

 

     

 Simplifying equation (12), the posterior density of  can be 

calculated as follows: 

 

Therefore, the posterior distribution that follows is: 

                               

In which,  and 

 the posterior mean and variance 

formulas for  are consistent with the conclusions derived by 

Frühwirth [6] for the posterior of a multivariate normal 

distribution. 

3.2: Estimation of  

Assuming that the innovation term of each autoregressive 

model segment is independent and comes from a discrete 

distribution , which is derived from a Dirichlet process, in 

order to use conjugate priors to calculate the process easily, set 

 to be an inverse gamma distribution: 

  

It is worth mentioning that is the variance carried by the 

-th data point, while  is the variance of the -th segment 

within the -th regime of the SETAR model. is the base 

distribution in the Dirichlet process, and is the precision 

parameter, which can control the degree of discreteness in the 

clustering. The posterior estimation of will be given in the 

next subsection, and will not be discussed in detail here. 

Thus, the innovation term of each segment independently 

follows an unknown distribution, which can be represented by 

the following mixture form: 

 

Taking the -th segment as an example, is a normal 

distribution with mean 0 and variance , and  is the mixture 

weight of Using the Dirichlet stick-

breaking construction method from equation (4), the discrete 

distribution  is expressed as follows: 
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Here, is the indicator function, which equals 1 only when 

and 0 otherwise. The length of the -th stick, 

represents the probability that equals some known , and 

the calculation of each  is given in equation (5). 

If the variance carried by each data point is known, then 

each segment can be classified by having the same variance. 

However, real data will not conform to any single distribution, 

so the variance carried by the data cannot be known. Therefore, 

we introduce the indicator variable and 

assume that the -th segment has  smaller segments. When 

then Under the prior of 

the Dirichlet process, the distribution of is as follows: 

                             

Here, the weights  are defined by equation (5).  

By introducing  into the model, we obtain: 

 

                                         

Define and  

 

First, based on the values of the data and the threshold values, 

it can be determined which segment of the threshold model  

belongs to. Then, combined with equation (6), the conditional 

posterior distribution of can be obtained:  

The first term on the right side represents the scenario where 

the variance  carried by the data  comes from a new class, 

from which a value is drawn and multiplied by the probability 

of being in this new class. The second term on the right side 

represents the scenario where the variance  carried by the 

data  comes from an existing class, from which a value is 

drawn and multiplied by the probability of being in this existing 

class. And  

 Combining this with 

equation (15), we get: 

 

Based on the form of the inverse gamma distribution's 

probability density function, it is known that: 

 

Marginal likelihood function is: 

 

It is worth noting that in the above formula, the first and 

second terms on the right side are the constant parts of 

and  respectively, and the third term is 

obtained by integrating the distribution of equation (22) with 

respect to Since the true variance carried by the data is 

unknown, we cannot classify it ideally based on whether the 

variances are equal. Therefore, we introduce the indicator 

variable , assuming that there are initially  classes for the 

-th segment. The indicator  for the -th data point will be 

sampled probabilistically from Drawing a 

number from  indicates that it belongs to one of the 

existing classes, while drawing the number indicates that 

it belongs to a new category. After normalization, we get: 

 

Therefore, the category label for the -th data  will be 

drawn from  with probability of (24). If   

draws the number  then let After knowing 

the distribution of  for the -th segment, we begin to update 

the variances within each class: 
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Where  

 Therefore, using equation (25), we 

can estimate the variance values of the normal distributions that 

each subclass in every segment follows. 

3.2: Estimation of  

Esmail Amiri [7] provided the joint posterior density of 

and  with data as conditions: 

 

In the above formula,  

 where is an integer, 

 and  are given by: 

 

Using the MCMC method to estimate the values of and 

the closed-form of each hierarchical posterior probability 

function or the delay given other parameters is available. The 

conditional posterior of is as follows: 

        

The conditional posterior of  is given by: 

   

The parameter represents the maximum lag parameter, which 

is a positive integer. The conditional posterior of is: 

 

In the formula, represent the maximum order of 

autoregression for each segment, which are less than the actual 

number of each time series segment 

3.4: The posterior estimation of  

Firstly, it is assumed that the prior distribution of  

follows a gamma distribution,  Given the prior 

density function  using the 

conclusion from Antoniak [8]: 

                  

In the given context, where  is the 

number of data points and  is the number of clusters. If 

represents the weight of each data point and  represents the 

collection of  data points, then when  and  are known, the 

data  is conditionally independent of i.e.,  

 When  is known, is  

Conditionally independent of i.e.,  

Therefore, we have: 

 

Using the properties of the beta function and the gamma 

function, the ratio of the two gamma functions in the above 

expression can be written as: 

                 

The notation refers to the beta function. Using the 

definition of the beta function, the transformation of the above 

expression is: 

 

Without loss of generality, 

   

Where  so  is the marginal distribution of 

Therefore, based on equation (34), we can derive 

two conditional posterior distributions, and 

 as follows: 

     

   Thus, the posterior estimation of  is a mixture of two 

gamma distributions: 

     

    In equation (36), and are still unknown, so  is defined 

by the following formula:  This 

implies that: 
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Next, we calculate the posterior distribution of , which is 

proportional to  that is: 

                  

By estimating  and using equations (37) and (38), and 

combining them with equation (36), we can calculate the  

posterior estimate of  

IV. DATA SIMULATION 

In this section, we illustrate the simulation study of the 

aforementioned model and compare this method with the OLS 

methods to demonstrate the superiority of our model. We 

consider the following TAR model, which has a single 

threshold value, with each segment being a first-order 

autoregression, and the variance of the innovation term in each 

segment is derived from a mixture of two variances: 

 

Where  

 

The reason for setting and as well as 

the threshold value  is that we are considering a 

situation with larger variances, in order to distinctly separate the 

data of the first and second segments. We set the innovations of 

the autoregressive models in each segment to follow a mixture 

of two normal distributions. 

The process of using the Gibbs sampling algorithm is as 

follows: 

Algorithm： Sample each parameter 

1: Input:  

2: for i=1 to maxIters 

3:  

4: Rearrange  and ，update  and  

5: draw  and  

6: for jj=1 to N1, where N1 denotes the number of  

7:  

8: draw  for e=1 to  

9: end for 

10: for ww=1 to N1, where N1 denotes the number of  

11:  

12: draw  for e=1 to  

13: end for 

14: end for 

15: Print  

Since the initial values of the model parameters in this 

paper are set arbitrarily, this may result in a large discrepancy 

between the initial estimates and the true values. If retained, this 

could introduce some bias into the final estimation results. 

Therefore, this paper sets the number of iterations to 1000, with 

the first 500 iterations considered as burn-in values and 

discarded. The average of the parameters from the last 500 

iterations is taken as the estimated result. This paper considers 

that the variance of the innovation term in each segment is 

independent and comes from a mixed distribution, and 

compares the calculation results with the situation where the 

innovation term in each segment is independent but only 

follows a single distribution. The parameter  does not have a 

true value, its magnitude merely restricts the number of 

variance clusters. The smaller the value of  the fewer the 

number of clusters. This paper calculates the clustering 

parameter for the first segment,  and for the second 

segment,  The estimated values of the threshold  

and the parameter  are shown in the following table: 

 
TABLE 4-1. Parameter estimation by DPMM 

parameter      

true value 17.000 7.800 0.200 14.000 0.200 

DPMM 17.563 7.845 0.235 14.268 0.220 

 
TABLE 4-2. Parameter estimation by OLS 

parameter      

true value 17.000 7.800 0.200 14.000 0.200 

OLS 16.690 7.130 0.273 12.860 0.271 

 

In tables 4-1 and 4-2, the second row represents the true 

values of the parameters, and the third row represents the 

estimated average values. Here,  is the threshold value,  

and  represent the constant term and the coefficient of the 

first-order autoregressive term for the first segment, 

respectively, and  represent the constant term and the 

coefficient of the first-order autoregressive term for the second 

segment, respectively. From the table, it can be seen that our 

results for the parameter estimates are closer to the true values, 

indicating that our method is more effective. 

We have plotted the estimates from the last 500 iterations 

of the threshold value, constant term, and coefficients of the 

autoregressive components in the heteroscedastic threshold 

model that we developed as follows: 

 
Fig. 4-1. Estimation of the constant term for the first autoregressive model 

segment 
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Fig. 4-2. Estimation of the coefficients for the first autoregressive model 

segment 

 
Fig. 4-3. Estimation of the constant term for the second autoregressive 

model segment 

 
Fig. 4-4. Estimation of the coefficients for the second autoregressive model 

segment 

 

Figures 4-1, 4-2, 4-3, and 4-4 respectively display the 

estimates of the constant terms and coefficients for the first and 

second autoregressive model segments, with the red line 

representing the true values and the blue line representing the 

estimated means. Figure 4-1 shows that the true value of the 

constant term for the first autoregressive model is 7.8, and our 

estimated mean is 7.845. Figure 4-2 shows that the true value 

of the constant term for the first autoregressive model is 0.20, 

and our estimated mean is 0.235. Figure 4-3 shows that the true 

value of the constant term for the second autoregressive model 

is 14, and our estimated mean is 14.268. Figure 4-4 shows that 

the true value of the constant term for the first autoregressive 

model is 0.20, and our estimated mean is 0.220. 

 
TABLE 4-3. DPMM estimation of mixed variances  

parameter     

true value 10 50 10 100 

DPMM 11.322 40.394 10.254 14.377 

 
TABLE 4-4. OLS estimation of variance 

parameter     

true value 10 50 10 100 

OLS 35.861 35.861 35.607 35.607 

 

In tables 4-3 and 4-4, the second row represents the true 

values of the variances, and the third row represents the 

estimated mean values of the variances. The OLS method 

assumes that the innovation terms in each segment only follow 

the same distribution; therefore, it provides the same estimates 

for  and  as well as for  and  It is worth mentioning 

that when we use the Dirichlet process to cluster the innovation 

terms, the number of clusters is often more than two. We choose 

to take the two clusters with the most members as the clustering 

results and discard the others with very few members. The 

results show that the DPMM method, when estimating the 

number of mixed variances, yields the same number as the 

initially designed number of mixed distributions. When setting 

up the data, the first segment's innovation term follows a mixed 

distribution given by: 

 Our estimated  

mixed distribution for the first segment is: 

  

The second segment's innovation term follows a mixed 

distribution given by: 

 Our estimated 

mixed distribution for the second segment is: 

 

V. REAL EXAMPLE 

This subsection applies the proposed method to a real 

dataset to better demonstrate the practicality of our method with 

actual data. The analysis is conducted using the closing prices 

of Nanjing Photoelectric, with the raw data consisting of 

closing prices every 5 minutes from January 14, 2021, to 

November 10, 2023, totaling 2,704 valid data points. The data 

source is Eastmoney Choice: https://choice.eastmoney.com. 

The original data of Nanjing Photoelectric is shown in Figure 

5-1. 

We set the number of iterations to 1000, with the first 500 

being discarded as burn-in values. We then use the results from 

the last 500 iterations for our study, and plot the estimated 

values of the constant terms and coefficients for each segment 

as shown in the following figure. 
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Fig. 5-1. The plot of all data for Nanjing Photoelectric. 

 
Fig. 5-2. Estimation of the first autoregressive model segment 

 
Fig. 5-3. Estimation of the second autoregressive model segment 

 

Figure 5-2, from top to bottom, represents the constant 

term, the coefficient of the first-order autoregressive term, and 

the coefficient of the second-order autoregressive term. Figure 

5-3, from top to bottom, shows the constant term, the coefficient 

of the first-order autoregressive term, and the coefficient of the 

second-order autoregressive term.  

 
Fig. 5-4. Estimation of the third autoregressive model segment 

 

Figure 5-4, from top to bottom, shows the constant term 

and the coefficient of the first-order autoregressive term. 

In the figure above, the blue line represents the mean of 

the 500 estimated values, which is also our final estimate for the 

parameter. It can be observed from the graph that the estimated 

values fluctuate around the blue line, indicating that the 

estimation results are stable. This suggests that the number of 

iterations we selected is feasible. 

We modeled the data from Nanjing Photoelectric and 

obtained a three-segment threshold model with two threshold 

values. Figures 5-2, 5-3, and 5-4 represent the constant terms 

and the coefficients of the lagged variables for the first, second, 

and third segments, respectively. The autoregressive order of 

the first segment is second-order, the autoregressive order of the 

second segment is second-order, and the autoregressive order 

of the third segment is first-order. The clustering parameters for 

the segments are  and 

The resulting threshold model is as follows: 

 

The aforementioned model reveals that the constant term 

of the first autoregressive segment is the 

coefficient of the first-order autoregressive term is 

 and the coefficient of the second-order 

autoregressive term is Our model can be applied 

to various fields, such as the stock market, banking credit risk, 

healthcare, and insurance claims. 
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TABLE 5-1. Estimation values of the DPMM 

       

parameter       

Estimation 0.320 0.379 0.480 27.774 0.290 11.225 

 

Table 5-1 displays the estimated variances of the 

innovation terms for each segment. We have also calculated the 

mixture forms of the normal distributions that the innovation 

terms of each segment follow. The innovation term of the first 

segment is a mixture of three normal distributions, all with a 

mean of 0: 

 

The innovation term of the second segment is a mixture of two 

normal distributions: 

 The 

innovation term of the third segment comes from a single 

normal distribution:  

VI. SUMMARY 

This paper, based on the Dirichlet process, estimates the 

parameters of a heteroscedastic threshold model and derives the 

posterior distributions of each parameter under reasonable prior 

settings. Our method is more flexible because we do not restrict 

the distribution that the autoregressive innovation terms follow; 

we can use a mixed normal distribution to fit it. The number of 

components in the mixture distribution does not need to be 

preset and can be estimated through the Dirichlet process. 

Simulation experiments have demonstrated that when the 

variance is large, our method can estimate the number of 

components and their weights in the mixed distribution, and the 

estimates of the parameters are closer to the true values. 
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