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Abstract— To establish an efficient finite element approximation for fourth-order equations defined in a circular domain, polar coordinate 

transformation and orthogonality of Fourier sequence are utilized to decompose the two-dimensional fourth-order problem into a set of 

independent one-dimensional fourth-order equations, subsequently, an auxiliary second-order equation is introduced to reduce each one-

dimensional fourth-order problem to an equivalent second-order mixed formulation. Based on essential pole conditions, a class of weighted 

Sobolev spaces is defined, and the weak form, as well as its corresponding discrete scheme, is derived for each second-order mixed system. The 

existence and uniqueness of both the weak and numerical solutions are established using the Lax-Milgram theorem. Additionally, the error 

estimate between the weak solution and its numerical approximation is obtained using the Céa lemma and the interpolation approximation 

theorem. Finally, leveraging the properties of piecewise linear interpolation basis functions, the discrete scheme is expressed in its equivalent 

matrix form, and numerical experiments are presented to validate the algorithm's effectiveness and confirm the accuracy of the theoretical results. 
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I. INTRODUCTION  

The fourth-order equation has an important physical background, and in scientific research and engineering calculations, it is often 

necessary to solve various fourth-order equations [1-3]. The theoretical analysis and numerical solution of fourth-order equations 

have seen significant advancements. including finite element method[4,7], finite difference method[8,9] and spectrum method[10-

12]. However, for the fourth order equations in some special regions (such as circle and sphere), the usual finite element method is 

not only complicated in region division, but also complicated in basis function construction. Thus, obtaining a highly accurate 

numerical solution requires considerable computational time and memory resources. Therefore, it is of great significance to propose 

some high efficiency and high precision numerical methods on special regions.  

Therefore, the objective of this paper is to propose an efficient finite element approximation for fourth order equations defined 

in a circular domain, based on a mixed scheme. First, the original problem is reduced to a series of decoupled one-dimensional 

second-order hybrid systems. The weak formulation and the corresponding discrete scheme are derived, and the existence and 

uniqueness of both the weak solution and the numerical solution are established. Additionally, error estimates between the numerical 

and exact solutions are proved. Second, the discrete scheme is reformulated in matrix form, and several numerical examples are 

presented to demonstrate the effectiveness of the proposed algorithm and verify the correctness of the theoretical results. 

II. DIMENSIONALITY REDUCTION SCHEME AND ITS EQUIVALENT SECOND-ORDER HYBRID SCHEME 

This paper considers the following fourth-order equation: 

 
2 ( , ) ( , ) ( , ) ( , ) ( , ),u x y x y x y x y xf yu u  −  + = ,  (1) 

 0( , ) ( , ) ( ,0 , ) ,x y x yu x yu=  = ，  (2) 

where:  2 2 2( , ) :x y x y R = +   is a circle with radius R,  is the boundary of region  ,  and are non-negative constants. 

By introducing polar coordinates: cos , sin ,x r y r = = and let ˆ( , ) ( cos , sin ),u r u r r  = then the derivative rule of 

multiple function composition can be obtained: 

 ( )
( ) 2

2 2

ˆ , ˆ1 1 ( , )
, = ( ) .

u r u r
u x y r

r r r r

 



 
 +

  
 (3) 

From (3) we can see that equation (1)-(2) has the following equivalent form: 

 2 2 2

2 2

1 1 1 1 ˆˆ ˆ ˆ[ ( ) ] [ ( ) ] , ( , ) ,r r r rr u r u u f r D
r r r r

     +  −   +  + =   (4) 

 2

2
ˆ( , ) 0 ( , ) 0ˆ , ,

1 1
[0,2 )[ ( ) ]r ru R u

r
Rr

r
    + = =  ，  (5) 

In formula (4)-(5): ˆ(0, ) [0, 2 ), ( , ) ( cos , sin ).D R f r f r r   =  =  Noting that both û and f̂  have a period of 2  in the 

direction of  ,  then they can be expanded by Fourier as follows: 

 
| | | |

ˆˆ( , ) ( ) ( , ) ( ) .im im

m m

m m

u r u r e f r f r e  
 

= = ，  (6) 
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Substituting (6) into (3) yields: 

 ( ) 2
|

2

|

1
, = [ ( ( )) ( )] .im

r r m m

m

m
u x y r u r u r e

r r




   −  (7) 

Using the orthogonality of Fourier sequences and (7), equations (4)-(5) can be decomposed into a series of decoupled one-

dimensional fourth-order problems as follows: 

 
2 2

2

2 2

1 1
[ ( ) ] [ ( ) ] , (0, ),r r m r r m m m

m m
r u r u u f r R

r r r r
   − −   − + =   (8) 

 
2

2

1
( ) [ ( ) ] ( ) 0.m r r m

m
u R r u R

r r
=   − =  (9) 

We introduce an auxiliary second order equation: 
2

2

1
[ ( ) ] .m r r m

m
w r u

r r
= −   −  

then equations (8)-(9) can be reduced to the following equivalent second-order mixed form: 

 
2

2

1
[ ( ) ] , (0, ),r r m m m m

m
r w w u f r R

r r
 −   − + + =   (10) 

 

2

2

1
[ ( ) ] 0, (0, ),r r m m

m
r u w r R

r r
−   − − =   (11) 

 
2 2(0) (0) 0,m mm u m w= =  (12) 

 ( ) ( ) 0.m mu R w R= =  (13) 

It is important to observe that the boundary condition (12) represents an essential pole condition, which effectively mitigates the 

singularity arising from the polar coordinate transformation. 

III. VARIATIONAL FORM AND DISCRETE FORMAT 

In this section, we will establish the variational form of equation (10)-(13) and its discrete scheme. When 0, =  equations 

(10)-(13) has been reduced to 2 independent second-order equations. So, it means 0,   and let , (0, )r r I R =  =  be a weight 

function, we make 

2 2

1 2 2 1 2 2

0, ,

( ) : { : | | };

( ) : { : | | | , (0) ( ) 0},|

I

m
I

r

L I dr

H I m dr m R





 

     



 −

=  

=  +   = =




 

the corresponding inner product and norm are respectively: 
1

2 2

1

2 1 2
1, , 1, , 1, ,

( , ) ( | | ) ;

( , ) ( , ) .
I

I

m

I

r r m m

dr dr

m dr

 

  

     

         −

= =

=   + =

 



， 

， 

 

Define the Sobolev space of product type: 

,

1 1 1

0, , 0, 0, ,( ) : ( ) ( ),m m mI H I H I  = H  

the corresponding norm is: 
1

2 2 2
1, , 1, , 1, ,[ , ] ( ) .m m m     = +  

Using the boundary conditions and the integral by parts formula, the variational form of equation (10)-(13) can be obtained as: we 

find 0, ,

1 ( ),[ , ]m m mu Iw H  such that 

 0

1

, ,([ ],[ , ]) ([ , ]) [ , ] ( ),,m m m m m m m m ma v q f v q v qw Iu =  H，  (14) 

where 
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2

2

([ ],[ , ]) (

( ([ , ]) .

(, ) )

)( )  

m m m m m m m m m m m

m m m m m m m

r r m
I

r r m m
I

m

m
a v q r v v r v r u v

r

m
r q r w q dr f v q r

w

f v d

w u w w

u q u r
r

 

  

=   + + +

+   + − =



， 

  

Using hV  to represent the space formed by the piece-based linear interpolation function, define an approximation space 

,

1

0,( ) ( ) ( ).mh h hmI I V V= Х H  Then the discrete format of (14) is: Find ,[ ] ), (m hh mh mw u IХ  such that 

 ([ ],[ , ]) ([ , ]) [ , ] ( ).,mh mh mh mh mh mh m mhh mha v q f v q v q Iw u =  Х，  (15) 

IV. THE EXISTENCE AND UNIQUENESS OF THE SOLUTION AND THE ERROR ESTIMATION 

In this section, we will establish the existence and uniqueness of both the weak solution and its approximated counterpart, as 

well as derive an error estimate between them. We represent a bˆ  with the symbol a cb , where c is a positive constant 

independent of h . 

Lemma 1. The following inequality holds for any ,

1

0 , ( )mm H I  :  

 
2 2( ) .m r m

I I
r dr r dr  ˆ  (16) 

Proof.  From the boundary condition ( ) 0m R = , we get 

 ( ) ( ) ,
R

m r m
r

r r dr − =   (17) 

It is further obtained by the Cauchy-Schwarz inequality and (17): 

2 2 2

0 0 0

2 2
2 2 2

0 0 0 0

1
( ) ( ( ) ) ( ( )) (ln ln )

( ( )) (ln ln ) ( ( )) ( ( )) .
4 4

x

R R R R R

m m x m
r r

R R R R

m m r

x

mx

r r dr r x dx dr r x x dx R r dr

R R
x x dx r R r dr r x d

x

x r r r

x

d

  

  

=    −

  − =  = 

    

   

 

□ 

Theorem 1. ([ ],[ , ]),m m m mvu qwa  is a continuously mandatory bilinear form defined on 0, , 0, ,

1 1( ) ( )m mI I H H , i.e., for any 

0

1

0, ,

1

, ,([ ],[ , ]) ( ) ( ),m m m m m mw Iu v q I  H H  there is 

1, , 1, ,

2

1, ,

| ([ , ],[ , ]) | || [ , ] || || [ , ] || ,

([ , ],[ , ]) || [ , ] || .

m m m m m m m m m m

m m m m m m m

a w u v q w u v q

a w u w u w u

 



ˆ

‰
 

Proof.  From the Cauchy-Schwarz inequality and (16) 
2

2 2 2

12 2
2 2 2 2 22

12
2 2 2 2 2

1 1

2 2 2 22 2
1, , 1, , 1, , 1, ,

| ([ , ],[ , ]) | ( | | | | | |

| | | | | | ) ( | | | |

| | | | | | | | )

(|| || || || ) (|| || || || )

|| [

m m m m r m m m
I

r m m m r m m
I

m r m m m

m m m m m m m m

m

m
a w u v q r w w r u

r

m m
r u u r w dr r v v

r r

m
r v r q q r q dr

r

w u v q

w

   

 + +

+  + +  +

+ +  + +

+ +





ˆ

ˆ

ˆ 1, , 1, ,, ] || || [ , ] || .m m m m mu v q 

 

On the other hand, 
2 2

2 2 2 2 2

2 2
2 2 2 2

2 2 2

1, , 1, , 1, ,

([ ],[ ]) | | | | | | | | | |

| | | | | | | |

|| || || || || [ , ] || .

, , r m m m r m m
I

r m m r m m

m

I I

m m m m m m m

m m m

m m
a r w w r w r u u dr

r r

m m
r w w dr r u u dr

w

w u w

r r

w u u

u

  

  =  + + +  +

 + +  +

= + =



 ‰  

□ 

Theorem 2. If 
2( ) ( )mf r L I , then equations (14) and (15) have unique solutions 0

1

, ,[ ] ( ),m m mu Iw H  and 

[ ] ( ),m mh mh hu Iw Х , respectively. 
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Proof.  From the Cauchy-Schwarz inequality and Lemma 1: 
1 1

2 22 2

1, ,

1

2 2 2
1, , 1, , 1, ,

| ([ , ]) | | | ( | | ) ( | | )

|| || || || || || || || || ||

(|| || || || ) || [ , ] || .

m m m m
I I I

m m m r m m m

m m m m m

m

m m

mf v q r f v dr r f dr r v dr

f v v v v

v q v q

    

  

= 

 

+ =

  
ˆ ˆ ˆ

ˆ

 

Then ([ , ])m mf v q  is a bounded functional on space 
1

0, , ( )m IH .  According to theorem 1 and Lax-Milgram theorem, the 

desired result is valid. 

□ 

Lemma 2.  Let 0

1

, ,[ ] ( ),m m mu Iw H  and [ ] ( ),m mh mh hu Iw Х  be solutions to equation (14) and (15), respectively, 

there holds 
1

2 2 2
1, ,

[ , ] ( )
|| [ , ] || inf (|| ( ) || || ( ) || ) .

mh mh mh
m mh m mh m r m mh r m mh

v q I
w w u u w v u q


− −  − +  −

X
ˆ  

Proof. From (14) and (15) , we have 

([ , ],[ , ]) 0, [ , ] ( ).m mh m mh mh mh mh mh mha w w u u v q v q I− − =  X  

From theorem 1, we have 
2

1, ,

1, , 1, ,

|| [ , ] || ([ , ],[ , ])

|| [ , ] || || [ , ] || ,

= ([ , ],[w , ])

m mh m mh m m mh m mh m mh m mh

m mh m mh m mh m mh

m mh m mh m m mh m mh m

w w u u a w w u u w w u u

a w w u u v u q

w w u u w v u q



 

− − − − − −

− − − −

= − − − −

ˆ

 

namely 

1, , 1, ,|| [ , ] || || [ , ] || .m mh m mh m m mh m mh mw w u u w v u q − − − −ˆ  

Next, we will prove the following inequality 
1

2 2 2
1, ,|| [ , ] || (|| ( ) || || ( ) || ) .m mh m mh m r m mh r m mhw v u q w v u q− −  − +  −ˆ  

When 0m = , we have 
1

2 2 2
1, ,

1 1

2 2 2 22 2

|| [ , ] || ( ( ( )) ( ( )) )

( ( ( )) ( ( )) ) (|| ( ) || || ( ) || ) .

m mh m mh m r m mh r m mh
I I

r m mh r m mh r m mh r m mh
I I

w v u q r w v dr r u q dr

w v dr u q dr w v u q

− − =  − +  −

 − +  −  − +  −

 

 ˆ ˆ

 

When 0m  , It is obtained by polar condition (0) (0) 0m mw u= =  and Hardy inequality 

1, ,

12 2
2 2 2 2 2

1

2 2 2 2 2
2 2

1

2 2 2

|| [ , ] ||

( ( ( )) ( ) ( ( )) ( ) )

1 1
( ( ( )) ( ) ( ( )) ( ) )

( ( ( )) ( ( )) ) (|| ( )

m mh m mh m

r m mh m mh r m mh m mh
I

r m mh m mh r m mh m mh
I

r m mh r m mh r m mh
I

w v u q

m m
r w v w v r u q u q dr

r r

w v w v u q u q dr
r r

w v u q dr w v

− −

=  − + − +  − + −

 − + − +  − + −

 − +  − =  −







ˆ

ˆ
1

2 2 2|| || ( ) || ) .r m mhu q+  −

 

From the arbitrariness of [ , ]mh mhv q  
1

2 2 2
1, ,

[ , ]
|| [ , ] || inf (|| ( ) || || ( ) || ) .

mh mh mh
m mh m mh m r m mh r m mh

v q
w w u u w v u q


− −  − +  −

X
ˆ  

□ 
Interval [0,R]  is divided as follows: 

0 1 1 10 .i i N Nr r r r r r R− −=          =  

Let 1 1
1

[ , ], , max{ }i i i i i i i
i N

I r r h r r h h− −
 

= = − =  and define the piecewise linear interpolation operator 0

1

, , ( ) ( )h m mhI I I →= H Х  such 

that 

1 1 1[ ( ), ( )] [ ( ), ( )], [ , ],h m m i i i iI w r u r P r Q r r r r−=   

where 
1 1( ), ( )i iP r Q r  represents the linear interpolation function on the interval 

1[ , ]i ir r−
. 
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Lemma 3. If any ir I , there is a constant 0M  such that
2 2| ( ) | | ( ) |r m r mw r u r +   ,M  then there holds 

2 3 2 3

1 1|| ( ( ) ( )) || , || ( ( ) ( )) || .
i ir m i I i r m i I iw r P r h u r Q r h −  −ˆ ˆ

 
Proof. It is obtained by linear interpolation 

1
1 1

1 1

( ) ( ) ( ), .i i
i m i m i i

i i i i

r r r r
P r w r w r r I

r r r r

−
−

− −

− −
= + 

− −  
We remember 1( ) ( ) ( ), ,i m i ie r w r P r r I= −  , then it holds 1( ) ( ) 0.i i i ie r e r− = =  And by Rolle's theorem, there exists ,i iI   such 

that 

( ) 0.r i ie  =
 

We can notice that 

1 1 1

1 1 1 1

2 2 2 2 2 22 2 2 2
1| ( ) | | ( ) | ( 1 ) ( | ( ) | ) ( ) ( | ( ) | ) .

i

i i i i

r r r r

r i r i r i i r m
r r r

e r e r dr dr e r dr r r w r dr
 − − −

− =   −    „ „
 

Thus, we have 

1

2 2 3

1 1|| ( ( ) ( )) || | ( ) | ( ) .
i

i
i i

r

r m i I r i i i i
I r

w r P r e r dr Mh r r dr h
−

− − =  − ˆ ˆ
 

Similarly, we have 
2 3

1|| ( ( ) ( )) || .
ir m i I iu r Q r h − ˆ

 
□ 

Theorem 3. Let 0

1

, ,[ ] ( ),m m mu Iw H  and [ ] ( ),m mh mh hu Iw Х  be solutions to equations (14) and (15) respectively, then the 

following estimator holds 

1, ,|| [ , ] || .m mh m mh mw w u u h− − ˆ  

Proof. It follows from lemma 2 and Lemma 3, 
2 2 2

1, ,
[ , ]

2 2

2 2 2

1 1

1

|

,

| [ , ] || inf (|| ( ) || || ( ) || )

|| ( ) || || ( ) ||

(|| ( ) || || ( ) || )

mh mh mh

i i

m mh m mh m r m mh r m mh
v q

r m h m r m h m

N

r m i I r m i I

i

w w u u w v u q

w I w u I u

w P u Q h




=

− −  − +  −

 − +  −

=  − +  −

X
ˆ

ˆ

ˆ

 

namely 

1, ,|| [ , ] || .m mh m mh mw w u u h− − ˆ
 

□ 

V. EFFICIENT IMPLEMENTATION OF THE ALGORITHM 

In order to efficiently solve the discrete scheme (15), we need to construct a set of basis functions in the approximation space 

( )hm IX . We denote by 

1
1

1

1
0 1 1

0 10 1

1

, [ , ],

, [ , ],
( ) ( ) , [ , ],

0,
0,

i
i i

i i

i
i i i

i i

r r
r r r

r r
r r

r r r r r
r rr r r r r

r r
others

others

 

−
−

−

+
+

+

−
 −

−
  −

−= =  
− 

 



,
,

 

where 
1,2, , 1.i N= −

 It is clear that 

(| |) 1 (| |) 1( ) span{ ( ), , ( )} span{ ( ), , ( )}.mh sign m N sign m NI r r r r   − −= X
 

We expand the approximate solutions as follows 

 

1

(| |)

[ , ] [ ( ), ( )].
N

m m

mh mh i i i i

i sign m

w u w r u r 
−

=

= 
 (18) 

Setting 
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2

( )( ) , ,

, , .

ni r i r n ni i n ni i n
I I I

m

ni i n ni i n n m n
I I I

m
a r dr b r dr c dr

r

r dr e r dr f r fd dr

   

    

=   = =

= = =

  

  

，
 

By substituting the formula (18) into the discrete format (15) and letting [ , ]mh mhv q  go through a set of basis functions in ( )mh IX

, (15) can be reduced to a linear system as follows: 

,
m m

m m m m

m
m m m

+ +     
=    

− +     

A C D E W F

B A C U 0
 

where 

(| |) 1 (| |) 1 (| |) 1

( ), ( ), ( ),

( , , .,) ( , , ) ( ,

( ), (

,, )

)m ni m ni m ni m ni m ni

m m m T m m m T m m m T

sign m N sign m N sign m N

a b ec

w w u u f

d

f− − −

= = =

= = =

=A B C D E

W U F

= ，

 

VI.  NUMERICAL EXPERIMENT 

In this section, we will present some numerical examples and program them on the MATLAB R2018b platform. Recalling 

| | 0

| | 0

ˆ( , ) ( , ) ( ) ,

ˆ( , ) ( , ) ( ) .

im

m

m

im

m

m

u x y u r u r e

w u x y w r w r e











=



=

= =

= − = =





 

Let ( , ), ( , )hM hMu x y w x y  be the approximate solutions of ( , ), ( , )u x y w x y , respectively, i.e. 

| | 0 | | 0

( ) , ( ) .
M M

im im

hM mh hM mh

m m

u u r e w w r e 

= =

= =   

The error between the exact solution and the approximate solution is defined by 

( ) ( )
ˆ ˆ( , ) || || , ( , ) || || .hM hM hM hML D L D

e u u u u e w w w w = − = −  

Example 1: We take 2 2 3 sin( ).1, 1, ( 1) x yR u x y e  += = = = + −  For different h  and M , we list the error between the exact 

solution and the approximating solution in Tables 1 and 2. In addition, the contrast diagram between the exact solution and 

the approximating solution is listed in Figure 1 and Figure 2, and the error images between the exact solution and the 

approximating solution is listed in Figure 3 and Figure 4. 

 

Fig.1 The images of the exact solution u (left) and the approximate solution 
hMu (right) with 1 256, 12h M= =  

 
Fig.2 The images of the exact solution w  (left) and the approximate solution 

hMw  (right) with 1 256, 12h M= =  
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Tab.1 The error ( , )hMe u u  between the approximate solution 
hMu  and the exact solution u  for different h  and M  

 4M =  8M =  12M =  16M =  

1 32h =  1.6286954×10-3 1.5618842×10-3 1.5619084×10-3 1.5588921×10-3 

1 64h =  6.0959546×10-4 3.9135296×10-4 3.9137029×10-4 3.9184871×10-4 

1 128h =  4.3859168×10-4 9.7868639×10-5 9.7889616×10-5 9.7872218×10-5 

1 256h =  4.2019656×10-4 2.4469335×10-5 2.4488536×10-5 2.4472567×10-5 

 

Tab.2 The error ( , )hMe w w  between the approximate solution 
hMw  and the exact solution w  for different h  and M  

 4M =  8M =  12M =  16M =  

1 32h =  4.9769406×10-2 1.6060392×10-2 1.6372152×10-2 6.3393353×10-2 

1 64h =  4.2599925×10-2 3.9927816×10-3 4.2889671×10-3 4.0355351×10-3 

1 128h =  4.1512218×10-2 1.0528577×10-3 1.2635375×10-3 1.0086937×10-3 

1 256h =  4.1375717×10-2 3.4496374×10-4 5.2965178×10-4 2.8887940×10-4 

 

 
Fig.3 The error images between the exact solution and the approximate solution with 1 128, 8h M= = (left) and 1 256, 16h M= = (right) 

 

 
Fig.4 The error images between the exact solution and the approximate solution with 1 128, 8h M= = (left) and 1 256, 16h M= = (right) 

 

As can be seen from Table 1-2, the error between the approximate solution and the exact solution decreases with the increase 

of 1/ h  and M .At 1 128, 8h M  , approximating solution ( , )hMu x y  achieves an accuracy of about 10-5,and at 1 256, 12h M  , 

approximating solution ( , )hMw x y  achieves an accuracy of about 10-4. In addition, Figure 1-4 also shows that our algorithm is stable 

and convergent. 

Example 2: We consider the case of the radial variable coefficient, taking 2 21, | ( ) 1 2 |, 1,x y R = = + − =
2 22 2 3 sin( )cos( ) .( 1) x yxu x y ey += + −  Similarly, for different h  and M , we list the errors between the exact solution and the approximating 

solution in Tables 3 and 4. The comparison diagram between the exact solution and the approximating solution is listed in Figure 5 

and Figure 6, and the error diagram between the exact solution and the approximating solution is listed in Figure 7 and Figure 8. 
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Fig.5 The images of the exact solution u (left) and the approximate solution 

hMu (right) with 1 256, 12h M= =  

 
Fig.6 The images of the exact solution w (left) and the approximate solution 

hMw (right) with 1 256, 12h M= =  

 

Tab.3 The error ( , )hMe u u  between the approximate solution hMu  and the exact solution u for different h  and M  

 4M =  8M =  12M =  16M =  

1 32h =  9.7178295×10-3 1.1492437×10-3 1.1494832×10-3 1.1494833×10-3 

1 64h =  9.3375552×10-3 2.8657393×10-4 2.8681616×10-4 2.8681615×10-4 

1 128h =  9.2475774×10-3 7.1436320×10-5 7.1669304×10-5 7.1669303×10-5 

1 256h =  9.2252993×10-3 1.7687533×10-5 1.7915955×10-5 1.7915954×10-5 

 
Tab.4 The error ( , )hMe w w  between the approximate solution 

hMw  and the exact solution w  for different h  and M  

 4M =  8M =  12M =  16M =  

1 32h =  3.5331859×10-1 1.0710042×10-2 1.1241723×10-2 1.1241077×10-2 

1 64h =  3.4854456×10-1 3.9740128×10-3 2.8103947×10-3 2.8097327×10-3 

1 128h =  3.4734356×10-1 3.1927842×10-3 7.0306510×10-4 7.0239922×10-4 

1 256h =  3.4703430×10-1 3.2345445×10-3 1.7626378×10-4 1.7559694×10-4 

 
Fig.7 The error images between the exact solution and the approximate solution with 1 128, 8h M= =  (left) and 1 256, 16h M= =  (right) 
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Fig.8 The error images between the exact solution and the approximate solution with 1 128, 8h M= = (left) and 1 256, 16h M= = (right) 

 

From Tables 3-4, we observe again that at 1 128, 8h M  , approximating solution ( , )hMu x y achieves an accuracy of about  

10-5, and at 1 128, 12h M  , approximating solution ( , )hMw x y  achieves an accuracy of about 10-4. Figure 5-8 shows once again 

that our algorithm is stable and convergent. 

VII.  CONCLUSION 

In this paper, we propose an efficient hybrid finite element method for solving fourth-order problems in circular domains, 

which leverages a dimensionality reduction approach. The original problem is reformulated into a sequence of independent, one-

dimensional second-order coupled systems. We derive the weak formulation and the corresponding discrete scheme, and rigorously 

prove the existence and uniqueness of the weak solution, as well as provide theoretical error estimates. The method effectively 

reduces the high-dimensional problem to a series of one-dimensional problems that can be solved in parallel, yielding significant 

improvements in computational efficiency and memory usage. Furthermore, the algorithm proposed in this paper can be extended 

to the computation of fourth-order problems on complex domains, which will be the focus of our future research. 
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