
International Journal of Scientific Engineering and Science
Volume 8, Issue 11, pp. 23-26, 2024. ISSN (Online): 2456-7361

23

http://ijses.com/

All rights reserved

Optimization of queries to MySQL and PostgreSQL

Databases for High-Load Applications

Mykhailo Shumilov

CTO at Vadimages, Vancouver, WA, USA

Kharkiv, Ukraine

Abstract— Optimization of queries to MySQL and PostgreSQL databases for high-load applications is aimed at improving system performance

and reducing response time under heavy loads. The aim of the research is to develop methods that can reduce the load on servers and speed up

the execution of complex queries. The methodology includes indexing analysis, caching usage, data partitioning, and the use of various types of

joins such as JOINS and subqueries. The results show that query optimization and the use of indexing significantly improve performance, however,

they require taking into account the specifics of a particular application and the type of database used. In conclusion, the importance of choosing

the optimal approach depending on the application architecture and load profile is emphasized, as well as the need for further research in the

field of automating query optimization using machine learning.

Keywords— Query optimization, MySQL, PostgreSQL, indexing, caching, high-load applications.

I. INTRODUCTION

In the current conditions of information technology, databases

play a key role in the functioning of high-load applications. As

the number of users and the volume of data increase, it becomes

critically important to ensure fast query execution and minimal

response time. MySQL and PostgreSQL, as popular database

management systems (DBMS), are used in numerous

applications, from simple websites to complex enterprise

systems. However, as data volumes grow and the number of

users increases, the load on database servers increases,

requiring the search for and implementation of query

optimization methods to maintain stable and high performance.

Query optimization for MySQL and PostgreSQL databases

becomes a relevant task for developers and administrators

seeking to reduce server load and improve system efficiency.

Various methods, such as indexing, caching, and partitioning,

allow for more rational resource management; however, their

selection and application require a deep analysis of the

application architecture and data specifics. Improper use of

optimization techniques can lead to performance degradation

and reduced system reliability, which highlights the importance

of research in this area.

The purpose of this work is to study and develop effective

query optimization methods for MySQL and PostgreSQL

databases, aimed at improving the performance of high-load

applications and minimizing server response time under

intensive load conditions.

II. MATERIALS AND METHODS

PostgreSQL became a strong competitor in the database

market, challenging the long-standing dominance of MySQL.

According to the StackOverflow 2023 developer survey,

PostgreSQL took first place with an impressive 45% developer

adoption rate. On the contrary, MySQL has an indicator of 41%,

which reflects a noticeable shift in the preferences of web

developers [1].

FIGURE 1. Developer opinions on databases [1].

MySQL is a widely used relational database management

system (RDBMS) that implements the capabilities of the SQL

language. Initially developed for small and medium-sized

databases, this system is now capable of handling significant

volumes of data. MySQL was developed using the C and C++

programming languages, which allows it to comply with SQL

standards, but it also includes a number of extensions, focusing

on speed and reliability [2].

MySQL functions are built-in procedures that allow various

operations and calculations with the data stored in the MySQL

database. MySQL has several key characteristics, which are

described in Table 1 for clarity.

Due to these characteristics, MySQL is widely used in

various fields—from small projects to large enterprise systems.

It is particularly effective for web development, content

management systems, e-commerce platforms, as well as

business-critical applications where a reliable and high-

performance database management system is required [3].

MySQL supports various data types that define the format and

structure of data in the columns of database tables. Each column

must be associated with a specific data type, determining what

data is permissible to insert and in what format [4].

Next, general theoretical aspects of PostgreSQL will be

considered. PostgreSQL is a powerful object-relational

database management system (DBMS) with open-source code,

International Journal of Scientific Engineering and Science
Volume 8, Issue 11, pp. 23-26, 2024. ISSN (Online): 2456-7361

24

http://ijses.com/

All rights reserved

known for its high reliability and performance. Created in 1986

at the University of California, Berkeley, PostgreSQL is the

evolutionary continuation of the Ingres project and combines

the advantages of both relational and object-oriented data

models. This DBMS offers a wide range of features, including

support for complex queries, ACID-compliant transactions,

Multi-Version Concurrency Control (MVCC)-based

parallelism management, as well as advanced indexing

capabilities and support for the JSON format, making it suitable

for working with both traditional structured data and modern

applications requiring the handling of unstructured data [5].

TABLE 1. Key characteristics of MySQL [3].

Characteristics of

MySQL
Description

Relational data
structure

MySQL implements a relational model approach,
organizing information in the form of tables with

columns and rows. SQL, a structured query

language, is used to perform various operations for
querying and managing data.

Open-source

MySQL is an open-source system, providing users

with the ability to not only use the software for free

but also modify and distribute it. A commercial
version, MySQL Enterprise, is also available with

additional features and support for corporate clients.

Cross-platform

The software supports various operating systems,
including Windows, macOS, and Linux, allowing it

to be used in a wide range of environments and

across multiple platforms.

Scalability

flexibility

MySQL can be adapted to work with both small
applications and large enterprise systems. The

system supports different storage engines, such as
InnoDB and MyISAM, which offer various

performance and functionality options.

High performance

Due to its speed and efficiency, MySQL is used to

create high-load websites and applications. It
handles large volumes of data and supports

simultaneous connections from multiple users.

ACID compliance

The MySQL database system adheres to ACID
standards, ensuring reliable transaction execution

and data integrity. The main ACID principles

include atomicity, consistency, isolation, and
durability, which are essential characteristics of

reliable database management systems.

Support for

replication and

clustering

MySQL includes features for replication and

clustering, enabling data to be distributed across
multiple servers. This improves fault tolerance, load

balancing, and increases system resilience.

Data security

The system provides security features such as access
control, data encryption, user authentication, and

auditing, ensuring the reliable protection of sensitive

information.

Active community

and technical
support

A large community of developers and users has
formed around MySQL, offering extensive

documentation, educational materials, and support.
Commercial clients also have access to support from

Oracle.

Integration with

various

technologies

MySQL can be integrated with many programming

languages and frameworks, thanks to the availability
of drivers and connectors, making it a versatile tool

for software development.

One of the key advantages of the PostgreSQL database

management system is its architectural structure. Like many

commercial DBMSs, PostgreSQL supports a client-server

interaction model, which brings significant benefits to both

developers and end-users. The core of PostgreSQL is the

database server process, which runs on a single server. It is

important to note that PostgreSQL currently lacks the high

availability technology used in other commercial enterprise-

level database management systems. Such systems provide load

distribution across multiple servers, enabling greater scalability

and resilience to external factors.

Application access to PostgreSQL data is carried out

through a specialized database process that ensures client-

server interaction. This means that client programs do not have

direct access to the data, even if they are running on the same

machine as the server [6].

Summarizing the above, it can be said that PostgreSQL and

MySQL are relational database management systems that

organize data storage in tables connected by common column

values. For example, a company stores information about

customers in a "Customers" table, which contains columns such

as customer ID, name, and address. Product data is recorded in

a "Products" table, which includes columns for product ID,

name, and price. To track customer purchases, a "Customer

Orders" table is created with columns that indicate the customer

and product IDs.

The main similarities between PostgreSQL and MySQL

include the use of SQL for performing read and data

modification operations. Both platforms are open-source and

supported by an active developer community. Additionally,

both systems offer built-in features for backup, replication, and

access control [7]. However, despite their conceptual

similarities, there are many differences to consider when

selecting and implementing these systems (Table 2).

TABLE 2. Differences between MySQL and PostgreSQL [8,9].

Characteristic MySQL PostgreSQL

ACID

compliance

ACID compliance is

achieved when using
InnoDB and NDB

Cluster.

Full ACID compliance in all

configurations.

Concurrency
mechanisms

Does not support full

multiversion
concurrency.

Uses MVCC for safe

concurrent reading and
updating of data.

Data indexing

Supports B-tree and

R-tree indexing for
hierarchical data

ordering.

Supports multiple index
types (trees, hash, partial,

and expression indexes).

Data types

A relational DBMS
with limited object

handling.

An object-relational DBMS

with support for inheritance
and hierarchies, adapted for

Java and .NET.

View support

Supports views but
does not allow

creating materialized

views.

Supports materialized views

to accelerate complex

queries.

Stored

procedures and

triggers

Supports stored

procedures using
SQL, with triggers

limited to standard

functions.

Supports stored procedures
in other programming

languages, with triggers
offering extended

capabilities such as

INSTEAD OF.

Thus, when considering scalability, it is important to focus

on the specific requirements of the application. If a high degree

of concurrency and horizontal scalability is needed, MySQL is

better suited. PostgreSQL, on the other hand, is the preferred

choice for tasks involving complex transactions and analytics.

International Journal of Scientific Engineering and Science
Volume 8, Issue 11, pp. 23-26, 2024. ISSN (Online): 2456-7361

25

http://ijses.com/

All rights reserved

III. RESULTS AND DISCUSSION

This section presents the results of optimization measures

aimed at improving query performance under high-load

conditions. Optimization in MySQL and PostgreSQL involves

transaction management, memory parameter tuning, and the use

of query profilers to analyze execution time. PostgreSQL

employs various index types, such as B-tree and GiST, to

enhance data access speed, as well as monitoring tools like

pg_stat_statements, which help identify performance issues

[10].

1. Query optimization and database performance

improvement. The significance of query optimization.

Query optimization is a key step in accelerating application

performance. An efficiently organized database

significantly improves API response speed and overall user

experience. In most cases, users expect immediate

responses, and delays can greatly impact system

performance. There have been instances where queries took

an extended time to execute, affecting the stability and

responsiveness of the application. Addressing such issues is

crucial to ensuring high system performance.

2. Typical performance issues. One common mistake is the

improper use of the "IN" operator. It may seem convenient

when quickly joining tables, but as data volume increases,

significant delays occur. For example, if there are more than

15,000 records in the database, and a subquery matches half

of them, using the "IN" operator can substantially reduce

query execution speed. In such situations, using JOIN

improves execution speed.

3. The importance of proper indexing. Indexing plays a crucial

role in speeding up queries, especially when grouping or

sorting data. Without effective indexing, query performance

on large datasets can significantly degrade, which is

particularly noticeable during analytical operations.

However, it is important to use indexes wisely. There are

cases where multiple indexes are created on the same

column unnecessarily. For example, for fields like post_id

and user_id, a combined index may be more efficient than

separate ones. It is important to remember that excessive

indexing can slow down database performance, as indexes

are updated during each insert, update, or delete operation.

4. Deindexing and caching as additional methods. Although

normalization is a common practice, data denormalization

can improve query performance. Depending on the specifics

of the queries, storing the category name directly in the

posts table may be more efficient than placing it in a

separate table. However, this method requires caution to

maintain data integrity. Caching is also a powerful tool,

especially if the data rarely changes. Implementing caching

reduces the load on the database and increases application

response speed.

5. Balancing optimization with other aspects. While query

optimization is an important aspect, it is also necessary to

consider data integrity, consistency, and ease of

maintenance. Over-optimization can lead to complex and

difficult-to-maintain code. It is always essential to consider

the long-term consequences of the changes being made [11].

6. Monitoring and analysis tools. Using tools such as the

MySQL slow query log, EXPLAIN operators, and query

profilers helps identify problem areas in queries. Regular

analysis of this data aids in understanding where

adjustments are needed to improve performance.

7. Handling complex queries. For complex joins, subqueries,

or analytical operations, it is recommended to break them

into more manageable parts. Using temporary or derived

tables can be helpful in some cases. Additionally, pre-

aggregating data or using materialized views can

significantly improve the performance of complex queries.

8. Writing optimized queries from the start. To write efficient

queries, the following steps should be adhered to, which will

be described further [11].

Using indexes speeds up data searches, but they must be

used correctly. Example of creating an index in MySQL and

PostgreSQL (Table 3).

TABLE 3. Example of creating an index in MySQL and PostgreSQL

MySQL PostgreSQL

CREATE INDEX idx_users_email

ON users (email);

CREATE INDEX idx_users_email

ON users (email);

Using EXPLAIN for query analysis. This step involves

checking query execution plans to understand how they are

executed and to identify bottlenecks (Table 4).

TABLE 4. Using EXPLAIN in MySQL and PostgreSQL

MySQL PostgreSQL

EXPLAIN SELECT * FROM users

WHERE email =

'example@example.com';

EXPLAIN SELECT * FROM users

WHERE email =

'example@example.com';

Limiting the number of data (LIMIT). If queries return

too many rows, LIMIT should be used to restrict them.

-- MySQL и PostgreSQL

SELECT * FROM logs ORDER BY created_at DESC LIMIT 100;

Next, caching at the application level (e.g., Redis) should be

used to store frequently requested data, so that database queries

are not made every time. Splitting large tables into smaller parts

(e.g., by date) helps speed up queries. In PostgreSQL, parallel

queries can be used for large tables.

SET max_parallel_workers_per_gather = 4;

SELECT * FROM large_table WHERE conditions;

Prepared statements reduce execution time for repeated

queries, especially if query parameters change.

-- MySQL и PostgreSQL

PREPARE stmt FROM 'SELECT * FROM users WHERE email = ?';

EXECUTE stmt USING 'example@example.com';

These techniques significantly optimize query performance

in MySQL and PostgreSQL. Always test changes in a test

environment before applying them in production.

International Journal of Scientific Engineering and Science
Volume 8, Issue 11, pp. 23-26, 2024. ISSN (Online): 2456-7361

26

http://ijses.com/

All rights reserved

IV. CONCLUSION

In conclusion, query optimization for MySQL and

PostgreSQL databases is a crucial aspect of ensuring high

performance and stability in high-load applications. The study

examined key optimization methods such as indexing, caching,

and data partitioning, as well as performance analysis using

query profilers. It was found that proper index configuration

and the selection of optimal data structures significantly

improve query execution speed and reduce server load.

However, it is important to consider that excessive use of

indexes or caching without regard to application specifics can

lead to decreased performance and increased processing time

for update operations.

The results of the study confirm the necessity of a

comprehensive approach to optimization, taking into account

application architecture, load profiles, and data characteristics.

It should also be noted that the choice between MySQL and

PostgreSQL should be based on the specific requirements and

tasks of the application, as each of these DBMS has its own

advantages and limitations. As a direction for future research,

the application of machine learning methods for automating the

query optimization process can be suggested, which would

increase the adaptability and efficiency of database

management systems under dynamically changing loads and

data volumes.

REFERENCES

[1] PostgreSQL vs MySQL — The Rising Popularity of PostgreSQL.

[Electronic resource] Access mode:

https://medium.com/@franciscomoretti/postgresql-vs-mysql-the-rising-
popularity-of-postgresql-69bdd0ab936c (accessed 07.09.2024).

[2] Šušter I., Ranisavljević T. Optimization of the MySQL database
//Journal of Process Management and New Technologies. – 2023. – vol.

11. – No. 1-2. – pp. 141-151.

[3] Sovandi K. M. et al. Research on the effectiveness, capabilities and
compatibility of MongoDB and MySQL: a comprehensive comparison

of NoSQL and relational databases //MIND Magazine (Multimedia

Artificial Intelligent Network Database). – 2023. – vol. 8. – No. 2. – pp.
217-229.

[4] Zulfa I., Wanda R. Ranchangan information system of Academician
Berbasis on the Menggunakan PHP and MySQL website //KLIK: Kajian

Ilmiah Informatika and Computer. – 2023. – Vol. 3. – No. 4. – pp. 393-

399. Garbuzov A. PostgreSQL //Scientific and technical conference for
students, undergraduates and doctoral students. - 2023. – vol. 1. – pp.

360-363.

[5] Yunal H. T. et al. Postgresql Database Management System: ODAK

//The 2023 Conference "Innovations in Intelligent Systems and

Applications" (ASIU). – IEEE, 2023. – pp. 1-5.

[6] Sheik B., Chemuduru D. K. Dynamic SQL //Procedural programming
using PostgreSQL PL/pgSQL: Development of complex database-

oriented applications using PL/pgSQL. Berkeley, California : Apress,

2023. pp. 169-181.
[7] What is the difference between MySQL and PostgreSQL? [Electronic

resource] Access mode: https://aws.amazon.com/ru/compare/the-

difference-between-mysql-vs-postgresql / (accessed 07.09.2024).
[8] Using MySQL and PostgreSQL in 2023. [Electronic resource] Access

mode: https://habr.com/ru/companies/otus/articles/722304 / (accessed

07.09.2024).
[9] The difference between MySQL and PostgreSQL. [Electronic resource]

Access mode: https://www.geeksforgeeks.org/difference-between-

mysql-and-postgresql / (accessed 07.09.2024).
[10] What are the best ways to optimize your database performance and

storage? [Electronic resource] Access mode:

https://www.linkedin.com/advice/0/what-best-ways-optimize-your-
database-performance (accessed 07.09.2024).

[11] Ramu V. B. Database performance optimization: strategies for efficient

query execution and resource usage //International Journal of Computer
Trends and Technologies. – 2023. – vol. 71. – No. 7. – pp. 15-21.

https://medium.com/@franciscomoretti/postgresql-vs-mysql-the-rising-popularity-of-postgresql-69bdd0ab936c
https://medium.com/@franciscomoretti/postgresql-vs-mysql-the-rising-popularity-of-postgresql-69bdd0ab936c

