
International Journal of Scientific Engineering and Science
Volume 8, Issue 10, pp. 58-61, 2024. ISSN (Online): 2456-7361

58

http://ijses.com/

All rights reserved

Effective Strategies to Protect Web Applications from

CSRF Attacks

Okhonko Pylyp

Application Security Engineer, Tential

Rockville, Maryland, United States

Abstract— This paper discusses effective strategies for protecting web applications from CSRF (Cross-Site Request Forgery) attacks. The

mechanisms of action of CSRF attacks, their potential threats and methods of their implementation are analyzed. The main focus is on security

methods, including the use of CSRF tokens, checking the Origin and Referer headers, as well as configuring the SameSite attribute for cookies.

Recommendations on the use of two-factor authentication and the implementation of middleware for token management are provided. The

principles of the Same Origin Policy and the CORS (Cross-Origin Resource Sharing) mechanism, which provide additional levels of protection,

are also considered. The work highlights the need for an integrated approach and continuous security monitoring, since using one method does

not guarantee complete protection.

Keywords— CSRF attacks, web applications, protection, CSRF tokens, SameSite, two-factor authentication, single origin policy, CORS, web

security.

I. INTRODUCTION

In recent years, the development of web applications has

become an integral part of the digital infrastructure used across

various fields, including e-commerce, social networks, and

government services. Along with the increase in the number of

users and the expansion of web application functionality, there

has been a significant rise in threats related to data security and

user protection. One such threat is CSRF (Cross-Site Request

Forgery) attacks, which allow attackers to perform

unauthorized actions on behalf of users without their

knowledge or consent.

The relevance of this topic is due to the fact that, despite the

significant attention paid to web application security, CSRF

attacks remain a serious threat.

The aim of this paper is to explore modern strategies for

protecting web applications from CSRF attacks, analyze their

effectiveness, and develop recommendations for their

implementation.

1. Mechanism of CSRF Attacks

In 2015, CSRF attacks were included in the OWASP list of

the most critical vulnerabilities (OWASP is an open web

application security project created and supported by the non-

profit organization OWASP Foundation), ranking in eighth

position. However, in 2017, this type of threat was no longer

included in the updated list. This may create the illusion that the

vulnerability has lost its relevance, but that is not the case.

According to research conducted by Positive Technologies [1]

as part of penetration testing and security assessments of web

applications, the majority of them remain vulnerable to CSRF

attacks. Unlike other vulnerabilities that arise due to

programming errors, CSRF is related to the inherent

functioning of web servers and browsers. Most websites that

use a typical architecture are by default susceptible to this

threat.

CSRF (Cross-Site Request Forgery) represents cross-site

request forgery. The mechanism of this attack relies on the use

of cookies. The term "CSRF" was introduced by Peter Watkins

in 2001. Cookies are data elements exchanged between a client

and server, which the server sends to the client in a specific

format. The browser stores this data on the user's device and,

when necessary, sends it back to the server in the HTTP request

header. When a user clicks on a specially crafted link created

by an attacker, a hidden request may be sent to the server on the

user's behalf, executing a malicious action. However, for the

attack to succeed, the user must be logged into the target site,

and the site must not require confirmation of an action that

cannot be ignored or forged.

Although CSRF may resemble XSS (Cross-Site Scripting)

attacks, there is a fundamental difference between them. Both

types of attacks use web application users as attack vectors;

however, CSRF can be combined with XSS or other methods,

such as redirects, forming a separate class of vulnerabilities.

The main threat of CSRF attacks lies in the fact that they

exploit the normal behavior of browsers and the HTTP

protocol, making them difficult to detect. For example, loading

images from another site is common practice, and the browser

cannot distinguish whether attackers are trying to load an image

or perform a hidden malicious action on the target site [1].

To successfully carry out a CSRF attack, several conditions

must be met:

- Authentication via cookies: The attack is possible only if user

authentication depends on cookies or Basic HTTP

authentication.

- Predictability of request parameters: The values of the

parameters in the requests must be easily guessable by the

attacker.

- Presence of certain vulnerable functions in the application:

The application must contain functions that could be of interest

to an attacker, such as actions with high privilege levels or

changes to user data [2].

Next, we will consider the main misconceptions associated

with CSRF vulnerabilities in systems.

Forging HTTP requests is a new security threat. This

statement is not true. Issues related to message data forgery

International Journal of Scientific Engineering and Science
Volume 8, Issue 10, pp. 58-61, 2024. ISSN (Online): 2456-7361

59

http://ijses.com/

All rights reserved

have been discussed since the late 1980s. For instance, as early

as 1988, theoretical works on this topic appeared. Practical

attention to this vulnerability has also been traced on security

forums such as Bugtraq, starting from at least 2000. The term

"CSRF" was first introduced by Peter Watkins in 2001 [4].

CSRF and XSS belong to the same category. Although

CSRF and XSS exploit client-side vulnerabilities in web

applications, they represent different threat categories. In the

case of CSRF, user behavior and browser-server interaction are

exploited, which distinguishes this vulnerability from XSS,

although there are situations where both vulnerabilities can act

in tandem. However, it is essential to understand that CSRF is

an independent vulnerability that can exist without the presence

of XSS or other types of attacks [4].

CSRF is a rare and difficult-to-execute vulnerability.

However, in practice, research conducted by companies like

Positive Technologies shows that most web applications are

vulnerable to this threat. Unlike many other threats, CSRF is

not caused by code errors but by standard functionality inherent

to most servers and browsers. Thus, websites with typical

architecture are by default vulnerable to this attack [4].

2. Use of Authentication Tokens (CSRF Token) as a Protection

Method

Certain types of HTTP requests are vulnerable to CSRF

attacks, especially those that modify the server or contain

critical data. POST, PUT, DELETE, and PATCH requests are

particularly at risk:

- POST requests are used to send data to the server to create

or modify resources. They are often used for form submissions,

creating database entries, or conducting financial transactions,

making them vulnerable to CSRF attacks due to the potential

for changing the system's state.

- PUT requests are intended to update existing resources on the

server, which may include changing user data, updating product

information, or system settings.

- DELETE requests are used to remove resources from the

server, such as user accounts, files, or database records.

- PATCH requests are used for partial updates to resources,

such as modifying specific fields in a record or configurations,

also making them a target for CSRF attacks.

Other types of HTTP requests, such as GET, HEAD,

OPTIONS, and TRACE, are less susceptible to CSRF attacks,

as they generally do not modify the server's state and are mainly

used for retrieving metadata or checking resource availability.

The generation of CSRF tokens is a key element in

protecting against cross-site request forgery. These signals must

be sufficiently complex and random to prevent attackers from

guessing. The effective transmission of CSRF tokens is a

critical aspect of ensuring the security of web applications:

- Transmission through hidden form fields. One of the most

secure methods of transmitting CSRF tokens is by including

them in hidden fields within HTML forms submitted via POST.

This ensures that tokens are transmitted only at the time of form

submission, preventing them from being exposed in the URL.

- Transmission via URL. This method is less secure because

query strings in the URL can be logged by the server or passed

to third parties through the HTTP Referer header. Additionally,

such tokens may be visible in the browser's address bar,

increasing the risk of exposure.

- Use of custom headers. Some applications prefer to transmit

CSRF tokens through custom request headers, providing

additional security since browsers typically do not allow cross-

domain transmission of such headers.

After generating CSRF tokens, it is important to ensure their

proper storage and validation:

- Storage of tokens on the server. CSRF tokens must be stored

in the user's session data on the server so that each token can be

associated with a specific user.

- Validation process. When the server receives a request

requiring CSRF token validation, it retrieves the token from the

request and compares it with the one stored in the user's session.

If the tokens match, the request is considered valid; otherwise,

the server rejects the request.

To protect a website from CSRF attacks, the following

methods are recommended, as described in Table 1.

TABLE 1. Methods of protecting websites from CSRF attacks [5].

Method name Description

Use of CSRF tokens

Tokens must be generated by the server and included in

every form submitted by the user. If the token does not

match the expected value, the request should be

rejected.

Checking Origin

and Referer headers

This method ensures that requests come from trusted

domains.

Limiting the use of

dangerous HTTP

methods

Web applications should limit the use of methods such

as POST, PUT, DELETE, and PATCH to minimize the

risk of data modification on the server.

SameSite attribute

for cookies

This attribute restricts the sending of cookies only in

requests from the same site, reducing the risk of CSRF

attacks.

Regular updates and

monitoring

It is important to install updates and patches in a timely

manner, as well as monitor website activity to detect

and prevent threats in time.

These measures together create a multi-layered defense that

effectively counters CSRF attacks.

3. Additional Security Measures and Best Practices

The Same Origin Policy (SOP) is an important security

mechanism used in web browsers. It defines "origin" as a

combination of elements such as the scheme (protocol), domain

name, and port.

If two web resources use the same scheme, domain, and

port, they are considered to have the same origin. Otherwise, if

even one of these elements differs, the resources are treated as

belonging to different origins (cross-origin). For example,

websites with URLs http://site.store.com and

http://api.store.com will be perceived as different origins,

despite both belonging to the same domain.

The main rule of this policy states that scripts running on

one website can interact with data from another website only if

both sites share the same origin. For instance, if you need to

display data from http://api.store.com on http://site.store.com

International Journal of Scientific Engineering and Science
Volume 8, Issue 10, pp. 58-61, 2024. ISSN (Online): 2456-7361

60

http://ijses.com/

All rights reserved

via a GET request, the browser may block this action due to

CORS policy.

CORS (Cross-Origin Resource Sharing) is a mechanism

that allows web resources to provide access to their data from

other origins, thereby bypassing SOP restrictions. This

mechanism categorizes requests into simple and complex.

Simple requests are those that perform safe actions and do not

modify server data, such as requests using the GET and HEAD

methods. These requests are not blocked by the browser.

For complex requests, such as DELETE, the browser first

sends a preflight request using the OPTIONS method to

determine whether the specific type of request is allowed for the

particular origin. If the server's response contains the necessary

headers, such as Access-Control-Allow-Origin, Access-

Control-Allow-Methods, and Access-Control-Allow-Headers,

the main request will be executed. Otherwise, the browser will

block it.

Configuring CORS for simple requests is to send the

Access-Control-Allow-Origin header in response to the

message. For complex requests, more detailed configuration is

required, including specifying allowable methods and headers

in the response to the preflight request. It is important to

remember that for security purposes, it is advisable to avoid

using the wildcard value "*" in the Access-Control-Allow-

Origin header, as this allows any origin to access the data [6].

The REST (Representational State Transfer) architecture

stipulates that GET requests should be used solely for retrieving

data or resources, while server state changes should be

performed using other methods, such as PUT, POST, or

DELETE. It is important to note that each HTTP method has its

own purpose: GET is used for data retrieval, POST for updates,

PUT for creation, and DELETE for removal. However, in

situations where the method is not obvious, additional security

measures should be applied to minimize risks. For example, to

prevent unwanted actions, it is essential to always use GET only

for data retrieval.

Double Cookie Submission Method:

An alternative to synchronization tokens is the double

cookie submission method. Upon visiting the site before

authentication, a value is generated and stored as a cookie in the

user's browser. Then, any action sent from the client must

include this value as a hidden form field. If the value in the form

and the cookie match, the server accepts the request. Otherwise,

the request is rejected. This method requires additional

precautions, such as cookie encryption or the use of HMAC to

enhance security.

In some cases, adding CSRF tokens or modifying the

interface to improve security may be difficult. In such

situations, custom request headers can be used to protect AJAX

or API endpoints. This method relies on the Same Origin Policy

(SOP), which limits the ability to execute requests with custom

headers only to the same origin from which the JavaScript was

executed. It is important to remember that browsers by default

block cross-origin requests with such headers. Methods like

POST, PUT, PATCH, and DELETE, which modify the

system's state, must include a CSRF token in the request. An

example implementation using the Axios library shows how to

automatically add tokens to the headers of every AJAX request

to ensure security.

One of the most effective ways to protect against CSRF

attacks is by using proven solutions such as token management

modules. For example, the csurf library allows for the

automatic generation and management of CSRF tokens,

providing a high level of security for your application [7].

// server.js

var cookieParser = require('cookie-parser')

var csrf = require('csurf')

var bodyParser = require('body-parser')

var express = require('express')

// setup route middlewares

var csrfProtection = csrf({ cookie: true })

var parseForm = bodyParser.urlencoded({ extended: false })

// create express app

var app = express()

// parse cookies

// we need this because "cookie" is true in csrfProtection

app.use(cookieParser())

app.get('/form', csrfProtection, function (req, res) {

 // pass the csrfToken to the view

 res.render('send', { csrfToken: req.csrfToken() })

})

app.post('/process', parseForm, csrfProtection, function (req, res) {

 res.send('data is being processed')

})

International Journal of Scientific Engineering and Science
Volume 8, Issue 10, pp. 58-61, 2024. ISSN (Online): 2456-7361

61

http://ijses.com/

All rights reserved

Next, the csrfToken should be set as the value of a hidden input field with the name _csrf.

<form action="/process" method="POST">

 <input type="hidden" name="_csrf" value="{{csrfToken}}">

 Favorite color: <input type="text" name="favoriteColor">

 <button type="submit">Submit</button>

</form>

HttpOnly Cookies: Cookies with the HttpOnly attribute are

protected from being accessed through JavaScript scripts,

making them less vulnerable to cross-site scripting (XSS)

attacks. In the event of a successful XSS attack, attackers will

not be able to access these cookies, as JavaScript cannot read or

use them.

Combined Use: These two attributes are often used together to

enhance the security of a web resource. For example, they can

be combined with two-factor authentication, creating a multi-

layered security system.

Content Security Policy (CSP): Content Security Policy (CSP)

is an important tool for protecting web applications from

various threats, such as XSS and the injection of malicious data.

This mechanism allows administrators to control the sources of

content that can be loaded and executed on a page, thus limiting

the possibility of attacks. CSP can also be used to restrict the

use of protocols, for example, allowing content to be loaded

only through HTTPS, further enhancing the security of the

application [8].

II. CONCLUSION

In conclusion, it can be stated that effective protection of

web applications from CSRF attacks requires the integration of

various methods, each aimed at minimizing the risk of

vulnerability exploitation. Key methods, such as the use of

CSRF tokens and the configuration of the SameSite policy,

combined with other measures like two-factor authentication

and header validation, help create a multi-layered security

system. It is important to note that continuous updates and

system monitoring are crucial elements in maintaining the

security of web applications, especially in the face of evolving

new types of attacks.

REFERENCES

1. Laundev I. S. Methods of protecting web applications from CSRF attacks
/ I. S. Laundev. // A young scientist. — 2022. — № 8 (403). — Pp. 4-7.

2. Agrawal S. Mitigating Cross-Site Request Forgery (CSRF) Attacks Using

Reinforcement Learning and Predictive Analytics //Applied Research in
Artificial Intelligence and Cloud Computing. – 2023. – Vol. 6. – No. 9. –

pp. 17-30.

3. Tokarev D. I. Modern methods of protection against CSRF attacks
//Bulletin of the Student Scientific Society of the Donetsk National

University The founders: Donetsk National University. – 2022. – vol. 1.

– no. 14. – pp. 202-206.
4. Padalets A.M., Kulikova A. S. Methods of protection against network

attacks such as cross-site request forgery //Innovative technologies in the

training of modern professional personnel: experience, problems. - 2020.
– pp. 91-95.

5. Agrawal S. Mitigating Cross-Site Request Forgery (CSRF) Attacks Using

Reinforcement Learning and Predictive Analytics //Applied Research in
Artificial Intelligence and Cloud Computing. – 2023. – Vol. 6. – No. 9. –

pp. 17-30.
6. Darmawan I. et al. Json web token penetration testing on cookie storage

with csrf techniques //2021 International Conference Advancement in

Data Science, E-learning and Information Systems (ICADEIS). – IEEE,
2021. – pp. 1-5.

7. Padalets A.M., Kulikova A. S. Methods of protection against network

attacks such as cross-site request forgery //Innovative technologies in the
training of modern professional personnel: experience, problems. - 2020.

– pp. 91-95.

8. Shutko N. A. Theoretical concepts of protecting Web applications from
vulnerabilities //Bulletin of Science. – 2022. – T. 4. – №. 11 (56). – Pp.

253-269.

