
 International Journal of Scientific Engineering and Science 
Volume 8, Issue 9, pp. 40-51, 2024. ISSN (Online): 2456-7361 

 

 

40 

http://ijses.com/ 

All rights reserved 

Multi-Objective Optimization for Hybrid Microgrid 

Integration Using a Modified Firefly Algorithm 
 

Edrees Yahya Alhawsawi1, Darrin Hanna1, Mohamed A. Zohdy1, Hao Yan1 

 1Department of Electrical and Computer Engineering, Oakland University, Rochester, MI 48309, USA 

*Corresponding author: ealhawsawi@oakland.edu 

 
Abstract— This paper presents a multi-objective optimization method utilizing a modified Firefly Algorithm (MFA) to optimize a hybrid grid-

connected microgrid that integrates wind and diesel power sources, validated through a case study of such a microgrid. The MFA aims to enhance 

Net Present Cost (NPC), Levelized Energy Cost (LCOE), reliability, and greenhouse gas (GHG) emissions. The beta parameter in the MFA was 

dynamically adjusted based on the alpha, theta, and gamma parameters, influencing the attractiveness and movement of fireflies in the 

optimization process. The MATLAB simulation results demonstrate that the MFA significantly outperforms the original Firefly Algorithm (FA), 

with an overall improvement of 16%. These findings highlight the MFA’s superior performance in enhancing cost-efficiency and reducing 

environmental impact compared to the original FA. The MFA results were categorized into economic metrics, including NPC, LCOE, and 

environmental greenhouse gas emissions (GHG) measured as CO2. 
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I. INTRODUCTION  

Over the past ten years, there have been significant changes in 

global civilization, especially in emerging nations. Global 

energy demand has dramatically increased due to the 

advancement of digital technologies and the growing 

population [1]. The primary energy sources are finite fossil 

fuels, such as coal, natural gas, and oil [2]. Although there is an 

ample supply of these sources, they are limited in quantity and 

release greenhouse gases, which hurt the ecosystem. 

Renewable Energy Sources (RES) contribute to this 

overarching trend, alongside the development of innovative 

methods for grid regulation. Consequently, there is an 

increasing fascination with renewable energy sources, regarded 

as a more sustainable substitute [3]. RES, such as wind and 

solar systems, are seeing significant growth and are often 

considered environmentally beneficial and sustainable due to 

their economically efficient installation. Furthermore, their 

sustainability and environmentally benign characteristics make 

them crucial domestic assets, greatly assisting in reducing 

dependence on outside power [4]. In contrast to traditional 

energy sources, renewable energy is characterized by its 

unpredictability and variability [5]. Meteorological conditions 

and wind speeds for renewable energy sources can vary 

significantly depending on the time of day or hour. The 

presence of this fluctuation provides a degree of uncertainty 

that is challenging to quantify, which in turn poses difficulties 

for ensuring the dependability and consistency of the energy 

system. As a renewable energy source (RES), wind energy is 

notable for its high effectiveness, reliability, and low 

maintenance requirements. Moreover, wind power produces 

significantly lower carbon dioxide (CO2) emissions and 

promotes a quieter environment [1]. However, wind energy 

systems, which are swiftly growing as distributed generation 

sources, face technical challenges due to their vulnerability to 

operational failures [6]. 

Operational management of microgrids is a multi-objective 

optimization challenge. Traditional optimization methods often 

fail to effectively balance the trade-offs between conflicting 

objectives [7]. Therefore, optimization algorithms, such as the 

Multi-Objective Firefly Algorithm, are essential for providing 

comprehensive solutions [8]. Ensuring the economic viability 

of microgrid operations necessitates cost-effective 

management strategies, highlighting the importance of 

innovative optimization techniques. High energy reliability in 

microgrids requires sophisticated energy management systems 

that can optimize electricity generation, storage, and 

distribution [9]. Consequently, this involves maximizing the 

use of renewable energy and ensuring that energy storage 

systems are used effectively to balance supply and demand. 

Moreover, reliability is critical to microgrid operations, 

especially for applications where an uninterrupted power 

supply is essential [10]. This necessitates maintaining a stable 

and continuous power supply, managing the variability of 

renewable energy sources, and ensuring that backup generators 

and storage systems are ready to compensate for any shortfalls 

[11]. 

In the optimization of microgrid systems, ensuring 

feasibility and practicality are paramount [12]. Several 

constraints need to be considered to guarantee that the solutions 

obtained are viable and meet operational requirements. One 

crucial constraint is ensuring that the total power generated by 

the system matches the load demand, preventing either under 

or over-generation [13]. This constraint is typically formulated 

as an equality constraint, where the sum of power generated by 

all sources (including renewable and conventional) must equal 

the total load demand at each time step. Additionally, 

constraints related to individual components' capacity and 

operational limits within the microgrid must be enforced. For 

example, the maximum power output of renewable energy 

sources such as solar photovoltaic panels and wind turbines, as 

well as the maximum power output and fuel consumption CHP 

model, need to be considered [14]. Constraints that are related 

to the storage capacity and charging/discharging rates of energy 

storage systems, such as batteries, must be considered [15]. 
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TABLE 1. Performance metrics evaluation of Pareto solutions obtained by the modified FA in the four scenarios. 

Ref Campus name Resources 
Method/ 

optimization 
Load Types Contribution Results 

[2] 
Oakland 

University 

Grid, PV, ESS, 

CHP, and WT 

H
O

M
E

R
 P

ro
 

Campus load 

Advance renewable energy 
integration within MG 

systems, plan and design 
hybrid renewable solutions 

NPC of USD 30 M, LCOE of 
0.00274 USD/kWh, addressing 

unmet load, potential for 
sustainable energy solutions 

[16] - PV, ESS, and WT - 

Demonstrates the importance 

of accurate wind speed 
distribution parameters for 

optimal Hybrid Renewable 

Energy System sizing 

Errors in the Cost of Energy 

range from -56.437% to 

+97.05% depending on the 
system and parameters used, 

highlighting the need for 

accurate parameter setting in 
energy system modeling. 

[17] - PV, WT, and DG 

Healthcare 

centers in rural 
Nigeria 

Address inadequate power 

supply in rural Nigerian 

healthcare centers with 
hybrid renewable energy 

systems. 

Optimized configurations in 

six locations with energy costs 
ranging from $0.0588/kWh to 

$0.115/kWh; load-following 

dispatch strategy ensures 
power availability. 

[18] 

Najran 
Secondary 

Industrial 

Institute (NSII) 

PV, BSS, and Grid 
Industrial 

Institute 

Investigates optimal 

microgrid installation on 

NSII buildings; integrates 
architectural design and 

system administration 

Found optimal tilt 20.97° and 

azimuth 50°; reduces NPC by 

54.69% and CO2 emissions by 
92% compared to current grid 

system 

[19]  
WT, PV, battery 
storage, biomass, 

micro-hydro 

Remote areas Sensitivity analysis 

Found PV-WT-MH-CT-BT-
DG-BG as the most feasible 

system with the lowest energy 

cost, low NPC, and high 
environmental benefits (81.2% 

renewable factor) 

[20] - 

WT, PV, micro-
turbines, 

diesel/biogas 

generators, fuel 
cells, battery 

storage 

Rural villages, 

business 
organization, 

urban residential 

building 

Economic feasibility, 
different load profiles, 

performances of the batteries 

Li-ion batteries found to be 
more viable than LA; includes 

cost, emissions, and 

performance comparison of 
battery types and generation 

sources 

[21] - 

WT, PV, hydrogen 

storage, diesel 
generator, battery 

storage, tidal 

current farm 

Proposes a game-based planning method for 
interconnected microgrids on an island; focuses on 

data privacy and renewable energy seasonality 

Verified effectiveness through 

case studies; incorporates 

mixed strategy equilibrium in 
decision-making 

[22] 

National 

University of 

Sciences and 

Technology 

PV plant, Electric 
vehicles, Diesel 

generator 

Mix Integer Linear 

Programming 
(MILP), Ant Colony 

Optimization, Linear 

Programming (LP) 

Campus load 

Reduction of operational 

cost, Analysis of distributed 

generators and optimally 
scheduled energy storage 

system (ESS), Comparison 

of MILP, Ant Colony 
Optimization, and LP 

ESS using MILP minimizes 

operational costs from 
$798.560 to $756.3850. 

Economic and environmental 

benefits discussed 

[23] 

University 

Campus in 
Brazil 

PV generation, 
Battery Energy 

Storage System 

(BESS 

Simulated Annealing 

algorithm 

Campus energy 

consumption 

Energy management system 

coordination, Optimal 

operation of battery system, 
Reduction in energy 

consumption costs 

Minimize campus energy 

consumption costs. 

[24] 

NFC Institute 
of Engineering 

and 

Technology 

Photovoltaic 
system, Energy 

Storage System, 

Electric Vehicles 

Linear optimization 

problem, MATLAB 
simulations 

Campus load 

Integration of PV system, 
ESS, and EV in a University 

campus, Optimal Energy 

Management System (EMS) 

EMS decreases energy 
consumption cost by nearly 

45%, EV as a source reduces 

energy cost by 45.58%, EV as 
a load reduces energy cost by 

19.33%, Continuous power 

supply impact analyzed 

 

These constraints ensure that the system operates within 

safe and efficient limits while meeting the required energy 

demand. This complexity necessitates innovative optimization 

techniques. Authors in [1] summarized different microgrid 

optimization techniques as Table 1 illustrates. 

The rest of the paper is as follows: Part 2 Wind energy in 

Saudi Arabia. Section 3 analyzes Firefly and Modified Firefly 

algorithms equations. Section 4 mathematical models of 

various microgrid components. Section 5 Implementation. 

Section 6 Results and discussion.  

II. WIND ENERGY IN SAUDI ARABIA  

Saudi Arabia is increasingly incorporating wind energy into 

its renewable energy strategy to diversify its energy portfolio 
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and decrease dependence on fossil fuels. The Kingdom's Vision 

2030 aims to fulfill 10% of its energy requirements through 

renewable sources, such as wind and solar power, by the year 

2030 [25]. The Kingdom’s commitment to wind energy is 

further evidenced by its collaboration with a consortium led by 

Japan's Marubeni Corp for 1,100 MW of wind energy, 

achieving record low prices. These projects include the 600-

MW AlGhat and 500-MW Wa'ad Alshamal wind farms, which 

were announced during the Saudi-Japan Vision 2030 Business 

Forum. The AlGhat project has set a global record with an 

electricity cost of USD 15.655 per MWh, while the Wa'ad 

Alshamal project follows closely with USD 17.018 per MWh. 

Together, these wind farms are expected to provide power to 

257,000 homes annually and contribute significantly to Saudi 

Arabia's goal of reaching 50% renewable energy by 2030 [26].  

Significant research has highlighted the potential and 

feasibility of wind energy across various regions in Saudi 

Arabia. For example, a five-year study at Sharma, Al Qurayyat, 

and Sakaka revealed that Al Qurayyat had the highest mean 

wind speed and wind power density (WPD), making it an ideal 

location for wind farm development  [27]. Furthermore, a 

techno-economic feasibility study for a 15 MW wind farm in 

Qaisumah, Eastern Province, demonstrated the site's capability 

to generate approximately 23,590 MWh per year, with an 

estimated energy generation cost of $0.0487 per kWh [28]. 

 

 
Fig. 1. Wind speed map of Saudi Arabia [33]. 

 

In addition, the Dumat Al-Jandal project, the first large-

scale wind farm in Saudi Arabia, represents the country's 

progress in wind energy. Using the System Advisor Model 

(SAM) software, this 400 MW project was analyzed, revealing 

a capacity factor ranging from 23.7% to 35.5% depending on 

hub height, with the lowest levelized cost of energy (LCOE) at 

0.323 $/kWh, demonstrating its economic viability[29]. 

Coastal areas along the Red Sea, including Al Wajh, have also 

been identified as favorable locations for wind energy 

development due to their high wind speeds and suitable 

conditions for monopile installations [30]. Moreover, particle 

swarm optimization techniques have been utilized to optimize 

the cost of energy (COE) for wind farms in Saudi Arabia, 

revealing that COE is more influenced by rotor size than hub 

height  [31]. Overall, Saudi Arabia's extensive research and 

strategic policies in harnessing wind energy position the nation 

as a significant player in the global renewable energy sector  

[25, 32]. The study will consider an educational building in 

Yanbu City in the Al Madina Region of Saudi Arabia. 

According to the Renewable Resource Atlas website, this city 

has an average wind speed of over 8 m/s, which makes it 

suitable for installing wind turbines and generating electricity. 

III. FIREFLY ALGORITHM (FA)  

The Firefly Algorithm (FA), developed by Yang, is a 

metaheuristic algorithm inspired by swarm intelligence [34]. It 

represents an innovative approach rooted in ecological 

intelligence, designed to address complex optimization 

challenges [35, 36]. This search algorithm draws inspiration 

from firefly social interactions and bioluminescent 

communication. Two key aspects of FA are the definition of 

attractiveness and the adjustment of light intensity [37]. This 

algorithm emulates the social interactions of fireflies as they 

move through the tropical summer sky. Fireflies use flashing 

patterns to communicate, search for target, and attract other 

fireflies, particularly those of the opposite sex. Natural 

behaviors can be emulated to create metaheuristic algorithms 

inspired by nature. To streamline the design of a firefly-inspired 

algorithm, certain characteristics of fireflies' flashing are 

idealized, resulting in three simplified rules: (1) All fireflies are 

considered the same sex, ensuring that each firefly can be 

attracted to any other, regardless of sex. (2) A firefly's 

brightness is directly correlated with its attraction, and 

brightness decreases with increasing firefly distance. For any 

pair of flashing fireflies, the dimmer one will move towards the 

brighter one. If any brighter fireflies do not surround a firefly, 

it will move randomly within the search space. (3) The 

objective function influences or determines A firefly's 

brightness. The brightness in the optimization problem is very 

similar to the value of the cost function. Analogously to the 

fitness function in the PSO algorithm, different types of 

brightness can also be defined. The FA is updating the formula 

for every firefly pair; the position of a firefly 𝑖 moving towards 

a brighter firefly 𝑗 is given by [38]: 

𝓍𝑖
(𝑡+1)

= 𝓍𝑖
(𝑡)

+ 𝛽0𝑒−𝛾𝓇𝑖𝑗
2

 (𝓍𝑗
(𝑡)

− 𝓍𝑖
(𝑡)

) + 𝛼𝜖𝑖
(𝑡)

                 (1) 

Where: 

• 𝓍𝑖 an 𝓍𝑗 are the positions of the Fireflies 𝑖 and 𝑗. 

• 𝛽0 : the initial attractiveness. 

• 𝛾: the light absorption coefficient.  

• 𝓇𝑖𝑗: the distance between Fireflies 𝑖 and 𝑗. 

• 𝛼: the random movement coefficient.  

• 𝜀𝑖: the random vector is drawn from a uniform distribution. 

A. Modified Firefly Algorithm 

The Modified Firefly Algorithm (MFA) is introduced to 

enhance multi-objective optimization. The MFA procedures 

are as follows: first, a dynamic attractiveness coefficient is 

introduced and adapted based on each firefly's multi-objective 

performance. This coefficient, 𝛽𝑖𝑗(𝑡), is designed to account 

for the Pareto dominance relationship between fireflies (𝑖) and 

(𝑗), ensuring that fireflies move towards more dominant 

solutions. The distance calculation is also modified to 
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incorporate a weighted sum of normalized distances for each 

objective. This modification enhances the distance metric to 

accurately capture the trade-offs among different objectives, 

ensuring that movement decisions are based on a 

comprehensive understanding of the solution space. Ultimately, 

the integration of an adaptive technique for reducing 

randomness systematically reduces randomness over time. This 

strategy is specifically designed for multi-objective 

optimization, balancing the need to explore the search space 

with the exploitation of advantageous regions, thereby 

enhancing the algorithm's efficiency in achieving optimal 

solutions. 

B. MFA equations 

• Dynamic Multi-Objective Attractiveness: 

Dynamic Attractiveness is defined based on Pareto 

dominance: 

𝛽𝑖𝑗(𝑡) = 𝛽0 (1 +
𝓃𝑑𝑜𝑚(𝑗)−𝓃𝑑𝑜𝑚(𝑖)

𝓃𝑡𝑜𝑡𝑎𝑙
) 𝑒−𝛾𝓇𝑖𝑗

2

                          (2) 

𝛽𝑖𝑗(𝑡): the dynamic attractiveness based on Pareto dominance. 

𝓃𝑑𝑜𝑚(𝑗): the number of solutions dominated by firefly (𝑗). 

𝓃𝑑𝑜𝑚(𝑖): the number of solutions dominated by firefly (𝑖). 

𝓃𝑡𝑜𝑡𝑎𝑙: the total number of fireflies. 

𝓇𝑖𝑗: the multi-objective distance calculated using the weighted 

sum of normalized distances 

• Multi-Objective Distance Calculation:  

𝓇𝑖𝑗 = √∑ 𝜔𝑘 (
𝑓𝑘(𝓍𝑖)−𝑓𝑘(𝓍𝑗)

𝑓𝑘
𝓂𝒶𝓍−𝑓𝑘

𝓂𝒶𝓍 )
2

𝑀
𝑘=1                                  (3)     

𝑀: the number of objectives 

𝜔𝑘: the weight assigned to the 𝑘-th objective.  

𝑓𝑘
𝓂𝒶𝓍 and 𝑓𝑘

𝓂𝒶𝓍: are the maximum and minimum values of 

𝑘-th objective across all fireflies.  

• Adaptive Randomness Reduction  

Implement an adaptive randomness reduction mechanism: 

𝛼(𝑡) =  𝛼0 𝑒𝑥𝑝 (−
𝑡

𝐼𝑡𝑒𝑟𝓂𝒶𝓍
)                                            (4)     

𝛼0: the initial random movement coefficient.  

𝑡: the current iteration numbers.  

𝐼𝑡𝑒𝑟𝓂𝒶𝓍: the maximum number of iterations.  

• Update Equation: 

𝓍𝑖
(𝑡+1)

= 𝓍𝑖
(𝑡)

+ 𝛽𝑖𝑗(𝑡) (𝓍𝑗
(𝑡)

− 𝓍𝑖
(𝑡)

) + 𝛼(𝑡)𝜖𝑖
(𝑡)

   (5) 

𝛽𝑖𝑗(𝑡): incorporates multi-objective attractiveness. 

𝛼(𝑡): the time-adaptive randomness reduction.

• Pseudo-code: 

Algorithm 1: The Proposed MFA 
 

Steps: 

1. Initialize the positions 𝓍𝑖 (for 𝑖 = 1,2, … . , 𝑁) randomly in the solution space: 

• This correctly specifies the initialization of firefly positions. 

• Evaluate the light intensity 𝐼𝑖 for each firefly based on the objective functions 𝑓𝑘(𝓍): 

• This is correct, as the objective function values determine light intensity. 

2. While (termination condition not met): 

• Increment iteration 𝑡: 

• This ensures the loop progresses through the specified number of iterations. 

                             For each firefly 𝑖 from 1 to N: 

For each firefly 𝑗 from 1 to N: 

           If 𝐼𝑗  > 𝐼𝑖 (i.e., firefly 𝑗 is brighter than firefly 𝑖): 

This correctly checks if firefly 𝑗 is brighter than firefly 𝑗.  

            Calculate the multi-objective distance 𝓇𝑖𝑗  between fireflies 𝑖 and 𝑗: 

            This step is correct; it computes the distance considering all objectives. 

Calculate the dynamic attractiveness 𝛽𝑖𝑗(𝑡) 

             This is correct; it dynamically adjusts attractiveness based on Pareto dominance and the multi-objective 

distance. 

• Move firefly 𝑖 towards firefly 𝑗 using the Improved Update Equation, which correctly updates 

the position of firefly 𝑖, considering attractiveness and random movement. 

           End If 

      End For (𝑗) 

 Evaluate the new light intensity 𝐼𝑖
(𝑡+1)

 for firefly 𝑖: 
This correctly updates the light intensity based on the new position 

       End For (𝑖) 

            Reduce the randomness 𝛼(𝑡) which is correctly models the decrease in randomness over time.  

Sort the fireflies based on their updated light intensity. 

      Sorting is crucial to determining the best global positions and helps in guiding the search process. 

End While 

 

Output:  

The best firefly positions (𝓍) and elapsed time: This provides the final solution set and the time taken to reach it. 
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IV. MATHEMATICAL MODELS OF MICROGRID COMPONENTS 

This section presents the mathematical models for the 

microgrid's primary components, including generators, energy 

storage systems, and load demands.  

A. Generator Models 

Microgrid generators include renewable sources such as 

Wind Turbines (WT), and conventional power sources such as 

Diesel Generator (DG). Each type of generator is modelled to 

reflect its operational characteristics and constraints [12]. 

1. Wind Turbine Model: 

The Wind Turbine (WT) transforms kinetic energy from the 

wind into electrical energy. Among various renewable energy 

sources, wind energy boasts a high conversion efficiency. 

Nevertheless, the significant initial investment and dependence 

on weather conditions pose challenges to fully harnessing wind 

energy. Moreover, Wind speed and the electricity generated by 

WT have a nonlinear relationship. The power output of a wind 

turbine is a function of the wind speed 𝑉(𝑡) [14]. The wind 

turbine output power output is modelled as: 

    (6) 

𝑊𝑇𝑃(𝑡): Total power output from the wind turbine 

𝑊𝑇𝑁: Number of wind turbines 

𝑊𝑇𝑃𝑟: Rated power output of a single wind turbine 

𝑛𝑤: Efficiency factor or other modifier based on the wind 

turbine's performance. 

𝑉(𝑡): Wind speed at time 𝑡 

𝑉𝑐𝑖: Cut-in wind speed, or the minimum wind speed at which 

the turbine starts.    

 𝑉𝑟: Rated wind speed, or the wind speed at which the turbine 

generates its rated power. 

𝑉𝐶𝑂: Cut-out wind speed, or the maximum wind speed at which 

the turbine is designed to operate. 

2.  Diesel Generator Model: 

Enhancing the operational stability of the hybrid microgrid 

system by ensuring the load demand is met when renewable 

energy sources (RESs) are insufficient, the standalone diesel 

generator connected to the AC bus serves as a backup source. 

When the output power is low, the capacity of the generator is 

still low [39]. The diesel generator's fuel consumption 𝐹𝐷𝐺(𝑡) 

and power output 𝑃𝐷𝐺(𝑡) are modelled as [15]: 

𝐹𝐷𝐺(𝑡)  = a + b ⋅ 𝑃𝐷𝐺(𝑡)                               (7) 

Where: 

a is the fuel curve slope coefficient, and b is the fuel intercept 

coefficient are fuel consumption coefficients (L/kWh), values 

are considered to be 0.246 and 0.08415 [40]. 

3. Load Demand Model: 

The load demand 𝑃𝑙𝑜𝑎𝑑(𝑡) represents the power 

consumption at time t [41]. It can be modelled based on 

historical consumption data. The load demand equation is 

expressed as: 

𝑃𝑙𝑜𝑎𝑑(𝑡) = 𝑃𝑏𝑎𝑠𝑒(𝑡) + 𝑃𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒(𝑡)       (8) 

Where: 

• 𝑃𝑏𝑎𝑠𝑒(𝑡) is the base load demand, 

• 𝑃𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒(𝑡) is the variable load demand, which may 

depend on factors such as weather conditions and 

occupancy rates. 

Equation 8 represents the electricity demand at any time, 

dividing it into base load (constant consumption for essential 

functions) and variable load (fluctuating demand due to factors 

like weather and occupancy). The base load remains constant 

for essential functions, while the variable load changes with 

weather conditions, as heating and cooling systems consume 

more power during extreme temperatures and occupancy. rates. 

Ensuring sufficient power is available to meet the demand 

while minimizing reliance on the utility grid or expensive 

generators helps optimize microgrid operation. 

4. Microgrid Power Balance: 

To ensure stable operation [42], the microgrid must 

maintain a power balance at all times. The power balance 

equation is expressed as:  

𝑊𝑇𝑃 + 𝑃𝐷𝐺(𝑡) + 𝑃𝐺𝑟𝑖𝑑  (𝑡)  =  𝑃𝑙𝑜𝑎𝑑(𝑡)           (9) 

Where: 

𝑊𝑇𝑃: the power generated by the wind turbine. 

PDG (𝑡): the power generated by the diesel generator.  

PGrid (𝑡): the grid power. 

Pload (𝑡): the load demand. 

B. Objective functions 

Multi-objective optimization aims to optimize two or more 

objectives simultaneously and balance them to achieve the best 

possible trade-off between conflicting goals. LCOE, CO2 

emissions, and reliability are used in multi-objective 

optimization to find a Pareto front. These objectives often 

conflict, requiring trade-offs to identify optimal solutions. The 

Pareto front will show the best trade-offs were improving one 

objective may worsen another. 

C. Cost Parameters 

1.  NET PRESENT COST (NPC): 

The Net Present Cost (NPC) encompasses the fuel costs 

(FC), replacement costs (Replacement), operation and 

maintenance (O&M) expenses, and the initial investment 

associated with the DG. Although RES usually have low 

operating and maintenance costs because they don't require 

fuel, their initial construction costs can be substantial. The NPC 

is calculated as follows [43, 44]:  

∑ 𝑓𝑑𝑟 (𝐷𝑐𝑎𝑝 + 𝐷𝑟𝑒𝑝 + 𝐷𝑂&𝑀 + 𝐷𝑓𝑢𝑙𝑒)𝑡
𝑡=1         (10) 

Where: 𝑓𝑑𝑟: discount rate, 𝐷𝑐𝑎𝑝: capital cost, 𝐷𝑟𝑒𝑝: 

replacement cost, 𝐷𝑂&𝑀: Operation and maintenance, 𝐷𝑓𝑢𝑙𝑒: 

fuel cost.  

𝑓𝑑𝑟 =
1

(1+𝑓)𝑛                                 (11) 

𝑓 =
𝑓𝜄−𝑖

𝑓+𝑖
                                          (12) 

Where:𝑓 𝜄: interest rate and I represent the inflation rate.   

𝐷𝑎𝑛𝑛 = DRF(f, n) × NPC                          (13) 

 𝐷𝑎𝑛𝑛: Annual cost  

DRF(f, n) =
𝑓(1+𝑓)𝑛

(1+𝑓)𝑛−1
                            (14) 

In the proposed system, the primary energy supply comes 

from the utility grid and wind turbine generators, with diesel 
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generators serving as a backup. Figure 1 illustrates the 

flowchart of the recommended energy management strategy. 

This paper introduces four scenarios aimed at addressing the 

multi-objective problem. 

2. OBJECTIVE 1: (𝑓1) LEVELIZED COST OF ENERGY (LCOE): 

Levelized Cost of Energy (LCOE) accounts for the power 

outputs from the grid, wind turbine, and diesel generator, along 

with their respective cost coefficients, to determine the LCOE 

over a specified time horizon and calculated as follows [45]:  

𝑓2(𝑥) =
∑ (𝑃𝐺𝑟𝑖𝑑(𝑡)∙𝐶𝐺𝑟𝑖𝑑+𝑃𝑊𝑇(𝑡)∙𝐶𝑊𝑇+𝑃𝐷𝐺(𝑡)∙𝐶𝐷𝐺

𝑇
𝑡=1

∑ 𝑃𝑡𝑜𝑡𝑎𝑙
𝑇
𝑡=1

   (15) 

• 𝑃𝐺𝑟𝑖𝑑(𝑡), 𝑃𝑊𝑇(𝑡), 𝑃𝐷𝐺(𝑡): are the power outputs from 

the grid, wind turbine, and diesel generator at a given 

time, respectively. 

• 𝐶𝐺𝑟𝑖𝑑, 𝐶𝑊𝑇 , 𝐶𝐷𝐺: are the cost coefficients for each 

power source. 

3. OBJECTIVE 2: (𝑓2) GREEN HOUSE GAS MINIMIZATION: 

This study estimated greenhouse gas (GHG) emissions 

from using the grid, wind turbines, and diesel generators. 

Emissions were calculated for a baseline scenario using the grid 

and wind turbines to meet the load. This was then compared 

with a proposed system incorporating renewable and 

conventional energy sources (grid, wind turbines, and diesel) to 

determine the net savings in GHG emissions. Saudi Arabia's 

grid emission factor is approximately 0.559 kg CO2/kWh [46]. 

Wind energy generates around 0.011 kg CO2/kWh [47]. Diesel 

generators, with emissions varying based on characteristics and 

fuel, typically emit 2.4–2.8 kg CO2 per liter of diesel consumed. 

[48]. Specifically, for a diesel generator rated at 500 kW, the 

emission factor considered was 1.27 kg CO2/kWh, equivalent 

to 3.15 kg CO2/kWh [49], and 3.50 kg CO2/kWh. Carbon 

footprints can also be expressed in kg carbon and converted to 

kg CO2 by multiplying by 0.27 [50].  The overall GHG 

emission of the microgrid is expressed as: 

𝐺𝐻𝐺 = 𝐸𝐺𝑟𝑖𝑑 + 𝐸𝑊𝑇 + 𝐸𝐷𝐺                                                  (16)   

Where: 

𝐸𝐺𝑟𝑖𝑑 , 𝐸𝑊𝑇 𝐸𝐷𝐺: are the emission coefficients for each power 

source. 

4. OBJECTIVE 3: RELIABILITY (𝑓3): 

The reliability of the microgrid system is assessed using the 

Loss of Power Supply Probability (LPSP). LPSP is a statistical 

measure that indicates the probability of the power supply 

failing to meet the load demand due to technical issues or 

insufficient energy production. The LPSP value ranges from 0 

to 1 and is calculated using the following equation [51, 52]: 

𝐿𝑃𝑆𝑃 % =
∑ (𝑃𝑑𝑒𝑚𝑎𝑛𝑑(𝑡)−𝑃𝑔𝑟𝑖𝑑(𝑡)+𝑃𝑊𝑇(𝑡)+𝑃𝐷𝐺(𝑡))𝑇

𝑡=1

∑ 𝑃𝑑𝑒𝑚𝑎𝑛𝑑
𝑇
𝑡=1 (𝑡)

 (17)                                                                                                                  

Where:  

𝑃𝑑𝑒𝑚𝑎𝑛𝑑(𝑡): represents the load demand at time (𝑡). 

𝑃𝑔𝑟𝑖𝑑(𝑡): Power supplied by the utility grid at time (𝑡). 

𝑃𝑊𝑇(𝑡): power generated by wind turbines at time (𝑡). 

𝑃𝐷𝐺(𝑡): power generated by diesel generators at time (𝑡). 

The LPSP is evaluated under the condition that the total load 

demand exceeds the combined energy generation from all 

sources 

𝑃𝑑𝑒𝑚𝑎𝑛𝑑(𝑡) >  𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒(𝑡)                             (18) 

Where: 𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒(𝑡) represents the total power generated at 

time (𝑡) from all available power sources.  

D. Constraints 

The objectives functions are restricted by the constraints set 

forth by the specified limitations provided. 

1. LIMITS OF DECISION VARIABLES: 

Boundaries of decision variables are a critical aspect to 

consider in the realm of decision-making. 

𝑁𝑦
𝑚𝑖𝑛 ≤ 𝑁𝑦 ≤ 𝑁𝑦

𝑚𝑎𝑥, 𝑦 ∈ {𝐺𝑟𝑖𝑑, 𝑊𝑇, 𝐷𝐺}             (19) 

Where: 𝑁𝑦 represents the number of components 𝑦. 

The determination of upper and lower limits for decision 

variables is inherently problem-specific, shaped by factors like 

the search space complexity and the number of variables. 

Optimization algorithms often establish these boundaries 

through iterative refinement and trial and error. 

2. ENERGY BALANCE CONSTRAINT: 

The energy balance constraint is the fundamental equation 

governing the entire optimization problem. It ensures that at 

any given time 𝑡, the total power generated and stored must 

meet the demand for power plus any losses in the system [53]. 

The following equation can express this: 

𝐸𝑔𝑟𝑖𝑑(𝑡) + 𝐸𝑊𝑇(𝑡) + 𝐸𝐷𝐺(𝑡) ≥ 𝐸𝑙𝑜𝑎𝑑(𝑡)              (20) 

Where: 𝐸𝑔𝑟𝑖𝑑(𝑡): Energy from the utility grid at time (𝑡). 

𝐸𝑊𝑇(𝑡): Energy generated by wind turbines at time (𝑡). 

𝐸𝐷𝐺(𝑡): Energy generated by diesel generator at time (𝑡). 

Essentially, this equation states that the sum of all energy 

generation sources must equal the sum of the load demand. This 

constraint ensures that the power system remains stable and 

avoids situations such as blackouts caused by insufficient 

power generation or overloading of the grid. 

3. GENERATOR OPERATIONAL LIMITS RAINT: 

The energy balance constraint ensures the overall system 

remains stable, but each generator also has its own operational 

limits that must be respected [54]. These limits are crucial for 

guaranteeing the safe and efficient operation of the generators 

and extending their lifespan. The following equations represent 

these constraints: 

0 ≤ 𝐸𝑊𝑇(𝑡) ≤  𝐸𝑊𝑇 , 𝑚𝑎𝑥                                 (20) 

0 ≤ 𝐸𝐷𝐺(𝑡) ≤  𝐸𝐷𝐺𝑚𝑎𝑥                                 (21) 

Where: 𝑚𝑎𝑥 represents the maximum energy output capacity 

of that generator type. These constraints essentially define each 

generator's operating range.  

4. PROPOSED FRAMEWORK: 

Microgrids encounter the intricate challenge of optimizing 

their operations by balancing three critical objectives: cost, 

emission reduction, and reliability. An effective Energy 

Management Operations Strategy (EMOS) tackles this 

"trilemma" by testing various scenarios, prioritizing one 

objective while ensuring the others are adequately balanced. 

This strategy is especially crucial in systems where data 

includes detailed information on the energy costs of different 

power sources. 
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Fig. 2. Proposed Framework for Microgrid Energy Management 

 

The framework depicted in the figure employs data 

acquisition to monitor load demand, meteorological conditions, 

and the rated power of all energy sources to evaluate the current 

operating state. This information is then processed by the 

Modified Firefly Algorithm (MFA), which uses predefined 

decision variables such as the Grid, Wind Turbine (WT), and 

Diesel Generator (DG), as shown in Figure 2. 

MFA functions as the central controller, regulating the 

distribution of electricity between various power sources and 

the load demand. It interfaces with the Main Service Panel, 

which is responsible for distributing power to the load and the 

grid. Data acquisition tools are employed to gather information 

from the utility grid, weather forecasts, energy prices, and the 

operational status of renewable energy sources [55-58]. Wind 

turbines contribute to renewable energy production, while the 

diesel generator serves as a backup power source. Their outputs 

are managed dynamically to optimize efficiency and reliability. 

This proposed energy management framework integrates 

MFA's technologies and optimization algorithms to achieve a 

balance between cost minimization, emission reduction, and 

reliability enhancement. This comprehensive solution is 

designed to meet the unique energy requirements of a university 

campus, promoting sustainable energy management and 

operational excellence. 

V. IMPLEMENTATION 

The Modified Firefly Algorithm (MFA) was implemented in 

MATLAB 2024 a. The algorithm defines objective functions 

such as levelized cost of Energy (LCOE), greenhouse Gas 

(GHG), and reliability. 

A. Data visualization 

1. WIND SPEED: 

Leveraging wind speed data in Saudi Arabia, a viable and 

sustainable solution for generating wind power has been 

identified for Yanbu City, where the average wind speed 

reaches 8 m/s. [33]. The graph displays the wind speed data for 

one year. The x-axis represents time, and the y-axis displays 

wind speed in meters per second (m/s). Figure 3 highlights clear 

seasonal differences, with higher wind speeds occurring in the 

first half of the year, especially around February to May and 

from September to December, reaching peaks of approximately 

12–13 m/s. The average wind speed through the year ranges 

from 6 to 8 m/s. The data shows a consistent annual pattern of 

fluctuating wind speeds, characterized by distinct monthly 

peaks and valleys. 

 

 
Fig. 3. Annual wind Speed of the site. 

 

This visualization is crucial for optimizing wind energy 

generation strategies in several ways: Analyzing wind patterns 

can help integrate wind turbines more effectively, thereby 

reducing dependence on diesel generators. Operating turbines 

primarily during periods of high wind, such as February, 

minimizes the need for backup power sources and results in 

significant cost savings. Coordinating wind turbine operations 

with high wind periods, particularly from November to March, 

optimizes energy capture and efficiency. 

2. LOAD DEMAND: 

Figure 4 illustrates variations in power use by looking at the 

load demand over a whole year. This evaluation uses a dataset 

that details the hourly load demand in kilowatts (KW) 

throughout the year. Each month's load demand is depicted in a 

different color, allowing for a clear visual comparison of the 

power consumption patterns over time. Load demand 

experiences notable peaks and troughs all year long. For 

instance, peak load demand can be observed reaching up to 

approximately 30 KW, particularly during the mid-year 

months. This indicates periods of high energy consumption, 

which might be due to increased activity or specific seasonal 

requirements. 

This detailed visualization helps to understand the school 

building's dynamic energy consumption patterns, identifying 

peak demand periods and highlighting seasonal variations. 

Such insights are crucial for optimizing energy management 

strategies, improving resource allocation, and potentially 

implementing demand response measures to enhance the 

facility's power usage efficiency and sustainability. 
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Fig. 4. Lload profile. 

B. Specifications of Microgrid Components 

Table 2 Presents an overview of the technical and financial 

criteria selected for the components of the microgrid system. 

[59-62]. 

 
TABLE 2. Technical and financial criteria of microgrid components. 

Component Parameter Value Unit 

W
T

 

Model Kingspan Renewables  
Rated power 6 KW 

Cut-in wind 
speed 3.5 m/s 

Number of blades 3 - 

Lifetime 20+ Year 

Capital Cost 1300 ($/kW) 

Replacement 
Cost 1300 ($/kW) 

Maintenance 

Cost 56 ($/kW) 

D
G

 

Rated power 1 KW 

Lifetime 50,000 Hours 

Capital Cost 1000 ($/kW) 

Replacement 

Cost 1000 ($/kW) 

Diesel Fuel 0.33 ($/L) 

replacement and 

maintenance Cost 1000 ($/kW) 

VI. RESULTS AND DISCUSSION 

Four scenarios of power source configurations were 

evaluated using both the Original and Modified Firefly 

Algorithms (MFA) It has been observed that the MFA 

consistently outperformed the Original FA when it came to the 

reduction of the Net Present Cost (NPC) and the improvement 

of the Levelized Cost of Energy (LCOE) while ensuring or 

improving reliability in all scenarios (Figures 5-8). 

A. Scenario 1: Grid, 6 KW wind power and 1KW of DG 

In Scenario 1 (Figure 5 a and b), integrating a capacity of 6 

KW wind turbine with a 1 KW diesel generator, the MFA 

reduced NPC significantly compared to the Original FA, 

demonstrating its efficiency in mixed energy systems. 

B. Scenario 2: Grid, 6 KW wind power 

Scenario 2 (Figure 6 a and b), using a grid and a capacity of 

6 KW wind turbine, showed that MFA lowered costs and 

improved environmental metrics more effectively than the 

Original FA. 

 
Fig. 5. a Optimization results for MFA-Scenario 1, where the lift figure 

represents the tradeoff between LCOE, CO2 emissions and Reliability and 
right figure represents NPC. 

 

 
Fig. 5. b Optimization results for MFA-Scenario 1, where the lift figure 

represents the tradeoff between LCOE, CO2 emissions and Reliability and 

right figure represents NPC 
 

 
Fig. 6. a Optimization results for FA-Scenario 2, where the lift figure 

represents the tradeoff between LCOE, CO2 emissions and Reliability and 
right figure represents NPC. 

 

 
Fig. 6. Optimization results for MFA-Scenario 2, where the lift figure 

represents the tradeoff between LCOE, CO2 emissions and Reliability and 
right figure represents NPC. 

C. Scenario 3: Grid, 18KW wind power and 1KW, of DG 

For Scenario 3 (Figure 7 a and b), which included a capacity 

of 18 KW wind turbines and a 1 KW diesel generator, the MFA 

continued to show better results than the Original FA. 
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Fig. 7. a Optimization results for FA-Scenario 2, where the lift figure 

represents the tradeoff between LCOE, CO2 emissions and Reliability and 

right figure represents NPC. 

 

 
Fig. 7. b Optimization results for FA-Scenario 2, where the lift figure 

represents the tradeoff between LCOE, CO2 emissions and Reliability and 
right figure represents NPC. 

D. Scenario 4: Grid, 18kW wind power 

In Scenario 4 (Figure 8 a and b), pairing the grid with an 18 

KW wind turbine, the MFA delivered the most substantial cost 

reduction, showcasing its superior performance in systems 

relying solely on renewable energy. 

 

 
Fig. 8. a Optimization results for FA-Scenario 2, where the lift figure 

represents the tradeoff between LCOE, CO2 emissions and Reliability and 

right figure represents NPC. 

 

 
Fig. 8. b Optimization results for FA-Scenario 2, where the lift figure 

represents the tradeoff between LCOE, CO2 emissions and Reliability and 

right figure represents NPC. 

 

Overall, the MFA demonstrated superior performance 

across all scenarios by effectively reducing costs and enhancing 

environmental outcomes, outperforming the Original FA in key 

multi-objective metrics: NPC, LCOE, CO2 Emission, and 

Reliability, as illustrated in Table 3. 

 
TABLE 3. Cost and environmental results of optimum energy sources obtained with FA and MFA 

Scenario  Power source 

Multi-Objectives  

NPC ($) LCOE ($/KWh) CO2 Emission (Kg) Reliability 

FA MFA FA MFA FA MFA FA MFA 

1 Grid, 6KW wind and 1KW DG  69158900 33761100 0.11 0.3 18565300 3070850 0.95 1 

2 Grid and 6KW wind 78593500 41573200 0.12 0.36 21786600 6398540 0.94 1 

3 Grid, 18 KW wind and 1KW DG 85069700 55685400 0.13 0.12 10078000 8461208 0.97 1 

4 Grid and 18KW wind  92088200 55805700 0.14 0.13 12302200 9159180 0.97 1 

 

In the multi-objective optimization of the hybrid energy 

system, the Modified Firefly Algorithm (MFA) demonstrated 

considerable improvements over the traditional Firefly 

Algorithm (FA) across various performance aspects, including 

Net Present Cost (NPC), Levelized Cost of Energy (LCOE), 

CO2 emissions, and system reliability. Since the optimization 

process simultaneously considers multiple objectives, MFA 

showed a trade-off where some objectives improved 

significantly while others worsened. For instance, MFA 

consistently reduced NPC across all scenarios, achieving 

reductions between 34.5% and 51.2%, indicating a more cost-

efficient energy solution. However, this cost efficiency came 

with an increased LCOE in some scenarios, with MFA showing 

some increase in scenarios 1 and 2, respectively. Despite the 

higher LCOE, MFA significantly reduced CO2 emissions by 

16% to 83.5%, highlighting its effectiveness in minimizing 

environmental impact. Furthermore, MFA consistently 

improved system reliability, achieving 100% in all scenarios, 

compared to FA's reliability range of 94% to 97%. Overall, the 

MFA provides a more balanced optimization solution, 

effectively reducing costs and emissions while enhancing 

reliability, resulting in an overall improvement of 

approximately 16 % compared to the conventional FA. 

E. Performance evaluation of MFA 

The performance metrics evaluation of Pareto solutions 

obtained from the Modified Firefly Algorithm (MFA) indicates 

a diverse set of optimal solutions across scenarios as in Table 4. 

Statistical analysis of the Pareto front reveals a range of values 

for each metric, showcasing variability in the trade-offs 

achieved. The metrics, including minimum, maximum, range, 

standard deviation, and mean, illustrate the algorithm's 

capability to explore and balance different performance aspects 

effectively. This evaluation underscores the MFA's proficiency 



 International Journal of Scientific Engineering and Science 
Volume 8, Issue 9, pp. 40-51, 2024. ISSN (Online): 2456-7361 

 

 

49 

http://ijses.com/ 

All rights reserved 

in providing a broad spectrum of solutions, reflecting its 

robustness in addressing multiple objectives simultaneously. 

 
TABLE 4. Performance metrics evaluation of Pareto solutions obtained by the 

modified FA in the four scenarios. 
Scenario metrics Min. Max. range STD. Mean 

Scenario 1 

LCOE 0.0534 0.3184 0.2650 0.0261 0.0552 

Reliability 0.9850 1 0.0150 0.0012 0.9851 

CO2 

Emission 
1.3065 6.07009 4.76 0.389 1.34 

Scenario 2 

No DG 

LCOE 0.0656 0.368 0.3024 0.0242 0.0677 

Reliability 0.9828 1 0.0172 0.0014 0.9829 

CO2 

Emission 
0.96 6.3985 5.4369 0.4439 0.99 

Scenario 3 

LCOE 0.0879 0.1276 0.0397 0.0032 0.0882 

Reliability 0.997 1 0.0023 0.0002 0.9978 

CO2 

Emission 
1.319 8.4614 7.1415 0.5831 1.3681 

Scenario 4 

LCOE 0.08881 0.1323 0.0442 0.0036 0.0884 

Reliability 0.9975 1 0.0025 0.002 0.9975 

CO2 

Emission 
1.2073 9.159 7.9525 0.6493 1.2610 

VII. CONCLUSION  

The Modified Firefly Algorithm (MFA) demonstrated a 

clear advantage over the traditional Firefly Algorithm (FA) in 

optimizing hybrid energy systems by effectively balancing 

multiple objectives such as cost efficiency, environmental 

impact, and system reliability. It demonstrates MFA's ability to 

provide cost-effective solutions in all scenarios by consistently 

reducing Net Present Cost (NPC) by 34.5% to 51.2%. 

Considering this trade-off, future implementations must 

consider this cost reduction along with an increase in the 

levelized cost of energy (LCOE). Future implementations need 

to consider this trade-off. Despite this, the algorithm's reduction 

in CO2 emissions by 16% to 83.5% reinforces its potential in 

contributing to more environmentally sustainable energy 

systems. The MFA's ability to achieve 100% system reliability 

across all scenarios, compared to the FA's reliability range of 

94% to 97%, further underscores its effectiveness in ensuring 

stable and dependable energy systems. Moreover, the 

comprehensive performance evaluation of Pareto-optimal 

solutions illustrates the MFA's versatility and robustness in 

addressing diverse optimization goals simultaneously. Overall, 

the MFA presented a powerful tool for hybrid energy system 

optimization, achieving substantial improvements in cost 

reduction, environmental impact, and reliability. Future 

research should explore the MFA's application in more complex 

systems, refining its ability to balance trade-offs and optimize 

performance under varying conditions. This would further 

enhance its potential as a key algorithm for advancing 

sustainable energy solutions.  
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