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Abstract— This paper presents a novel approach for determining the optimal sizing of solar off-grid microgrids through the utilization of a 

modified Firefly Algorithm (FA). Off-grid microgrids, powered primarily by solar photovoltaic (PV) systems, offer a sustainable solution for 

providing electricity to remote areas. However, the optimal design and sizing of such microgrids remain a challenging task due to the dynamic 

nature of renewable energy sources and varying energy demands. In this study, a Modified Firefly Algorithm (MFA) has been designed especially 

for optimizing the sizing of solar off-grid microgrids. MFA improves the convergence speed and solution quality, even in a complex multi-objective 

optimization problem. The effectiveness of the proposed approach is demonstrated through a case study involving the design and optimization of 

a solar off-grid microgrid. Comparative analysis with standard firefly algorithm (FA) illustrates that Modified Firefly Algorithm (MFA) achieves 

optimal sizing solutions with improved efficiency and accuracy. The findings of this research contribute to advancing the design and 

implementation of sustainable energy solutions powered by renewable energy sources. 
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I. INTRODUCTION 

The increasing demand for reliable and sustainable energy 

solutions has increased interest in off-grid microgrids powered 

by solar photovoltaic (PV) systems. These microgrids offer a 

good alternative for providing electricity to remote areas and 

underserved communities where access to the main power grid 

is limited or non-existent [1], [2]. However, the design and 

optimization of solar off-grid microgrids is challenging due to 

the intermittent of energy sources and the variation in energy 

demands. Al-Shahri, et al. [3] presented a comprehensive 

review of challenges and issues in optimization of PV systems. 

Size Optimization of photovoltaic (PV) systems has several 

challenges that include: 

a) Limited available space, especially in urban areas or on 

existing structures like rooftops, can restrict the size of PV 

systems and make optimization challenging. 

b) Determining the optimal size requires accurately estimating 

energy demand, which can vary seasonally, daily, or even 

hourly, depending on factors such as weather, and energy-

consuming activities. 

c) As the size of the PV system increases, the complexity of 

design, installation, and maintenance also grows, requiring 

more sophisticated engineering and management solutions. 

d) Solar energy generation is intermittent and variable due to 

factors such as cloud cover, and shading making it 

challenging to accurately predict the optimal system size to 

match energy demand. 

e) Balancing the upfront costs of installing a larger PV system 

with the long-term benefits of increased energy production 

and savings can be challenging, especially when 

considering factors such as financing options, incentives, 

and payback periods. 

f) The efficiency and performance of PV technology may 

impose limitations on the size optimization of PV systems, 

as higher efficiency panels or advanced technologies may 

be more expensive or less readily available. 

g) Larger PV systems may require more frequent maintenance 

and operational monitoring to ensure optimal performance, 

adding to the overall complexity and cost of system 

optimization. 

Achieving optimal sizing of components such as solar 

panels, batteries, and inverters is crucial to ensure the cost 

effectiveness, reliability and performance of these microgrid 

systems. Mathew, Mobi, et al. [4] presented a comprehensive 

review of various methods for sizing approaches for PV 

systems.  

The optimal design of PV systems has important 

implications for the design and implementation of sustainable 

energy solutions. This will pave the way for the widespread use 

of solar-powered microcomputers as an efficient way to power 

remote and remote locations. 

Ridha, et al. [5] presented the advantages of optimized PV 

system. Optimizing the design of photovoltaic (PV) systems 

can offer numerous advantages, including: 

a) Optimized designs ensure that the PV system is configured 

to capture the maximum amount of sunlight available at a 

specific location, leading to higher energy generation. 

b) By fine-tuning the design parameters such as panel 

orientation, tilt angle, and system layout, efficiency can be 

maximized, resulting in better overall performance. 

c) Optimized designs can help reduce overall system costs by 

minimizing unnecessary components, optimizing the use of 

materials, and maximizing energy production per unit cost. 

d) Higher energy production and lower costs result in 

improved Return on Investment, making the investment in 

PV systems more financially attractive over the system's 

lifespan. 

e) Optimal design ensures efficient use of available space, 

whether it's a rooftop, ground area, or integrated into 

building architecture, allowing for the installation of more 

panels and increased energy output. 

f) A well-designed PV system considers factors such as 

weather conditions, shading, and system layout to minimize 
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potential sources of degradation or failure, leading to 

increased reliability and longevity. 

g) Optimal designs are often scalable and can be adapted to 

various scales and applications, allowing for flexibility in 

system size and configuration based on specific needs and 

constraints. 

h) Optimized PV designs can be seamlessly integrated with 

energy storage systems, allowing for better utilization of 

generated energy and increased self-consumption, further 

enhancing the economic viability of solar power. 

II. LITERATURE REVIEW 

Researchers have developed numerous problem-solving 

techniques for solving complex engineering problems. In 

general, these methods can be divided into two main categories 

i.e. heuristics and meta-heuristics. Heuristics are problem-

solving techniques that aim to find satisfactory solutions 

quickly when an exhaustive search is impractical. They are 

practical rules of thumb that guide decision-making processes, 

often relying on experience, intuition, or common sense rather 

than a systematic algorithmic approach. Heuristics are useful in 

situations where finding an optimal solution is computationally 

expensive or impossible.  

Metaheuristics, on the other hand, are higher-level strategies 

used to optimize heuristic methods [6]. They provide a 

framework for guiding the exploration of the solution space, 

often borrowing concepts from nature, such as genetic 

algorithms, simulated annealing, or particle swarm 

optimization. Metaheuristics offer a more systematic approach 

to problem-solving compared to heuristics alone, enabling the 

efficient exploration of large solution spaces and the discovery 

of near-optimal solutions for complex problems [7]. Fig. 1 

shows some well-known heuristic and meta heuristic 

techniques from the literature. 
 

 
Fig 1. Problem Solving Techniques. 

 

Traditional methods for sizing off-grid microgrids often rely 

on heuristic approaches or simulation-based techniques. Fioriti, 

Davide, et al. [8] and Bektas, Zeynep, et al. [9] presented 

heuristic approaches to size microgrid while considering 

multiple design options. These options may not always result in 

the most efficient or cost-effective solutions. To address this 

issue, optimization algorithms have emerged as powerful tools 

for determining the optimal configuration of microgrid 

components. 

Khan, Baseem, et al. [10] presented a comprehensive 

analysis for selecting meta heuristic technique to smart 

microgrid optimization problem. Gao, Kaiye, et al. [11] well 

elaborated the optimization of microgrid operation along with 

its sub components. They also highlighted that genetic 

algorithms and simulated annealing algorithms are the most 

commonly used optimization algorithms for microgrid 

operations. S. Leonori, et al. [12] used genetic algorithm for 

optimization of energy management of microgrid. Diab, Ahmed 

A. Zaki, et al. [13] presented to minimize the cost of energy 

(COE) supplied by the system while increasing the reliability 

and efficiency of the system due to the loss of power supply 

probability (LPSP). [13] compared results of Whale 

Optimization Algorithm (WOA), Water Cycle Algorithm 

(WCA), Moth-Flame Optimizer (MFO), and Hybrid particle 

swarm-gravitational search algorithm (PSOGSA) for designing 

the optimized microgrid. 

Among these algorithms, the Firefly Algorithm (FA) has 

garnered attention for its ability to efficiently solve complex 

optimization problems inspired by the flashing behavior of 

fireflies in nature. Vasanth, J. Deepak, et al. [14] used firefly 

algorithm for minimization of operational cost of a microgrid. 

Ibrahim, Ibrahim M.et al. [15] integrated Particle Swarm 

Optimization (PSO) with Firefly Algorithm (FA) i.e. a hybrid 

form of firefly algorithm for finding optimal size of microgrid 

system. Problem is implemented in MATLAB and the main 

objective of the proposed study is to obtain the optimal size of 

the MG system which minimizes the total costs and the total 

emissions. Yang, YuDe et al. [16] presented an improved meta 

heuristic optimization algorithm based on the firefly algorithm, 

called multidimensional firefly algorithm (MDFA), for solving 

day-ahead scheduling optimization in a microgrid. 

Based on the literature review, it has been observed that 

firefly algorithm has gathered immense attention of researchers 

for solving multiple problems related to microgrid parametric 

optimization. This paper introduces a novel approach for the 

optimal sizing of solar off-grid microgrids using a modified 

Firefly Algorithm. The proposed algorithm is tailored to 

address the specific challenges associated with optimizing the 

design of off-grid microgrids, including the integration of 

multiple objectives such as system cost, reliability, and 

performance. By leveraging the unique characteristics of the 

Firefly Algorithm and incorporating enhancements to improve 

convergence speed and solution quality, the proposed approach 

aims to overcome the limitations of existing optimization 

techniques and provide more accurate and efficient solutions. 

Through a comprehensive case study, this research 

demonstrates the effectiveness of the modified Firefly 

Algorithm in optimizing the sizing of solar off-grid microgrids. 

Comparative analysis with other optimization methods 

showcases the superiority of the proposed approach in 

achieving optimal solutions that meet the diverse requirements 

of off-grid electrification projects. The findings of this study 

have significant implications for the design and implementation 
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of sustainable energy solutions, paving the way for the 

widespread adoption of solar off-grid microgrids as a viable 

means of electrifying remote and off-grid communities. 

III. PROBLEM FORMULATION 

Problem formulation and modeling for size optimization of 

a microgrid PV system involves defining the key variables and 

constraints to achieve optimal performance, considering the 

subsystems of the PV system [17]. These subsystems typically 

include photovoltaic panels, inverters and batteries or possibly 

backup generators [18]. Each subsystem introduces its own set 

of parameters and limitations that are integrated into the 

optimization model. For instance, the capacity and efficiency of 

the photovoltaic panels, the efficiency and power rating of the 

inverters, the storage capacity and efficiency of the batteries, 

and the constraints on backup generator usage all influence the 

overall system design. Balancing these factors requires careful 

consideration of the interplay between energy generation, 

storage, and distribution within the microgrid, aiming to 

maximize efficiency, minimize costs, and ensure reliable power 

supply under various operating conditions [19]. PV system has 

been modeled using following equations from [20]. 

The output power of a PV module is estimated from (1) 

based on the solar irradiation at time t, and the efficiency of the 

PV module is given by (2). 

𝑃𝑃𝑉(𝑡) = 𝜂𝑃𝑉 . 𝐴𝑃𝑉 . 𝐺(𝑡)   (1) 

𝜂𝑃𝑉 = 𝜂𝑆𝑇𝐶 . 𝜂𝑀𝑃𝑃𝑇[1 − 𝛼(𝑇𝐶 − 𝑇𝐴𝑇𝐶)] (2) 

where 𝐴𝑃𝑉 is the area of a PV module in (m2 ), G(t) is the hourly 

total solar irradiance in (W/m2 ), 𝜂𝑃𝑉 is the efficiency of the PV 

array, 𝜂𝑆𝑇𝐶 is reference efficiency of the PV cell at standard 

temperature condition (STC), 𝜂𝑀𝑃𝑃𝑇  is the efficiency of the 

maximum peak power tracker, 𝑇𝐶  is the temperature of the PV 

cell in (˚C), 𝑇𝑆𝑇𝐶  is the reference temperature of the PV cell at 

STC (25˚C), and α is the temperature coefficient of the PV cell 

(typically 0.4%/˚C – 0.6%/˚C for silicon cells). 

The discharging and charging energies of the ESS at time t 

can be obtained from (3) and (4), respectively. 

𝐸𝐸𝑆𝑆
𝑑 (𝑡) = 𝐸𝐸𝑆𝑆(𝑡 − 1) −

[𝐸𝐿𝑜𝑎𝑑(𝑡)−𝐸𝑃𝑉(𝑡)−𝐸𝑊𝑇(𝑡)]

𝜂𝑑
          (3) 

𝐸𝐸𝑆𝑆
𝑐 (𝑡) = 𝐸𝐸𝑆𝑆(𝑡 − 1) + [𝐸𝑃𝑉(𝑡) + 𝐸𝑊𝑇(𝑡) − 𝐸𝐿𝑜𝑎𝑑(𝑡)]. 𝜂𝑐   

(4) 

where 𝐸𝐸𝑆𝑆(𝑡 − 1) is the energy at time 𝑡 − 1 in (kWh); 

𝐸𝑃𝑉 , 𝐸𝑊𝑇 , 𝐸𝐿𝑜𝑎𝑑 are the PV energy, WT energy and load 

energies, respectively; 𝜂𝑑 and 𝜂𝑐 are the discharge and charge 

efficiencies of the ESS, respectively. 

Loss of power supply (when demand exceeds the energy 

generated) can be expressed as: 

𝐿𝑃𝑆(𝑡) = 𝑃𝐿𝑜𝑎𝑑(𝑡) − [𝑃𝑃𝑉(𝑡) + 𝑃𝑊𝑇(𝑡) + 𝑃𝐸𝑆𝑆
𝑑 (𝑡)]. 𝜂𝑖𝑛𝑣      (5) 

where 𝜂𝑖𝑛𝑣 is the efficiency of the inverter. The Loss of Power 

Supply Probability (LPSP) for a given time period T can be 

defined as the ratio of all LPS (t) values for that period to the 

sum of the load demands as in (6). 

𝐿𝑃𝑆𝑃 =
∑ 𝐿𝑃𝑆(𝑡)𝑇

𝑡=0

∑ 𝑃𝐿𝑜𝑎𝑑(𝑡)𝑇
𝑡=0

=
∑ 𝑃𝑜𝑤𝑒𝑟 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑇𝑖𝑚𝑒𝑇

𝑡=0

𝑇
             (6) 

After the modeling PV systems, firefly and modified firefly 

algorithm [21] has been used to find the optimum solution for 

the desired problem. For firefly algorithm, the main update 

formula for any couple of two fireflies i and j at 𝑥𝑖 , 𝑥𝑗 , is:  

𝑥𝑖
𝐼𝑡𝑟+1 = 𝑥𝑖

𝐼𝑡𝑟 + 𝛽(𝑥𝑖
𝐼𝑡𝑟 − 𝑥𝑗

𝐼𝑡𝑟) + 𝛼𝜖𝑖
𝐼𝑡𝑟             (7)  

where α is a parameter controlling the step size, 𝛽 =  𝛽0𝑒−𝛾𝑟2
 

is the attractiveness with 𝛽0 represents the attractiveness at 

distance (𝑟 = 0) and 𝛾 represents the light absorption 

coefficient. 𝜖𝑖 is randomization where the vector of random 

variables being drawn from a distribution (e.g., Gaussian 

distribution). The distance between any pair of fireflies i and j 

at 𝑥𝑖 , 𝑥𝑗 , can be the Cartesian distance 𝑟𝑖𝑗 .  

These equations show that FA is dependent upon three 

tunable parameters i.e. 𝛼, 𝛾 and 𝜖. It is too difficult to tune these 

parameters manually. In modified FA, these parameters are 

updated adaptively. In this case tunable parameters can be 

calculated using the following equations. 

𝛼(𝐼𝑡𝑟𝑖) = exp ( 1 − (
𝐼𝑡𝑟𝑚𝑎𝑥

 𝐼𝑡𝑟𝑚𝑎𝑥− 𝐼𝑡𝑟𝑖
)

𝑐

)                      (8) 

𝛽 =  𝛽0𝑒−𝛾𝑟2
                                                     (9) 

𝑟 = ‖𝑥𝑖 − 𝑥𝑗‖                              (10) 

𝛾(𝐼𝑡𝑟𝑖) = 1 − exp ( 1 − (
𝐼𝑡𝑟𝑚𝑎𝑥

 𝐼𝑡𝑟𝑚𝑎𝑥− 𝐼𝑡𝑟𝑖
)

𝑐

)                 (11)  

where c represents the integer number to determine the speed 

of decaying. In the search process, two updating equations are 

explained and chosen randomly and are presented as: 

𝑥𝑖+1 = {
𝛽(𝑖)𝑥𝑖 + 𝑥𝑗(1 − 𝛽(𝑖)) + 𝛼(𝑖)𝜖𝑖  𝑟𝑎𝑛𝑑 > 0.5

𝑁𝐺−𝑖

𝑁𝐺
(1 − 𝛿)𝑥𝑖 + 𝛿𝑥𝑏𝑒𝑠𝑡 𝐸𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

      (12) 

where δ represents the gray coefficient and NG is the number 

of generations. 

TABLE I, TABLE II and TABLE III show the key 

parameters of PV panels, inverter and BSS of microgrid system. 
 

TABLE  I. PV parameters. 

Parameter Value Units 

Area of Panel 2.9094 m2 

Rated Capacity 0.66 KW 

Temperature Coefficient -0.34 % / C 

Operating Temperature 43 C 

Efficiency 0.2125 % 

Panel Lifetime 25 Years 

Capital Cost 147 $/KWh 

Replacement Cost 110 $/KWh 

Operational / Maintenance Cost 10 $/Year 

 
TABLE  II. Inverter parameters. 

Parameter Value Units 

Capacity 100 KWh 

Lifetime 25 Year 

Capital Cost 280 $ 

Replacement Cost 280 $ 

Operational / Maintenance Cost 10 $/KW 

Loss of Power Supply Probability (LPSP)  0.01,0.1 --- 

 

TABLE  III. BSS parameters. 

Parameter Value Units 

Nominal Voltage 600 V 

Nominal Power Capacity 100 KWh 

Nominal Current Capacity 167 Ah 

Round Trip Efficiency 90 % 

Maximum Charge Current 167 A 

Initial State of Charge 100 % 
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Minimum State of Charge 20 % 

Maximum Discharge Current 500 A 

Lifetime 5 Year 

Capital Cost 100 $/KW 

Replacement Cost 100 $/KW 

Operational / Maintenance Cost 10 $/KW 

IV. PROPOSED ALGORITHM 

The goal is to minimize the total cost of the microgrid 

configuration, including initial investments and operational 

expenses, while ensuring system reliability through a low Loss 

of Power Supply Probability (LPSP). Amara, et al. [22], Azaza, 

et al. [23] and Huang et al. [24] used LPSP as a technical 

reliability criteria while optimizing microgrid sizing.  The 

challenge lies in the complex, nonlinear nature of the problem, 

influenced by variable energy demands, renewable energy 

supply and many other operational and technical challenges as 

highlighted by Azeem, et al. [25], Saeed, et al. [26] and 

Choudhury, et al. [27].  

The FA mimics the attraction behavior of fireflies, where 

each firefly represents a potential solution, moving towards 

brighter ( more optimal) [28]. The algorithm's simplicity is 

balanced by its innovative approach to solution search, with 

attractiveness based on the inverse of the objective function 

(total cost) [29]. TABLE IV shows the pseudocode of standard 

firefly algorithm. 

 
TABLE  IV. Pseudocode for standard firefly algorithm. 

function FireflyAlgorithm(𝑝𝑟𝑜𝑏𝑙𝑒𝑚) returns a 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

𝑋 ← initialize fireflies with random state 

for each Gen do 

  for each ith Firefly do 

       for each jth Firefly do 

     if fitness(ith Firefly) > fitness(jth Firefly) then 

 𝑟 ←  Euclidian distance b/w ith and jth firefly 

 𝛽 ←  Attractiveness based on 𝑟 

 𝑠𝑡𝑒𝑝 ←Calculate step size based on 𝛼 

 𝑝 ←random number b/w 0~1 

 if p > 0.5 then Update firefly position based on 𝛽 

 else Update firefly position based on bestfitness 

       Update fitness of ith firefly 

Solution ←firefly with best fitness 

        return solution 

 

Khan, et al. [29],  Kumar, et al. [30] and Tilahun, et al. [31] 

presented a comprehensive review on firefly algorithm and its 

modified form that researches proposed for enhancing FA 

performance. Enhancing the standard FA, the MFA 

incorporates additional strategies like local search mechanisms 

to improve solution quality and convergence speed. This 

approach is designed to address the FA's limitations, such as 

premature convergence and exploration inefficiency. Fig. 2 

shows the flowchart of standard FA along with proposed MFA. 

V. RESULTS AND DISCUSSIONS 

Several parameters govern the functioning of firefly 

algorithm, each playing a crucial role in determining its 

efficiency and effectiveness. The light absorption coefficient 

(γ) regulates the attractiveness of fireflies towards each other, 

influencing their movement towards brighter individuals in the 

search space. The attractiveness can be adjusted to control 

exploration and exploitation, balancing the exploration of new 

regions with the exploitation of promising solutions. The step 

size coefficient (α) controls the degree of randomness in 

fireflies' movement, allowing for a balance between exploration 

and exploitation. Additionally, the population size and 

maximum number of iterations are crucial parameters that affect 

the algorithm's convergence and computational efficiency. 

Fine-tuning these parameters is essential to achieve optimal 

performance in solving various optimization problems. 

Fig. 3 illustrates the system configuration where FA and 

MFA were applied to optimize the system using load and 

meteorological data obtained from previous research [32].  

In this study, two scenarios were examined based on the 

LPSP values of 0.01 and 0.1. Both scenarios utilized identical 

initial settings for the algorithms, including the number of 

fireflies, problem dimensions, and maximum generations as 

detailed in TABLE V. 
 

TABLE V. Algorithm parameters 

Parameter Value 

Number of Fireflies 20 

Problem Dimensionality 2 

Maximum Generations 30 

Lower Bound of Decision Variable 1 

Upper Bound of Decision Variable 6000 

Attractiveness at r=0 (𝜷𝟎) 1 

Light Absorption Coefficient (𝜸) 0.1 

Step Size Coefficient (𝜶) 0.2 

c 1 

Gray Coefficient (δ) 0.5 

 

The distinction lies in the MFA's integration of a local 

search phase post-movement, aiming to refine solutions and 

potentially escape local optima. A similar concept for 

integration of harmony search with firefly algorithm has also 

been used by Satapathy, et al. [33] for solving an optimization 

problem in same field of microgrids. 

The performance of the microgrid, optimized using the FA 

and MFA for both scenarios with LPSP values of 0.01 and 0.1, 

is captured in Fig. 4, Fig. 5, Fig. 6, and Fig. 7 respectively. 

Figures depict the interplay between photovoltaic generation, 

demand, and battery storage over time. PV generation indicated 

by blue crosses, reflects the output from the solar panels.  

The spikes in generation correspond to daylight hours, 

showing significant variability that is typical for solar energy, 

which is dependent on sunlight conditions. Demand, shown 

with red circles, represents the energy required by the 

connected load. It appears fairly constant over time, with some 

variations indicating peak usage periods or variable loads 

within the microgrid. Battery status, illustrated with green line, 

indicates the energy stored in the system's batteries. The 

charging and discharging cycles are evident as the status 

fluctuates, often decreasing during high demand or low PV 

generation periods and increasing when excess energy is 

available. 

TABLE VI provides a comparative analysis of the 

performance of the FA and MFA in optimizing a solar off-grid 

microgrid system under the two different scenarios based on 
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LPSP values. It presents key metrics for each case and 

algorithm, including the number of PV units, BSS units, 

converters, total cost, and the number of iterations that are 

required to reach the optimal solution. 
 

 
Fig. 2. FA and proposed MFA flowchart. 

 

 
Fig. 3. System configuration. 

 

In Case 1, with an LPSP of 0.01, the MFA required fewer 

photovoltaic units, battery storage units, and converters, 

resulting in a lower total cost ($3,917,511) and 15 iterations 

compared to the Standard FA. Similarly, in Case 2, with an 

LPSP of 0.1, the MFA again outperformed the Standard FA, 

achieving cost savings ($2,360,733) and efficiency 

improvements with fewer components and less iterations. 

These results demonstrate the ability of MFA to optimize 

microgrid configurations. Fig 8 (a), (b) and Fig 9 (a), (b) show 

the iteration for the two cases. 

The MFA consistently outperformed the standard FA in 

finding lower-cost configurations for the microgrid. Key 

observations include:  

a) Enhanced Exploration and Exploitation: The MFA's hybrid 

nature allowed for a more comprehensive exploration of the 

search space and a more effective exploitation of promising 

regions. 

b) Diversity Preservation: By incorporating local searches, the 

MFA maintained solution diversity, reducing the risk of 

premature convergence. 

c) Adaptability: The flexibility of the MFA to incorporate 

problem-specific knowledge or additional optimization 



International Journal of Scientific Engineering and Science 
Volume 8, Issue 8, pp. 8-16, 2024. ISSN (Online): 2456-7361 

 

 

13 

http://ijses.com/ 

All rights reserved 

techniques proved advantageous in navigating the complex 

optimization landscape of microgrid systems. 

 
Fig. 4. System performance of Standard FA with LPSP = 0.01. 

 

 
Fig. 5. System performance of MFA with LPSP = 0.01 

 

 
Fig. 6. System performance of Standard FA with LPSP = 0.1. 

 
Fig. 7. System performance of MFA with LPSP = 0.1. 
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TABLE VI. Performance results. 

Scenario LPSP Algorithm PV (Unit) BSS (Unit) Converter (Unit) Cost ($) Iteration 

Case 1 0.01 
Standard FA 4634 71 10185 4208461 18 

Modified FA 4211 54 8179 3917511 15 

Case 2 0.1 
Standard FA 2765 32 5025 2468980 28 

Modified FA 2321 26 4131 2360733 4 

 

 
Fig. 8. Convergence comparison of Standard FA (a) and MFA (b) systems with LPSP=0.01. 

 

 
Fig. 9. Convergence comparison of Standard FA (a) and MFA (b) systems with LPSP=0. 1. 

 

 
Fig. 10. 24-hour performance of the MFA with LPSP = 0.01. 

 

Fig. 10 and Fig. 11 show the 24 hours performance of the MFA 

in both cases. In a 24-hour period, the graphs show the diurnal 

cycle of PV generation starting and ending at low points with a 

peak during the middle of the day, the demand would possibly 

show less variation, and the battery status would show charging 

during times of excess generation and discharging during high 

demand or low generation. It can be seen from blue line, which 

is Solar generation, it gives only energy to Grid from 08:00 am 

to 18:00 am and during this time demand is being given by Solar 

and battery is being charged which can be seen from red and 

green line respectively. In the absence of Solar energy, demand 

is being met by battery and it can be seen battery is being 

discharged as green line goes down. 

 
Fig. 11. 24-hour performance of the MFA with LPSP = 0.1. 

 

The microgrid's performance over the studied period 

establishes a foundational understanding of the system's 

dynamics, presenting valuable insights for future optimization 

and scalability. The application of the FFA has proven effective 
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in establishing an initial setup; however, continuous refinement 

of the algorithm parameters may yield improved results in terms 

of cost efficiency and power reliability. 

Results show that MFA converged on a solution with fewer 

PVs, batteries, and reduced cost as compared to FA for same 

inputs settings. 

VI. CONCLUSION 

This comparative study highlights the effectiveness of 

optimization modified strategies, particularly the Modified 

Firefly Algorithm, in enhancing microgrid configuration 

optimization. The MFA's ability to integrate standard FA 

principles with additional optimization mechanisms results in 

improved solution quality and faster convergence, offering a 

promising approach to designing cost-effective and reliable 

microgrids. Results show that the MFA finds optimum solution 

in fewer iterations than the standard FA. Future directions could 

explore further modification strategies and their application to 

broader aspects of energy system optimization, incorporating 

dynamic operational constraints and expanding renewable 

energy integration. 
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