

# Finite Time Control of Parameterized Systems with Dead Zone and State Constraints

Ziwen Wu

School of Medical Information, WanNan Medical College, Wu Hu, China, 241002

*Abstract***—***This paper investigates the problem of adaptive finite-time tracking control for nonlinear parameterized systems subject to full state constraints and dead-zone. By utilizing the finite-time stability theory, one to one nonlinear mapping and dynamic surface control (DSC), a novel adaptive tracking control is proposed. By using the defined compact set in stability analysis, all the signals in the close-loop system are proved to be semi-globally practical finite-time bounded (SGPFB), and state constraint is not violated*. *Numerical simulation has verified the effectiveness of the control strategy.*

*Keywords— Adaptive finite-time control, Dead-zone, Full state constraints*.

## I. INTRODUCTION

In recent years, dynamic surface control technology has been widely applied in nonlinear system control and has achieved good results in [1-4]. Based on the DSC method, reference [3] solved the controller design problem of a class of strict feedback systems and provides Lyapunov stability analysis. With the help of the implicit function theorem, an adaptive control strategy is proposed for a class of pure feedback nonlinear systems via DSC in [4].

In addition, in real-world systems, due to factors such as safety and location, the system's state must be limited within a certain range. For example, the literature [5] defined a set of Barrier Lyapunov functions that constrain the state at each step of the design process. However, in practical applications, this method cannot accurately constrain the state. On this basis, people have proposed the method of introducing nonlinear mapping to transform constrained problems into constrained problems, thereby enabling controller design in [6-8]. The nonlinear mappings in references [6] and [7] are based on logarithmic functions, while reference [8] adopts a new fractional form.

Specifically, control systems in reality often exhibit nonlinear phenomena in the controller, with the most common form being dead zones. Reference [9] linearized the dead zone and successfully separated the control law  $u$  for controller design. At the same time, specific systems also have time requirements, leading to the emergence of finite time control in [10-12]. Inspired by the above achievements, this paper studies the finite time control problem of a class of constrained parameterized systems with dead zones. The main work is as follows: (1) Introducing non logarithmic mapping to transform the constrained system into an unconstrained system, and using dynamic surface control method for controller design to avoid the problem of parameter explosion. (2) After transformation, the parameterized system becomes a strict feedback system, and neural networks are used to approximate unknown functions to handle the unknown nonlinear terms of the system.

# II. SYSTEM DESCRPTION AND PROBLEM STATEMENT

Consider the following nonlinear systems:  
\n
$$
\begin{cases}\n\dot{x}_i = v_i^T f_i(\overline{x}_i) + \varphi_i x_{i+1}, i = 1, L, n-1 \\
\dot{x}_n = v_n^T f_n(\overline{x}_n) + \varphi_n Q(u(t)) \\
y = x_1\n\end{cases}
$$
\n(1)

where  $\overline{x}_i = [x_1 \cdots x_i]^T \in R^i$  $\overline{x}_i = [x_1 \cdots x_i]^T \in \mathbb{R}^i$ , *y* denote the system states and output.  $v_i \in R^m$  $v_i \in R^m$  is the unknown constant vector,  $\phi_i(\overline{x}_i)$  is known nonlinear function vector. All the states are constrained in predefined compact set, i.e.,  $|x_i| < k_{ci}$   $(i = 1, \dots, n)$  are predefined positive constants. The dead-zone input  $u(t)$  can be described as

be described as  
\n
$$
Q(u(t)) = \begin{cases}\nm_r(u(t) - b_r), & u(t) \ge b_r \\
0, & -b_l < u(t) < b_r \\
m_l(u(t) + b_l), & u(t) \le -b_l\n\end{cases}
$$
\n(2)

**Control objective:** Design a controller  $u$  that enables the output of system (1) to track the desired trajectory and satisfy the constraint conditions.

**Assumption 1 [5]** The desired trajectory vector  $x_d = [y_d, \dot{y}_d, \ddot{y}_d]^T \in \Omega_d$  is constants and available with known compact set  $\Omega_d = \left\{ x_d : y_d^2 + y_d^2 + y_d^2 \le B_0 \right\} \in R^3$ , and

 $|y_d| < B_1 \le \min\left\{k_{b_1}, k_{b_2}\right\}$ , where  $B_0$ ,  $B_1$  are two known positive constants.

**Lemma 1 [110]** considering the system  $\dot{x} = f(x, u)$ , for positive function  $V(x)$ , if there exist scalars  $\alpha > 0$ ,  $\frac{1}{2} < \beta < 1$ 2  $< \beta < 1$  and  $\mu > 0$ , such that  $\dot{V}(x) \le -\alpha V^{\beta}(x) + \mu$ 

then the nonlinear system  $\dot{x} = f(x, u)$  is SGPFS.

**Lemma 2 [10]** For any real variables  $x$ ,  $y$ , there any given positive constants  $a$ ,  $b$  and  $c$ , it holds the inequality such that



$$
|x|^{a} |y|^{b} \le \frac{a}{a+b} c |x|^{a+b} + \frac{b}{a+b} c^{-\frac{a}{b}} |y|^{a+b}
$$
 (3)

**Lemma 3** [10] For  $x_j \in R$ ,  $j = 1 \cdots n, 0 < p \le 1$ , it holds

the inequality such that\n
$$
\left(\sum_{j=1}^{n} |x_j|\right)^p \leq \sum_{j=1}^{n} |x_j|^p \leq n^{1-p} \left(\sum_{j=1}^{n} |x_j|\right)^p \tag{4}
$$

# III. CONTROLLER DESIGN AND STABILITY ANALYSIS

In order to carry out full state constraints, we introduce

the following one to one mapping:  
\n
$$
s_i = \ln \frac{k_{ci} + x_i}{k_{ci} - x_i}, i = 1, \cdots, n
$$
\n(5)

Then we get

Then we get  
\n
$$
\dot{s}_i = \frac{e^{s_i} + e^{-s_i} + 2}{2k_{ci}} \dot{x}_i, i = 1, \dots, n
$$
\n(6)

The system (1) can be rewritten as follows:  
\n
$$
\begin{cases}\n\dot{s}_i = f_i(\overline{s}_{i+1}) + s_{i+1}, i = 1, \dots, n-1 \\
\dot{s}_n = f_n(\overline{s}_n) + k_n(s_n) \varphi_n Q(u(t))\n\end{cases}
$$
\n(7)

where 
$$
\overline{s}_i = [s_1, \dots, s_i]^T
$$
,  $k_i(s_i) = (e^{s_i} + e^{-s_i} + 2)/2k_{ci}$ , the estimate of  $\theta_1$  at time t.  
\n $f_i(s_{i+1}) = k_i(s_i)[v_i^T \phi_i(\overline{x}_i) + \phi_i x_{i+1}] - s_{i+1}, i = 1, \dots, n-1$ ,  
\n $f_n(\overline{s}_n) = k_n(s_n)v_n^T \phi_n(\overline{x}_n)$ .  
\nLet  $\hat{y}_d = \ln \frac{k_{c1} + y_d}{k_{c1} - y_d}$ . Suppose  $\Omega_{z_i} = R^{i+3}$  be a given  
\ncompact set, and  $W_{hi}^{*T} S_i(Z_i)$  be the approximation of BRF  
\nNNs over the compact set  $\Omega_{z_i}$  to  $h_i(Z_i)$ , where  $h_i(Z_i)$  will  
\nbe given later. Then,  $h_i(Z_i) = W_{hi}^{*T} S_i(Z_i) + \varepsilon_{hi}(Z_i)$ , where  
\n $Z_i = [Z_{i1}, \dots, Z_{iq}]^T \in R^{iq}$ , and the basis function vector  
\n $S_i(Z_i) = [s_{i1}(Z_1), \dots, s_{i1}(Z_i)]^T \in R^{l_i}$  with  $s_{ij}(Z_i)$  being  
\nchoose as follows:  
\n $s_{ij}(Z_i) = \exp \left[ -\frac{(Z_i - \mu_{ij})^T (Z_i - \mu_{ij})}{\phi_{ij}^2} \right], j = 1, \dots, l_i, i = 1, \dots, n$ ,  
\n $\frac{1}{N_i} \sum_{i=1}^{N_i} \frac{1}{N_i} \sum_{i=1}^{N_i} \frac{1}{N$ 

 $[\mu_{_{ij1,}}\mu_{_{ij2,}}\cdots,\mu_{_{ijq_{_{ij}}}}]$  $\mu_{ij} = [\mu_{ij1}, \mu_{ij2}, \cdots, \mu_{ijq_{ij}}]^T$  is the center of the receptive field with  $q_{ij} = n + 3$ , and  $\phi_{ij}$  is width of the Gaussian function.

For clarity, some notations are defined as follows:

$$
\overline{z}_{i} = [z_{1}, \cdots, z_{i}]^{T}, \overline{y}_{j} = [y_{1}, \cdots, y_{j}]^{T}, y_{j} = \omega_{j} - \alpha_{j-1}, \nj = 2, \cdots, n.
$$
\n
$$
\theta_{i} = ||W_{hi}^{*}||^{2}, \overline{\hat{\theta}}_{i} = [\hat{\theta}_{1}, \cdots, \hat{\theta}_{i}]^{T}, V_{z_{i}} = \frac{1}{2} z_{i}^{2}, z_{i} = s_{i} - \omega_{i}
$$

 $i = 1, \dots, n$ .

**Step 1:** Let  $\omega_1 = \hat{y}_d$ , we obtain the time derivative of  $z_1$  $\dot{z}_1 = s_2 + f_1(\bar{s}_2) - \dot{\omega}_1$ 

Then the derivative of 
$$
V_{z_1}
$$
 with respect to t is  
\n
$$
\dot{V}_{z_1} = z_1 [z_2 + y_2 + \alpha_1 + h_1(Z_1)] - 3z_1^2
$$
\n
$$
= z_1 [z_2 + y_2 + \alpha_1 + W_{h1}^{*T} S_1(Z_1) + \varepsilon_{h1}(Z_1)] - 3z_1^2
$$
\n
$$
\le z_1 [z_2 + y_2 + \alpha_1] + \frac{1}{2a_1^2} z_1^2 \theta_1 \|S_1(Z_1)\|^2
$$
\n
$$
+ \frac{a_1^2}{2} + z_1 \varepsilon_{h1}(Z_1) - 3z_1^2
$$
\n(8)

Then we get **(1)**  $\kappa_{ci} = x_i$  where  $h_1(Z_1) = f_1(\bar{s}_2) - \dot{\omega}_1 + 3z_1$  and  $a_1 > 0$  is a design constant.

Design the virtual control  $\alpha_1$  as follows:

$$
\alpha_1 = -k_1 z_1^{2\beta - 1} - \frac{z_1}{2a_1^2} \hat{\theta}_1 \| S_1(Z_1) \|^2 \tag{9}
$$

where  $k_1$  is a design constant that we will choose later,  $\hat{\theta}_1$  is the estimate of  $\theta_1$  at time t.

The following adaptive law is used to update the

$$
\dot{\hat{\theta}}_i = \gamma_i \left[\frac{1}{2a_i^2} z_i^2 \left\| S_1(Z_1) \right\|^2 - \sigma_i \hat{\theta}_i \right]
$$
 (10)

where  $\gamma_i$ ,  $a_i$  and  $\sigma_i$  are strictly positive constants and  $\hat{\theta}_i$  is the estimate of  $\theta_i$  at time t.

Define  $\omega_2$  in such a way that

$$
\tau_2 \dot{\omega}_2 + \omega_2 = \alpha_1, \omega_2(0) = \alpha_1(0)
$$
 (11)

where 
$$
\tau_2
$$
 is a design constant that we will choose later.  
\nSince  $s_2 = z_2 + y_2 - k_1 z_1^{2\beta - 1} - z_1 \hat{\theta}_1 ||S_1(Z_1)||^2 / 2a_1^2$ ,  
\nusing young's inequality, we obtain

using young's including, we obtain  
\n
$$
\dot{V}_{z_1} \le -k_1 z_1^{2\beta} - \frac{z_1^2 \tilde{\theta}_1 \| S_1(Z_1) \|^2}{2a_1^2} + \frac{z_2^2}{4} + \frac{y_2^2}{4} + \frac{a_1^2}{2} + z_1 \eta_1 - z_1^2
$$
\n(12)

where continuous function  $\eta_1$  satisfies  $|\mathcal{B}_n(X_1)| \leq \eta_1$ .

**(4)** From young's inequality, we have  $|z_1|\eta_1 \leq z_1^2 + \frac{1}{\eta_1^2}$  $\mathcal{L}_1 | \mathcal{H}_1 \geq \mathcal{L}_1 + \frac{1}{4} \mathcal{H}_1$ 1 4  $z_1 | \eta_1 \leq z_1^2 + \frac{1}{\epsilon} \eta_1^2$ , then we get



$$
\dot{V}_{z_1} \le -k_1 z_1^{2\beta} - \frac{z_1^2 \tilde{\theta}_1 \| S_1(Z_1) \|^2}{2a_1^2} + \frac{z_2^2}{4} + \frac{y_2^2}{4} + \frac{a_1^2}{2} + \frac{1}{4} \eta_1^2
$$
\n(13)

Noting Assumption 1, we have  $|\dot{y}_2 + \frac{y_2}{z}| \leq \xi_2$ 2  $\left|\dot{y}_2 + \frac{y_2}{\tau_2}\right| \leq \xi_2$ , and  $\xi_2$ 

is a continuous function.

Further, we obtain  
\n
$$
y_2 \dot{y}_2 \le -\frac{y_2}{\tau_2} + |y_2| \xi_2 \le -\frac{y_2}{\tau_2} + y_2^2 + \frac{1}{4} \xi_2^2
$$
\n(14)

Step i  $(2 \le i \le n-1)$ 

The time derivative of  $z_i$  is

$$
\dot{z}_i = f_i(\overline{s}_{i+1}) + s_{i+1} - \dot{\omega}_i
$$
\n(15)

$$
2a_1^2
$$
\n
$$
+\frac{z_2^2}{4} + \frac{y_2^2}{4} + \frac{a_1^2}{4} + \frac{1}{4}\eta_1^2
$$
\nNoting Assumption 1, we have  $\left| \dot{y}_2 + \frac{y_2}{\tau_2} \right| \leq \xi_2$ , and  $\xi_2$   
\nis a continuous function.  
\nFurther, we obtain  
\n $y_2 \dot{y}_2 \leq -\frac{y_2}{\tau_2} + |y_2| \xi_2 \leq -\frac{y_2}{\tau_2} + y_2^2 + \frac{1}{4} \xi_2^2$ \n(14)  
\nStep i (2 \leq i \leq n-1)  
\nThe time derivative of  $z_i$  is  
\n $\dot{z}_i = f_i(\overline{s}_{i+1}) + s_{i+1} - \dot{\omega}_i$ \n(15)  
\nTherefore, the derivative of  $V_{z_i}$  with respect to t is  
\n $\dot{V}_{z_i} = z_i [z_{i+1} + y_{i+1} + \alpha_i + h_i (Z_i)] - 3\frac{1}{4} z_i^2$   
\n $= z_i [z_{i+1} + y_{i+1} + \alpha_i + W_i^* S_i (Z_i) + \varepsilon_{hi} (Z_i)] - 3\frac{1}{4} z_i^2$   
\n $= z_i [z_{i+1} + y_{i+1} + \alpha_i] + \frac{1}{2a_i^2} z_i^2 \theta_i ||S_i (Z_i)||^2$   
\n $+ \frac{a_i^2}{2} + z_i \varepsilon_{hi} (Z_i) - 3\frac{1}{4} z_i^2$   
\nwhere  $h_i (Z_i) = f_i (\overline{s}_{i+1}) - \dot{\omega}_i + 3\frac{1}{4} z_i$ , and  $a_i > 0$  is a  
\ndesign constant.  
\nConstruct the virtual control  $\alpha_i$  as follows:  
\n $\alpha_i = -k_i z_i^2 \theta_i^2 - \frac{z_i}{2a_i^2} \dot{\theta}_i ||S_i (Z_i)||^2$ \n(17)  
\nwhere  $k_i$  is a positive design constant that we will choose  
\nlater.  
\nThe adaptive law of the parameter  $\hat{\theta}_i$  is determined by  
\n(10) for *i*.  
\nDefine <

where  $h_i(Z_i) = f_i(\overline{s}_{i+1})$  $h_i(Z_i) = f_i(\overline{s}_{i+1}) - \dot{\omega}_i + 3\frac{1}{4}z_i$ , and  $a_i > 0$  is a

design constant.

Construct the virtual control  $\alpha_i$  as follows:

$$
\alpha_{i} = -k_{i} z_{i}^{2\beta - 1} - \frac{z_{i}}{2a_{i}^{2}} \hat{\theta}_{i} \| S_{i}(Z_{i}) \|^{2}
$$
 (17)

where  $k_i$  is a positive design constant that we will choose later.

The adaptive law of the parameter  $\hat{\theta}_i$  is determined by (10) for *i* .

Define 
$$
\omega_{i+1}
$$
 in such a way that  
\n
$$
\tau_{i+1}\dot{\omega}_{i+1} + \omega_{i+1} = \alpha_i, \omega_{i+1}(0) = \alpha_i(0),
$$

where 
$$
\tau_{i+1}
$$
 is a positive design constant.  
\n
$$
s_{i+1} = z_{i+1} + y_{i+1} - k_i z_i^{2\beta - 1} - \frac{z_i}{2a_i^2} \hat{\theta}_i \| S_i(Z_i) \|^2
$$
\n(18)

Using young's inequality, we obtain

*International Journal of Scientific Engineering and Science Volume 8, Issue 7, pp. 114-118, 2024. ISSN (Online)*: *2456-7361*

$$
\dot{V}_{z_i} \le -k_i z_i^{2\beta} - \frac{z_i^2 \tilde{\theta}_i \| S_i(Z_i) \|^2}{2a_i^2} + \frac{z_{i+1}^2}{4} + \frac{y_{i+1}^2}{4} + \frac{a_i^2}{2} + z_i \eta_i - 1 \frac{1}{4} z_i^2
$$
\n(19)

where continuous function  $\eta_i$  satisfies  $|\varepsilon_i(Z_i)| \leq \eta_i$ .

From young's inequality, we have

$$
z_i \big| \eta_i \le z_i^2 + \frac{1}{4} \eta_i^2 \tag{20}
$$

Therefore, we obtain  
\n
$$
\dot{V}_{z_i} \le -k_i z_i^{2\beta} - \frac{z_i^2 \tilde{\theta}_i \| S_i(Z_i) \|^2}{2a_i^2} + \frac{z_{i+1}^2}{4} + \frac{y_{i+1}^2}{4} + \frac{a_i^2}{2} + \frac{1}{4} \eta_i^2 - \frac{1}{4} z_i^2
$$
\n(21)

Then, one has

$$
y_{i+1}\dot{y}_{i+1} \le -\frac{y_{i+1}}{\tau_{i+1}} + y_{i+1}^2 + \frac{1}{4}\xi_{i+1}^2
$$
 (22)

**Step n:** The control law  $u$  will be design in this step.

The time derivative of 
$$
z_n
$$
 is  
\n
$$
\dot{z}_n = f_n(\overline{s}_n) + k_n(s_n)\varphi_n Q(u) - \dot{\omega}_n
$$
\n(23)

Therefore, the derivative of 
$$
V_{z_n}
$$
 with respect to t is  
\n
$$
\dot{V}_{z_n} = z_n[f_n(\overline{s}_n) + k_n(s_n)\varphi_n(mu(t) + d(t)) - \dot{\omega}_n],
$$
 since  
\n
$$
d(t) \le \rho
$$
, then we obtain

$$
a(t) \le p, \text{ then we obtain}
$$
  
\n
$$
\dot{V}_{z_n} \le z_n k_n(s_n) \varphi_n m u + \frac{g_0 z_n^2 \theta_n \|S_n(Z_n)\|^2}{2a_n^2} + \frac{a_n^2}{2g_0} + \varepsilon_{hn}(Z_n) - 1\frac{1}{4}z_n^2
$$
\n(24)

where  $a_n > 0$  is a design constant and  $g_0 > 0$  we will give

later, and  
\n
$$
h_n(Z_n) = f_n(\overline{s}_n) - \dot{\omega}_n + k_n(s_n)\varphi_n \rho
$$
\n
$$
+ 1\frac{1}{4}z_n, Z_n = [\overline{s}_n^T, z_n, \dot{\omega}_n]^T \in R^{n+2}
$$

The 
$$
\omega_{i+1}
$$
 in such a way that

\n
$$
+ \omega_{i+1} = \alpha_i, \omega_{i+1} (0) = \alpha_i (0),
$$
\nThe  $\omega_{i+1} = \alpha_i, \omega_{i+1} (0) = \alpha_i (0),$ 

\n
$$
u = \frac{1}{m\varphi_n} \left[ -k_n z_n^{2\beta - 1} - \frac{z_n}{2a_n^2} \hat{\theta}_n \left\| S_n^{\mathbf{Q}}(z_n) \right\|^2 \right]
$$
 (25)\nThe  $\omega_{i+1} = \alpha_i, \omega_{i+1} (0) = \alpha_i (0),$ 

 $\hat{\theta}_n$  is the estimate of  $\theta_n$ , the function as

$$
\dot{\hat{\theta}}_n = \gamma_n \left[\frac{1}{2a_n^2} z_n^2 \left\| S_n(Z_n) \right\|^2 - \sigma_n \hat{\theta}_n \right]
$$
 (26)

*http://ijses.com/* All rights reserved



Let 
$$
\frac{2}{k_{cn}} = g_0
$$
, then we have  
\n
$$
\dot{V} \le \sum_{i=1}^{n-1} -k_i z_i^{2\beta} + g_0 k_n + \sum_{i=1}^{n-1} [-\frac{\chi_1^2}{\chi_{i+1}}]
$$
\n
$$
\dot{V}_{z_n} \le -g_0 k_n z_n^{2\beta} - \frac{g_0 z_n^2 \hat{\theta}_n \|S_n(Z_i)\|^2}{2a_n^2} + \sum_{i=1}^{n-1} \frac{a_i^2}{2g_{i0}} + \sum_{i=1}^{n-1} \frac{a_i^2}{2g_{i0}} + \sum_{i=1}^{n-1} \frac{a_i^2}{2g_0} + \sum_{i=1}^{n} \frac{1}{4} \eta_i^2 + \frac{g_0 z_n^2 \hat{\theta}_n \|S_n(Z_i)\|^2}{2a_n^2} + \frac{a_n^2}{2g_0} + z_n \eta_n - 1 \frac{1}{4} z_n^2
$$
\n(27) If  $V = V_n = p$ , then  $\eta_i^2 \le H$  completion of squares, we have

where continuous function  $\eta_n$  satisfies  $|\mathcal{E}_{hn}(Z_n)| \leq \eta_n$ .<br>  $\tilde{\rho}_n \geq \tilde{\rho}_n$  and  $\tilde{\rho}_n \geq \tilde{\rho}_n$  and  $\tilde{\rho}_n \geq \tilde{\rho}_n$  and  $\tilde{\rho}_n \geq \tilde{\rho}_n$  and  $\tilde{\rho}_n \geq \tilde{\rho}_n$ 

Using young's inequality, we have

$$
\left|z_n\right|\eta_n \leq z_n^2 + \frac{1}{4}\eta_n^2\tag{28}
$$

 $2 \times 12$ 

From the above, it can be concluded that  
\n
$$
\dot{V}_{z_n} \leq -g_0 k_n z_n^{2\beta} - \frac{g_0 z_n^2 \tilde{\theta}_n \|S_n(Z_i)\|^2}{2a_n^2} + \frac{a_n^2}{2g_0} - \frac{1}{4} z_n + \frac{1}{4} \eta_n^2
$$
\n(29)

**Theorem 1** Consider the closed-loop system consisting of system (1) under Assumption 1, the controller (25), and adaption law (10). For bounded initial conditions, satisfying  $V_n(0) \le p$ ,  $k_{c1} \le B_1$ , and  $x_i(0) \in \Omega_{x_i}$ , there exist constants  $k_i > 0$ ,  $\tau_i > 0$ ,  $\gamma_i > 0$ ,  $\sigma_i > 0$ , such that the overall closed-loop neural control system is SGPFS in the sense that all of the signals in the closed-loop system are finite-time bounded, and  $x_i \in \Omega_{x_i}$ ,  $\forall t \ge 0$ , i.e., the full state constraints

are never violated, in addition, 
$$
k_i
$$
 and  $\tau_i$  satisfy  
\n
$$
\begin{cases}\nk_i \geq \frac{\alpha_0}{2} 2^{\beta}, k_n \geq \frac{\alpha_0}{2g_0} 2^{\beta}, i = 1, \dots, n-1 \\
\frac{1}{\tau_i} \geq 1 \frac{1}{4} + \frac{\alpha_0}{2} \\
\alpha_0 = \min\{\gamma_1 \sigma_1, \dots, \gamma_n \sigma_n\}\n\end{cases}
$$
\n(30)

follows:  $\frac{n}{2}$  1  $\approx$  1  $\frac{n}{2}$ 

**Proof.** Consider the overall Lyapunov function candidate as follows:  
\n
$$
V = V_n = \sum_{i=1}^{n} [V_{zi} + \frac{1}{2\gamma_i} g_{i0} \tilde{\theta}_i^2] + \frac{1}{2} \sum_{i=1}^{n-1} y_{i+1}^2
$$
\n(31)

Differentiating 
$$
V(t)
$$
 with respect to time t leads to  
\n
$$
\dot{V} = \sum_{i=1}^{n} [\dot{V}_{zi} + \frac{1}{\gamma_i} \tilde{\theta}_i \dot{\theta}_i] + \sum_{i=1}^{n-1} y_{i+1} \dot{y}_{i+1}
$$
\n(32)

Substituting (13), (14), (21), (22) and (29) into (32), and applying (10) and (26), it follows that

*International Journal of Scientific Engineering and Science Volume 8, Issue 7, pp. 114-118, 2024. ISSN (Online)*: *2456-7361*

$$
\dot{V} \leq \sum_{i=1}^{n-1} -k_i z_i^{2\beta} + g_0 k_n + \sum_{i=1}^{n-1} \left[ -\frac{\chi_{10}^2}{\tau_{i+1}} + \frac{1}{4} y_{i+1}^2 + \frac{1}{4} \xi_{i+1}^2 \right] + \sum_{i=1}^{n-1} \frac{a_i^2}{2g_{i0}} + \frac{a_n^2}{2g_0} + \sum_{i=1}^{n} \frac{1}{4} \eta_i^2 + \sum_{i=1}^{n} \left[ -\sigma_i \tilde{\theta}_i \hat{\theta}_i \right]
$$
\n(33)

If  $V = V_n = p$ , then  $\eta_i^2 \le H_i^2$  and  $\xi_{i+1}^2 \le M_{i+1}^2$ , By completion of squares, we have

completion of squares, we have  
\n
$$
-\sigma_i \tilde{\theta}_i \hat{\theta} = -\sigma_i \tilde{\theta}_i (\tilde{\theta}_i + \theta_i) \le \sigma_i (-\frac{\tilde{\theta}_i^2}{2} + \frac{\theta_i^3}{2})
$$
\n(34)

Now we apply lemma 2 and Lemma 3, one has

$$
\dot{V} \le -\alpha V^{\beta} + \mu \tag{35}
$$

where  $\alpha = \min\{\alpha_0, \alpha_0^{\beta}\}\,$ ,

there 
$$
\alpha = \min{\{\alpha_0, \alpha_0^{\beta}\}}
$$
,  
\n
$$
\mu = \sum_{i=1}^n \frac{1}{4} \eta_i^2 + \sum_{i=1}^{n-1} \frac{a_i^2}{2} + \frac{a_n^2}{2g_0} + \sum_{i=1}^n -\gamma_i \sigma_i \frac{1}{2\gamma_i} \tilde{\theta}_i^2 + \sum_{i=1}^n \frac{1}{2} \sigma_i \theta_i^2 + 2(1 - \beta)l
$$

It means that all the signals in the closed-loop system are SGPFS. Therefore,  $z_i$ ,  $y_i$  and  $\hat{\theta}_i$  are finite time bounded.  $S_i$ ,  $\mathcal{O}_{i+1}$  are also finite time bounded.

## IV. SIMULATION RESULTS

Consider a nonlinear system, the dynamic equation is given as follows:

$$
\begin{cases}\n\dot{x}_1 = 0.1x_1^2 + x_2 \\
\dot{x}_2 = 0.2\sin(x_1) + x_1 + 2u \\
y = x_1\n\end{cases}
$$
\n(37)

For conducting the simulation, the initial conditions are  $x_1(0) = 0.13$ ,  $x_2(0) = 1.43$ ,  $\tau_2 = 0.01$ ,  $\theta_1(0) = 0.1$ ,  $\theta_2(0) = 0.3$ ,  $\omega_2(0) = 0.1$ . The reference signal is  $y_d = 0.3\cos(0.57t + 0.6) - 0.24$ ,

and the states are constrained in the regions  $|x_1| < 0.16$  and  $|x_2|$  < 1.5 . The parameters are selected as  $k_1 = 4$ ,  $k_2 = 15$ ,  $a_1 = 1, a_2 = 1, \sigma_1 = \sigma_2 = 0.01, \gamma_1 = 50, \gamma_2 = 30$ ,  $b_r = 0.3$ ,  $b_l = 0.5$ ,  $m_r = m_l = 0.8$ ,  $l = 0.5$ ,  $\tau_2 = 0.01$ ,  $\beta = 99/101$ .

. **(13)**



 $0.15$  $0.1$ 

 $0.05$ kc1  $\mathbf{r}$  $y, y_{\pi}$  $-0.05$  $-0.1$  $-0.15$  $\Omega$ 

 $10$ 





Fig. 4. Phase portrait of states  $x_1$ ,  $x_2$ 

The simulation results are shown in the Fig. 1–4. From above Figures, we can see that the all states abide by extended constraint conditions, and the control objective can be well implemented. Moreover, all signals in systems are bounded.

#### V. CONCLUSION

Adaptive finite-time tracking control for nonlinear systems subject to full state constraints and dead-zone is studied in this paper. Base on DSC, control, a novel adaptive finite time tracking control is proposed by utilizing the finite-time

stability theory and NM. All the signals in the close-loop system are proved to be SGPFB and state constraints have not been triggered. The simulation further verified the effectiveness of the proposed finite time control strategy.

#### ACKNOWLEDGMENT

This work was partially supported by the Natural Science Key Research Project for Higher Education Institutions of Anhui Province (2022AH051054).

#### **REFERENCES**

- [1] Yip PP, Hedrick JK, "Adaptive dynamic surface control: a simplified algorithm for adaptive backstepping control of nonlinear systems," Int J Control, vol. 71, issue 5, pp. 959-979,1998.
- [2] Swaroop D, Hedrick JK, Yip PP, Gerdes JC, "Dynamic surface control for a class of nonlinear systems," IEEE Trans. Autom. Control, vol. 45, issue 10, pp. 1893-1899, 2000.
- [3] Wang D, Huang J, "Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict- feedback form," IEEE Trans. Neural Netw, vol. 16, issue 1, pp. 195-202, 2005.
- [4] Sun G, Wang D, Li XQ, Peng ZH, "A DSC approach to adaptive neural network tracking control for pure-feedback nonlinear systems," Appl Math Compute, vol. 219, issue 11, pp. 6224-6235, 2013.
- [5] Tee KP, Ge SS, "Control of nonlinear systems with partial state constraints using a barrier Lyapunov function," Int. J. Control, vol. 84, no. 12, pp. 2008-2023, 2011.
- [6] Zhang TP, Xia MZ, Yi Y, "Adaptive neural dynamic surface control of strict-feedback nonlinear systems with full state constraints and unmodeled dynamics," Automatica, vol. 81, pp. 232-239, 2017.
- [7] Jin X, Li YX, "Fuzzy adaptive event-triggered control for a class of nonlinear systems with time-varying full state constraints," Inf. Sci. vol, 563, pp.111-129, 2021.
- [8] Cao Y, Wen CY, Song YD, "A unified event-triggered control approach for uncertain pure-feedback systems with or without state constraints," IEEE Trans. Syst. Man Cybern. Syst, vol. 51, issue 3, pp. 1262-1271, 2021.
- [9] Zhang TP, Ge SS, "Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure-feedback form," Automatica. Vol. 44, issue 7, pp. 1895-1903, 2008.
- [10] Wang F, Chen B, Liu XP, Lin C. Finite-time adaptive fuzzy tracking control design for nonlinear systems. IEEE Trans Fuzzy Syst. 2018;26(3):1207-1216.
- [11] 39. Wang F, Zhang XY, Chen B, Lin C, Li XH, Zhang J. Adaptive finite-time tracking control of switched nonlinear systems. Inf Sci. 2017;421:126-135.
- [12] 40. Li YM, Yang T, Tong SC. Adaptive neural networks finite-time optimal control for a class of nonlinear systems. IEEE Trans Neural Netw Learn Syst. 2020;31(11):4451-4460.

**.**