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Abstract—This paper investigates the problem of adaptive finite-time tracking control for nonlinear parameterized systems subject to full state 

constraints and dead-zone. By utilizing the finite-time stability theory, one to one nonlinear mapping and dynamic surface control (DSC), a 

novel adaptive tracking control is proposed. By using the defined compact set in stability analysis, all the signals in the close-loop system are 

proved to be semi-globally practical finite-time bounded (SGPFB), and state constraint is not violated. Numerical simulation has verified the 

effectiveness of the control strategy. 
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I. INTRODUCTION  

In recent years, dynamic surface control technology has been 

widely applied in nonlinear system control and has achieved 

good results in [1-4]. Based on the DSC method, reference 

[3] solved the controller design problem of a class of strict 

feedback systems and provides Lyapunov stability analysis. 

With the help of the implicit function theorem, an adaptive 

control strategy is proposed for a class of pure feedback 

nonlinear systems via DSC in [4].  

In addition, in real-world systems, due to factors such as 

safety and location, the system's state must be limited within a 

certain range. For example, the literature [5] defined a set of 

Barrier Lyapunov functions that constrain the state at each 

step of the design process. However, in practical applications, 

this method cannot accurately constrain the state. On this 

basis, people have proposed the method of introducing 

nonlinear mapping to transform constrained problems into 

constrained problems, thereby enabling controller design in 

[6-8]. The nonlinear mappings in references [6] and [7] are 

based on logarithmic functions, while reference [8] adopts a 

new fractional form. 

Specifically, control systems in reality often exhibit 

nonlinear phenomena in the controller, with the most common 

form being dead zones. Reference [9] linearized the dead zone 

and successfully separated the control law u  for controller 

design. At the same time, specific systems also have time 

requirements, leading to the emergence of finite time control 

in [10-12]. Inspired by the above achievements, this paper 

studies the finite time control problem of a class of 

constrained parameterized systems with dead zones. The main 

work is as follows: (1) Introducing non logarithmic mapping 

to transform the constrained system into an unconstrained 

system, and using dynamic surface control method for 

controller design to avoid the problem of parameter explosion. 

(2) After transformation, the parameterized system becomes a 

strict feedback system, and neural networks are used to 

approximate unknown functions to handle the unknown 

nonlinear terms of the system. 

II. SYSTEM DESCRPTION AND PROBLEM STATEMENT  

Consider the following nonlinear systems:   

1
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where 
i

1[ ]T

i ix x x R  , y denote the system states and 

output. 
m

iv R  is the unknown constant vector， ( )i ix  is 

known nonlinear function vector. All the states are constrained 

in predefined compact set, i.e., ( 1, , )i cix k i n   are 

predefined positive constants. The dead-zone input ( )u t  can 

be described as 
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Control objective: Design a controller u  that enables the 

output of system (1) to track the desired trajectory and satisfy 

the constraint conditions. 

Assumption 1 [5] The desired trajectory vector  

[ , , ]T

d d d ddx y y y   is constants and available with known 

compact set  2 2 2 3

0:d d d ddx y y y B R      , and 

 
1 21 min ,d b by B k k  , where 0B , 1B  are two known 

positive constants. 

Lemma 1 [110] considering the system ( , )x f x u , for 

positive function ( )V x , if there  exist scalars 0  , 

1
1

2
  and 0  ,  such that ( ) - ( )V x V x    

then the nonlinear system ( , )x f x u  is SGPFS. 

Lemma 2 [10] For any real variables x , y , there any given 

positive constants a ，b and c ，it holds the inequality such 

that  
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Lemma 3 [10] For , 1 ,0 1jx R j n p    , it holds 

the inequality such that   
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III. CONTROLLER DESIGN AND STABILITY ANALYSIS 

In order to carry out full state constraints, we introduce 

the following one to one mapping: 

ln , 1, ,ci i
i
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k x
s i n
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
                                             (5) 

Then we get   (1) 

2
, 1, ,

2
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                                        (6) 

The system（1）can be rewritten as follows： 
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 where 
1[ , , ]T

i is s s  ,   ( ) 2 / 2i is s

i i cik s e e k


    ,                  

1 1 1( ) ( )[ ( ) ] , 1, , 1T

i i i i i i i i i if s k s v x x s i n        ,  (2) 

( ) ( ) ( )T

n n n n n n nf s k s v x  . 

Let 
1

1

ˆ ln c d
d

c d
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y
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
. Suppose 

3

i

i

z R    be a given 

compact set, and 
* ( )T

hi i iW S Z  be the approximation of BRF 

NNs over the compact set 
iz to ( )i ih Z , where ( )i ih Z  will 

be given later.  Then, *( ) ( ) ( )T

i i hi i i hi ih Z W S Z Z  , where 

1[ , , ]T iq

i i iqZ Z Z R  ,  and the basis function vector 

1 1( ) [ ( ), , ( )] i

j

lT

i i i il iS Z s Z s Z R   with ( )ij is Z being 

choose as follows: 
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, 1, , ij l , 1, ,i n , 

1, 2,[ , ]
ij

T

ij ij ij ijq     is the center of the receptive field 

with 3ijq n  , and ij  is width of the Gaussian function. 

For clarity, some notations are defined as follows: 

1[ , , ]T

i iz z z  , 1[ , , ]T

j jy y y , 1j j jy      ,   (3) 

2, ,j n . 

2
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21
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1, ,i n .   (5) 

Step 1: Let 1
ˆ

dy  , we obtain the time derivative of 1z   

1 2 1 2 1( ) -z s f s      (6) 

Then the derivative of 
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where 1 1 1 2 1 1( ) ( ) 3h Z f s z   , and 1 0a   is a design 

constant.  

Design the virtual control 1  as follows: 

22 1 1
1 1 1 1 1 12

1

ˆ ( )
2

z
k z S Z

a

                                       (9) 

where 1k  is a design constant that we will choose later,
1̂  is 

the estimate of 1  at time t. 

The following adaptive law is used to update the 

unknown parameter 1  for 1i  . 

22
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                                       (10) 

where i  , ia  and i  are strictly positive constants and ˆ
i is 

the estimate of i at time t . 

Define 2   in such a way that 

   2 2 2 1 2 1, 0 0                                           (11) 

where 2  is a design constant that we will choose later. 

Since 
22 1 2

2 2 2 1 1 1 1 1 1 1
ˆ ( ) 2s z y k z z S Z a     , 

using young’s inequality, we obtain 
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where continuous function 1 satisfies 1 1 1( )h Z  .   (7) 

From young’s inequality, we have
2 2

1 1 1 1

1

4
z z    , 

then we get  
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Noting Assumption 1, we have 
2
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is a continuous function. 

Further, we obtain 
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Step i ( 2 1i n   ) 

The time derivative of iz  is 
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where 1

1
( ) ( ) 3

4
i i i i i ih Z f s z   , and 0ia   is a 

design constant. 

Construct the  virtual control i  as follows: 
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                                      (17) 

where ik  is a positive design constant that we will choose 

later. 

The adaptive law of the parameter ˆ
i is determined by 

(10) for i . 

Define 1i    in such a way that 

   
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where 1i   is a positive design constant. 
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 Using young’s inequality, we obtain 
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where continuous function i satisfies ( )i i iZ  .   (9) 

From young’s inequality, we have 
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i i i iz z                          (20) 
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Then, one has 
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Step n: The control law u  will be design in this step. 

The time derivative of nz  is 
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where 0na   is a design constant and 0 0g  we will give 

later, and  
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Design the control law u  as follows: 
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ˆ
n  is the estimate of n , the function as  
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where continuous function n satisfies ( )hn n nZ   .   (11) 

Using young’s inequality, we have 
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From the above, it can be concluded that 
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Theorem 1 Consider the closed-loop system consisting of 

system (1) under Assumption 1, the controller (25), and 

adaption law (10). For bounded initial conditions, satisfying 

(0)nV p , 1 1ck B , and (0)
ii xx  , there exist 

constants 0, 0, 0, 0i i i ik       , such that the overall 

closed-loop neural control system is SGPFS in the sense that 

all of the signals in the closed-loop system are finite-time 

bounded, and 
ii xx  , 0t   ,i.e., the full state constraints 

are never violated, in addition, ik  and i  satisfy 
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Proof. Consider the overall Lyapunov function candidate as 

follows: 
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Differentiating ( )V t  with respect to time t leads to 
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Substituting (13), (14), (21), (22) and (29) into (32), and 

applying (10) and (26), it follows that 
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If nV V p  , then 
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Now we apply lemma 2 and Lemma 3, one has  

-V V                                           (35) 

where 
0 0min{ , }   , 
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 .  (13) 

It means that all the signals in the closed-loop system are 

SGPFS. Therefore, iz , iy  and ˆ
i  are finite time 

bounded. is  , i , 1i   are also finite time bounded. 

IV. SIMULATION RESULTS  

Consider a nonlinear system, the dynamic equation is 

given as follows: 

     

2

1 1 2

2 1 1

1

0.1

0.2sin( ) 2

x x x

x x x u

y x
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

  
 

                                         (37) 

For conducting the simulation, the initial conditions are 

1(0) 0.13x  , 2 (0) 1.43x  , 2 0.01  , 1(0) 0.1  ,

2 (0) 0.3  , 2 (0) 0.1  . 

The reference signal is 0.3cos(0.57 0.6) 0.24dy t   , 

and the states are constrained in the regions 1 0.16x   and 

2 1.5x  . The parameters are selected as 1 4k  , 2 15k  , 

1 1a  , 2 1a   , 1 2 0.01    , 1 50  , 2 30   ,  

0.3rb  , 0.5lb  , 0.8r lm m  , 0.5l  , 2 0.01  , 

99 /101  . 
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Fig. 1. Output y , desired trajectory dy  

and constraints 1kc  

 
Fig. 2. Control law u  

 

 

Fig. 3. The curve of 1̂ and 2̂  

 

Fig. 4. Phase portrait of states 1x , 2x  

 

The simulation results are shown in the Fig. 1–4. From 

above Figures, we can see that the all states abide by extended 

constraint conditions, and the control objective can be well 

implemented. Moreover, all signals in systems are bounded. 

V. CONCLUSION  

Adaptive finite-time tracking control for nonlinear systems 

subject to full state constraints and dead-zone is studied in this 

paper. Base on DSC, control, a novel adaptive finite time 

tracking control is proposed by utilizing the finite-time 

stability theory and NM. All the signals in the close-loop 

system are proved to be SGPFB and state constraints have not 

been triggered. The simulation further verified the 

effectiveness of the proposed finite time control strategy. 
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