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Abstract— In this paper, the spectral element method for one-dimensional second-order interface elliptic problem is given. First, the 

corresponding Sobolev space is defined and established variational form and its discrete scheme. Secondly, the existence and uniqueness of the 

weak solution and its approximate solution are proved theoretically. In addition, the implementation process of the algorithm is described in 

detail, and a large number of numerical examples are given to prove the advantages of our algorithm. The results show that the algorithm can 

achieve excellent convergence and ultra-high precision for interface problems. 

 

Keywords— Elliptic interface problem, spectral element method, algorithm design, numerical experiment. 

 

I. INTRODUCTION  

The second-order elliptic interface problem is an important and 

fundamental problem, and many complex nonlinear problems 

in engineering research and scientific calculation are finally 

reduced to solving the second-order elliptic interface equations. 

Many results have been obtained in theoretical analysis and 

numerical calculation of second-order elliptic interface 

equations [1,2,3]. These numerical methods are mainly based 

on the finite element method [4,5] and the finite difference 

method [6]. In [7], Hansbo A and Hansbo P propose a non-

fitting finite element method for solving elliptic interface 

problems based on Nitsche's method. In [8], Chen L proposed 

the trigonometric method of Stokes equation. In [9], Li Hong 

proposes a posterior error estimation method for Galerkin finite 

element method based on polygonal mesh. 

It is well known that finite element method is flexible in 

the field of computation, while spectral method is a high-order 

numerical method with spectral accuracy [10,11]. However, 

there are few reports of using spectral element method to solve 

one-dimensional second-order elliptic interface problems. 

However, such numerical methods like spectral element 

method are of great practical significance for one-dimensional 

interface problems. Therefore, the aim of this paper is to find 

an efficient spectral element method for one-dimensional 

second-order elliptic interface problems. Firstly, according to 

the boundary conditions, proper Sobolev space is introduced to 

establish the weak form and discrete form of the second-order 

elliptic interface problem. Secondly, the Lax-Milgram lemma 

is used to prove the existence and uniqueness of the weak 

solution and the approaching solution. In addition, the 

construction of the basis function and the implementation of the 

algorithm are described in detail. Finally, a numerical example 

is given to verify the effectiveness and spectral accuracy of the 

proposed algorithm. 

The rest of this article is structured as follows. In Section 

2, we define a class of Sobolev spaces and establish variational 

forms and their corresponding discrete formats. In section 3, the 

existence and uniqueness of understanding is proved. In Section 

4, we carefully construct the corresponding basis function in the 

approximation space, and the corresponding equivalent matrix 

form is given. In Section 5, a numerical example is given to 

verify the correctness of the theoretical analysis and the 

effectiveness of the algorithm. Finally, it is summarized in 

section 6. 

II. WEAK FORM AND DISCRETE SCHEME 

In order to better demonstrate the algorithm implementation 

process, we consider the following second-order elliptic 

interface problem: 

, in( 1,0] (0,1),

( 1) 0,

  



− + = − 

 =
      (1) 

where 𝜅 is a function of 𝑥 which belong to the interval (−1,1), 

and 𝛼 is a layered medium coefficient as follows: 

1, in( 1,0],

2, in(0,1).


−
= 


 

Next, we establish the variational form of the equations (1) 

and their corresponding discrete formats. First, we introduce the 

following Sobolev space: 
1
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The corresponding inner product definition and the norm 

induced by the inner product are defined as follows: 
1
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Then, the weak form of (1) is: Find 𝜅 ∈ 𝐻∗
1(−1,1) such that 

1

*( , ) ( ), ( 1,1),a v f v v H =   −  (4) 

where 
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Note 𝑃𝑁 as the set of all polynomials representing degree 𝑁 at 

most. Define the approximate space 𝑉𝑁=𝐻∗
1(−1,1)⋂𝑃𝑁 , then 

the discrete format corresponding to (4) is: Find 𝜅𝑁 ∈ 𝑉𝑁, such 

that 

             ( , ) ( ), .N N N N Na v f v v V =    (5) 

III. EXISTENCE AND UNIQUENESS OF SOLUTION 

We use 𝑎 ≲ 𝑏 to represent 𝑎 ≤ 𝑐𝑏 , where 𝑐  is a positive 

constant. 

Lemma 1 ∀ 𝜅 ∈ 𝐻∗
1(−1,1), 𝑡ℎ𝑒𝑟𝑒 ℎ𝑜𝑙𝑑𝑠 

                              
*. ‖‖ ‖‖ˆ                           (6) 

𝑃𝑟𝑜𝑜𝑓. According to (2), (3) and Cauchy-Schwarz inequality, 

it is obvious that 
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1 1 1 1 1 1

1 1 1
2 2

1 1 1

( ) 1

1 ( ) ( ) .

( ) [ ]
x x x

x

dx d dx d d dx

dx d dx

 



     

  

− − − − − −

− − −

=   

 

     

  ˆ ˆ

 

This finishes our proof. 

Lemma 2 𝑎(𝜅, 𝑣) is a bounded and positive definite bilinear 

functional on   𝐻∗
1(−1 , 1) × 𝐻∗

1(−1 , 1) , obviously for 

 ∀(κ , v) ∈ H∗
1(−1,1) ×  𝐻∗

1(−1,1) , the following inequality 

holds 

 
2
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𝑃𝑟𝑜𝑜𝑓. From Lemma 1 and Cauchy-Schwarz inequality, we 

have 
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In addition, we derive that 
1 1

2 2 2

*
1 1

( , ) ( ) ,xa dx dx    
− −

=  +  ‖ ‖‰  

there is no doubt that the proof is completed. 

Lemma 3 If 𝑓 ∈ 𝐿2(−1,1), 𝑓(𝑣)  is a continuous linear 

function on  𝐻∗
1(−1,1), i.e. 

                        *| ( ) | .f v v‖‖ˆ                   (8) 

𝑃𝑟𝑜𝑜𝑓. From Lemma 1 and Cauchy-Schwarz inequality, we 

have 
1

*
1

| ( ) | .| |f v vdx v v v 
−

=  ‖‖‖‖ ‖‖ ‖‖ˆ ˆ  

Then, based on lemmas 2-3 and the Lax-Milgram theorem, we 

get the following theorem 1: 

Theorem 1 If 𝑓 ∈ 𝐿2(−1,1) , equations (4)  and (5)  exist 

unique solutions 𝜅 and 𝜅𝑁, respectively. 

IV. DESIGN AND IMPLEMENTATION OF THE ALGORITHM 

In this section, we shall describe how to efficiently solve (5). 

We start by constructing a set of basis functions of the 

approximation space NV . 

Let  

2( ) ( ) ( ),( 0,1, , 2),i i it L t L t i N += − =  −  

where ( )iL t is a Legendre polynomial of degree i . 

Set 
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We define the following internal basis functions:
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where 0,1, , 2i N= − . Define the basis function at the 

interface: 
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Set the ˆR


 is the interface, the graph of the various basis 

functions and their derivatives for x  is as follows:  

 

 
Fig. 1. The figures of the basis functions of x (left) and the derivatives of the basis functions (right) with N=4 and i=0,1,2. 

It is obvious that 

   ,0 ,1 , 2 1

1,2

span , , , span .N j j j N N

j

V    − −

=

=   
We expand N  as follows: 
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0 0
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− −
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= =
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Substitute (9) into (5) to calculate, and let NV  go through a set 

of basis functions in NV , then (5) can be reduced to the 

following matrix form: 

1 1 1 1 1

2 2 2 2 2
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where , 0,1, , 2.i j N= −  

V. NUMERICAL EXPERIMENT 

To demonstrate the convergence and superior accuracy of 

our algorithm, we will conduct a series of numerical tests in this 

section. The problem (1) are computed by using the spectral 

element method with different 𝑁. Our programs are compiled 

and operated in MATLAB R2023b. 

Let 𝜅𝑁(𝑥) be the approximate solution of 𝜅(𝑥). The error 

between the exact solution and the approximate solution is 

defined as follows: 

( 1,1)
( , ) ( ) ( ) .N N L

e x x     −
= −‖ ‖  

Example 1: In the case of 𝜅(𝑥) = 𝑐𝑜𝑠
𝜋𝑥

2
𝑒(

𝑥

2
)2

, which 

obviously satisfy (1) . And then we can get 𝜍(𝑥)  from  (1) . 

When 𝑁 = 50, the exact solution, the numerical solution and 

the error diagram are shown in Fig. 2. Table 1 lists the errors 

for different 𝑁. 

It can be observed from Table 1 that when 𝑁 >  30, the 

approximate solution has an accuracy of about 10−15 . In 

addition, Fig. 2 shows once again that our algorithm is stable 

and highly accurate. 

Example 2: We set 𝜅(𝑥) = sin [
𝜋(1+𝑥)

2
]𝑒2𝑥 . Then we can 

acquire 𝜍(𝑥)  from (1) . The exact solution, the numerical 

solution and the error figure between them are presented in Fig. 

3. The errors 𝑒(𝜅, 𝜅𝑁) for different 𝑁 are listed in Table 2. 

Likewise, it can be observed from Table 2 that when 

𝑁 >  40, the approximate solution has an accuracy of about 

10−15. In addition, Fig. 3 shows once again that our algorithm 

is stable and highly accurate

 

 
Fig. 2. Figures of the exact solution and the numerical solution with N=50 (left) and the error between them(right). 

 
TABLE 1. The error between the numerical solution and the exact solution with different N. 

 N=20 N=30 N=40 

𝑒(𝜅, 𝜅𝑁) 1.75345849e-14 6.31439345e-15 3.49720253e-15 

 N=50 N=60 N=70 

𝑒(𝜅, 𝜅𝑁) 2.22044605e-15 1.50877574e-15 1.79804088e-15 
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Fig. 3. Figures of the exact solution and the numerical solution with N=70 (left) and the error between them(right). 

 
TABLE 2. The error between the numerical solution and the exact solution 

with different N. 

 N=20 N=30 N=40 

𝑒(𝜅, 𝜅𝑁) 4.70595785e-14 1.65423231e-14 9.99200722e-15 

 N=50 N=60 N=70 

𝑒(𝜅, 𝜅𝑁) 5.77315973e-15 4.21884749e-15 5.13478149e-15 

 

Example 3: We take 𝜅(𝑥) = 𝑐𝑜𝑠
𝜋𝑥

2
sin [

𝜋(1+𝑥)

2
]𝑒𝑥 , which 

obviously satisfies (1). Then we can acquire 𝜍(𝑥) from (1). 

Fig. 4 shows the exact solution, the numerical solution and the 

error figure between them. The errors 𝑒(𝜅, 𝜅𝑁) for different 𝑁 

are listed in Table 3. 

 
Fig. 4. Figures of the exact solution and the numerical solution with N=60 (left) and the error (right) between them. 

 
TABLE 3. The error between the numerical solution and the exact solution 

with different N. 

 N=20 N=30 N=40 

𝑒(𝜅, 𝜅𝑁) 1.36557432e-14 5.21804822e-15 3.10862447e-15 

 N=50 N=60 N=70 

𝑒(𝜅, 𝜅𝑁) 1.88737914e-15 1.33226763e-15 1.11022302e-15 

 

Again, we can see from Table 3 that when 𝑁 >  30, the 

approximate solution has an accuracy of about 10−15. As can 

be seen from Fig. 4, our algorithm is undoubtedly robust and 

ultra-high precision. 

VI. CONCLUDING REMARKS 

For one-dimensional second-order interface problem, the 

existing high-precision algorithms are relatively scarce, and 

most of them are based on finite element method. Based on this 

situation, this paper proposes the spectral element method for 

one-dimensional second-order elliptic interface problem. The 

error between the approximation solution and the exact solution 

achieves spectral accuracy and theoretically proves the 

existence and uniqueness of its solution. This is of practical 

significance for those interface problems where high dimension 

can be converted to low dimension. A large number of 

numerical results show that the proposed algorithm has 

excellent convergence and accuracy. In addition, it is our future 

research goal to develop and study high-precision algorithms 

for interface problems in high dimensions and their equivalent 

forms in low dimensions. 
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