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Abstract— The proliferation of Internet of Things (IoT) devices has led to an abundance of sensitive data being transmitted and processed in IoT 

networks. Ensuring privacy in such networks is crucial to protect user information from unauthorized access and misuse. In this paper, we propose 

HAREDP (Hybrid Adaptive Renyi-Exponential Differential Privacy), a novel approach that combines Adaptive Renyi Differential Privacy and 

Adaptive Exponential Differential Privacy to preserve privacy in IoT network security. By integrating the strengths of both techniques, HAREDP 

offers a robust and adaptable solution for privacy preservation in dynamic IoT environments. Integrating Adaptive Renyi Differential Privacy and 

Adaptive Exponential Differential Privacy, HAREDP offers a comprehensive solution for privacy preservation in IoT network security. The 

adaptive privacy mechanisms of both techniques enable effective privacy protection in dynamic IoT environments, ensuring the confidentiality of 

sensitive data. Experimental evaluation and a real-world case study validate the effectiveness of HAREDP in preserving privacy in IoT networks. 

The accuracy of the analysis is 98.78% indicating the proportion of correctly classified instances.  The precision of the analysis is 98.78%, 

representing the proportion of true positive instances among the predicted positive instances.  The sensitivity is 98.78%, represents the proportion 

of actual positive instances correctly identified. The privacy utility achieved by HAREDP is 0.993844128, this measures the usefulness of the 

analysis results while preserving privacy. The privacy trade-off ratio is 0.050833194, indicating the ratio between privacy loss and privacy utility. 

A higher value signifies a greater trade-off between privacy and utility. 
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I. INTRODUCTION  

The Internet of Things (IoT) has revolutionized various 

industries by enabling seamless connectivity among devices 

and facilitating the exchange of vast amounts of sensitive data. 

However, the widespread adoption of IoT also raises significant 

concerns about privacy and security. As IoT networks operate 

in dynamic environments with evolving threats, ensuring the 

privacy of users' information becomes a critical challenge. The 

rapid growth of IoT networks has led to an exponential increase 

in the collection and processing of sensitive data. These 

networks encompass various domains, including healthcare, 

smart homes, and industrial automation, where the privacy of 

user information is of utmost importance. With the dynamic 

nature of IoT environments and the ever-evolving privacy 

threats, traditional privacy preservation techniques often fall 

short in providing adequate protection. Therefore, there is a 

pressing need for innovative approaches that can adapt to 

dynamic IoT environments and effectively preserve privacy. 

The IoT network security environment encompasses the 

specific challenges and factors that arise when securing IoT 

devices and networks. Dynamic environment for IoT network 

security consists of diverse devices with varying capabilities, 

operating systems, communication protocols, and security 

features. This heterogeneity introduces challenges in managing 

and securing the different types of devices within the network. 

IoT networks can have complex topologies with devices 

interconnected in various ways, including star, mesh, or hybrid 

configurations. The dynamic environment includes managing 

and securing communication paths as devices are added, 

removed, or moved within the network. They often scale to a 

large number of devices, potentially ranging from hundreds to 

millions. Managing security at scale requires efficient 

mechanisms for device provisioning, authentication, secure 

communication, and monitoring. Each connectivity option has 

its own security considerations, and the dynamic environment 

involves securing devices across different connectivity options.   

The IoT network security in a dynamic environment is to 

secure the nodes, infrastructure, and data from possible threats 

and vulnerabilities that arise due to the constantly changing and 

evolving nature of the IoT ecosystem. However, [21] pointed 

out that adoption of IoT devices in so many applications has 

raised serious questions about user security and privacy. The 

increasing growth in cyber dangers renders the latest security 

and privacy measures unproductive consequently, hackers can 

use anyone on the Internet as a target.  IoT network security 

ensures that devices are protected from unauthorized access, 

tampering, or misuse. It involves implementing authentication 

mechanisms, protection techniques, and access controls to 

restrict adversary devices from connecting to the network. [16] 

introduced at a high level the privacy protection schemes 

divided into three stages of data collection, transmission, and 

storage. They tested security protocols at the lower layers; 

Networking schemes; and storage mechanism and collaborative 

methods, thus, opined that the real-world implementations 

typically involved multiple stages and multiple technologies 

combined to ensure privacy. IoT network security safeguards 

the privacy and integrity of data transmitted between devices 

and networks. It involves encrypting sensitive data, ensuring 

secure data storage, and implementing measures to prevent data 

tampering or interception during transmission. 



International Journal of Scientific Engineering and Science 
Volume 8, Issue 5, pp. 32-45, 2024. ISSN (Online): 2456-7361 

 

 

33 

http://ijses.com/ 

All rights reserved 

IoT is the swiftest-rising areas of research in technological 

information domain. [1] projected there will be over 50 billion 

connected internet of things devices in 2025. With these huge 

classes of linked sensors, the communication infrastructure will 

generate vast quantity of information, making protection of 

network and volume of data an issue. Given the integrative 

connections between devices, IoT networks are incredibly 

complex, and providing protection to a large network is 

challenging. An intruder can bodily assault individual devices 

to gain control to their information. Eavesdropping is possible 

on the wireless connection between devices. In light of the 

constrained computational capacity of an IoT device, it is 

unable to hold a complete protection architecture to thwart the 

adversary attack. The unreliability of IoT devices creates an 

additional attack vector. Thus, protection is a significant 

challenge in the networks, rendering traditional security 

solutions ineffective for IoT. Consequently, distribution turns 

out to be a chore that requires concurrent consideration of 

communication infrastructures effectiveness, protection, inter-

operability, and data analysis. However, network integration 

includes hazards that makes IoT surfaces more susceptible, thus 

the huge quantity of important data from these heterogenous 

devices that is not analysed and securely transported, poses 

serious privacy breach that may occur. 

Dynamic environment in the context of Internet of Things 

(IoT) network security, refers to the characteristic of IoT 

networks where the network topology, devices, and conditions 

can change frequently and unpredictably. It implies that the IoT 

network is subject to various dynamic factors that can impact 

its security posture. IoT networks includes a wide series of 

nodes with various capabilities, operating systems, 

communication protocols, and security features. These devices 

may include sensors, actuators, wearables, industrial 

equipment, and more. The dynamic environment reflects the 

diversity of devices and the challenges associated with securing 

such a heterogeneous ecosystem. Network Topology of IoT 

networks can have complex topologies, with devices 

interconnected in various ways. The network topology may 

change dynamically as nodes are connected, removed, and 

moved within the communication infrastructure. The 

continuous proliferation of these devices has revolutionized 

how we collaborate and manage our surroundings. These 

interconnected devices extend to domains likes healthcare, 

homes, industry’s, mobility, etc. While IoT offers 

unprecedented convenience and efficiency, thus introduces 

substantial protection and privacy issues. Dynamic nature of 

IoT networks, characterized by varying device types, 

communication protocols, and environmental conditions, 

exacerbates these challenges. In this context, ensuring privacy 

preservation and anomaly detection within IoT networks 

becomes imperative to safeguard sensitive information and 

integrity of the infrastructure. There various sensors that collect 

and sending an array of personal and confidential information, 

ranging from health information to location data and 

behavioural patterns. This data is susceptible to breaches, 

leading to severe privacy violations and potential identity theft. 

Furthermore, the centralized nature of data storage and 

processing within IoT networks creates attractive targets for 

malicious actors. Therefore, preserving privacy of user 

information in transit and stored is crucial to foster trust and 

encourage the adoption of IoT technologies. 

IoT environments are dynamic streaming data that changes 

over time.  When analysing IoT data, there are often challenges 

due to changing concepts [17]. IoT devices often have a long 

lifecycle and may operate in different locations or environments 

throughout their lifespan. They may be deployed in public 

spaces, industrial settings, homes, or vehicles. Managing 

security for devices that are constantly changing their locations, 

being replaced, or undergoing updates and maintenance is part 

of the dynamic environment. They can scale to a large number 

of devices, potentially ranging from hundreds to millions. 

Managing security at scale becomes a challenge, including 

tasks such as device provisioning, authentication, firmware 

updates, and monitoring. Security measures must be designed 

to handle the large volume of devices efficiently. The risk scene 

of IoT is continuously sprouting, with new vulnerabilities, 

attack vectors, and techniques emerging. The dynamic 

environment requires proactive security measures that can 

adapt to emerging threats, couple with the regular checking and 

response to sense and mitigate potential incidents.  IoT 

deployments often required to adhere to procedures and 

standards related to data privacy, security, and industry-specific 

requirements. The dynamic environment includes staying 

updated with changing regulatory landscapes and ensuring 

compliance with relevant standards. The dynamic environment 

in IoT network security refers to the ever-changing nature of 

IoT deployments, encompassing device diversity, evolving 

network topologies, various connectivity options, device 

lifecycle management, scalability challenges, emerging threats, 

and compliance considerations. Securing IoT networks in this 

dynamic environment requires flexible and adaptable security 

measures that can address the evolving landscape and protect 

against potential risks. This is characterized by continuous 

changes, variability, and unpredictability. Understanding and 

adapting to the dynamics of the environment are crucial for 

success and resilience in the face of constant change. 

Recently, there has been focused on privacy preservation 

and anomaly detection for IoT infrastructure protection in 

dynamic environments. [15] suggested a privacy-preserving 

anomaly detection system of edge consumer electronics. 

Privacy preservation and anomaly detection are two important 

security challenges in IoT networks. Privacy preservation is 

concerned with shielding the confidentiality, integrity, and 

availability CIA of sensitive details. Anomaly sensing 

concerned with classifying and responding to abnormal 

behaviour in IoT networks. [12] surveyed recent advancements 

in the use of Federated Learning (FL) and Deep Learning (DL) 

for IoT protection. They discussed the challenges and prospects 

of using FL and DL for botnet and other security tasks in IoT 

networks. [18] reviewed works and research gaps in anomaly 

detection for internet of things networks. They discussed the 

challenges of detecting anomalies in IoT data, including the 

imbalance between normal and anomalous data, concept drift, 

the lack of labelled data, privacy and security, real-time 

detection, and interpretability. 
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 In a dynamic IoT environment, network segmentation is 

crucial to isolate different types of devices, applications, or 

services. Thus, segmentation of network can provide security 

enhancement as it restricts unauthorized access and contains 

potential breaches to specific network segments.  IoT network 

security employs techniques like intrusion detection systems, 

behaviour analytics, real-time viewing to sense and mitigate 

security threats. Network protection teams can proactively 

identify anomalies, unusual behaviour, or potential breaches 

thereby proffered solutions to mitigate risks. As the IoT 

environment evolves, security vulnerabilities may be 

discovered in devices or network components. IoT network 

security involves managing patches and updates solutions to 

vulnerabilities and ascertain nodes are executing the latest, 

secure firmware or software versions. Access Control and 

Authentication in IoT network security enforces strict access 

control measures to restrict users or devices from gaining 

control to the network. This includes strong authentication 

mechanisms, user and device authentication, and secure user 

access management. Scalable Security Measures of IoT 

networks often comprise a large number of devices that may be 

added or removed dynamically. Network security must be 

scalable to handle the growing number of devices, while still 

maintaining effective security controls and policies. In a 

dynamic environment, IoT networks may involve devices from 

different vendors and components from various suppliers. IoT 

network security encompasses verifying the security practices 

of vendors and suppliers, ensuring secure software or firmware 

updates, and managing the security of the entire supply chain. 

It involves implementing security controls, documenting 

security practices, and adhering to privacy regulations to protect 

user data and ensure legal compliance. Continuous Monitoring 

and Risk Assessment in IoT network security requires ongoing 

monitoring of network traffic, device behaviour, and security 

events. The role of IoT network security in a dynamic 

environment is to safeguard devices, networks, and data from 

evolving threats, ensuring privacy, integrity, and availability of 

IoT services. It involves implementing a multi-layered security 

approach, adapting to changes, and being proactive in detecting 

and responding to emerging security risks. 

Related Work 

Several research efforts have focused on privacy 

preservation in IoT networks, but they often lack adaptability to 

dynamic environments. Techniques such as Differential 

Privacy, Renyi Differential Privacy, and Exponential 

Differential Privacy have been proposed to address privacy 

concerns. However, these techniques have limitations in terms 

of adaptability and robustness in the face of evolving IoT 

network conditions. Privacy preservation in IoT networks has 

been a subject of extensive research, resulting in the 

development of various techniques.  In recent times, the use of 

artificial intelligence technology that relies on analysing image 

data has become increasingly popular in various industries. This 

technology not only drives technological advancements but also 

contributes to economic growth. However, the concern 

regarding privacy breaches associated with image data has 

become more prominent. To address this issue, [7] introduced 

the RDP-WGAN privacy protection framework, which 

incorporates privacy protection techniques into the training 

process of generative adversarial networks (GANs). The 

framework aims to achieve differential privacy by generating 

synthetic datasets that can be used for data analysis tasks 

instead of sensitive datasets. Experimental results demonstrate 

that the Renyi differential privacy – Wasserstein generative 

adversarial networks (RDP-WGAN) framework effectively 

protects the privacy of sensitive image datasets while 

maintaining the utility of the synthetic datasets. [8]) proposed a 

method called Renyi differential privacy – generative 

adversarial networks (RDP-GAN), which achieves differential 

privacy within a GAN by introducing random Gaussian noise 

during training. The researchers derived analytical results that 

characterize the privacy loss and developed an adaptive noise 

tuning step to mitigate the negative effects of noise injection. 

Experimental results show that the proposed algorithm achieves 

higher privacy levels and generates high-quality samples 

compared to a benchmark DP-GAN scheme. GANs have 

gained attention due to their impressive performance and 

applications in various fields. However, when training GANs 

with sensitive data, privacy risks arise as the models can 

memorize the data. To address this concern, [20] introduced the 

Privacy Preserving Generative Adversarial Network (PPGAN), 

which perturbs the discriminator's objective function using 

Laplace noises to ensure differential privacy. The generator 

training process guarantees that the trained generator itself is 

differentially private, providing a strict privacy guarantee. 

Simulations on the MNIST dataset demonstrate the 

effectiveness of PPGAN under practical privacy budgets. 

Privacy-preserving cross-domain recommendation 

(PPCDR) aims to enhance recommender systems' performance 

while preserving user privacy during knowledge transfer 

between domains. [6] proposed the PPGenCDR framework, 

which consists of a privacy-preserving generator module and a 

robust cross-domain recommendation module. The generator 

module employs a GAN-based model to estimate the 

distribution of private data, ensuring stability using the RDP 

technique. The recommendation module leverages the 

perturbed knowledge from the source domain and raw data 

from the target domain to improve recommendation 

performance. The framework ensures a balance between utility 

and privacy, stability of the GAN with RDP, and robust 

leveraging of transferable knowledge. The privacy and security 

of sensitive personal information used in deep learning models 

are a significant concern. [13] introduced the DPBA algorithm, 

which injects vector-valued Gaussian noise into the WGAN to 

generate data with privacy protection. The algorithm 

dynamically perturbs gradients, providing strong privacy 

protection. Extensive evaluations demonstrate the algorithm's 

superiority in terms of usability metrics across various datasets. 

[10] proposed Differentially Private Conditional GAN (DP-

CGAN), a training framework that protects the privacy of the 

training dataset while generating synthetic data. DP-CGAN 

incorporates a clipping and perturbation strategy and utilizes 

the Renyi differential privacy accountant to monitor privacy 

budget expenditure. Experimental results on the MNIST dataset 

show promising results in terms of visual and empirical 



International Journal of Scientific Engineering and Science 
Volume 8, Issue 5, pp. 32-45, 2024. ISSN (Online): 2456-7361 

 

 

35 

http://ijses.com/ 

All rights reserved 

performance. To address the challenge of preserving privacy 

while utilizing valuable data stored in personal devices, [3] 

proposed a method that separates the creation of a latent 

representation from the data and then privatizes the data. The 

method involves using a Variational Autoencoder (VAE) to 

generate a consistent latent representation and training a 

generative filter to perturb the representation based on user-

defined privacy and utility preferences. The approach is 

evaluated on multiple datasets, demonstrating its effectiveness 

in preserving privacy while maintaining useful information. 

Here, we review some existing approaches and highlight their 

strengths and limitations: 

1. Differential Privacy (DP) 

Differential Privacy has gained significant attention as a 

privacy-preserving mechanism in IoT networks. It provides 

strong privacy guarantees by adding calibrated noise to query 

responses or data releases. DP ensures that individual data 

contributions cannot be distinguished, thus protecting the 

privacy of users. However, traditional DP methods may not 

adequately adapt to the dynamic nature of IoT environments, 

leading to suboptimal privacy guarantees and potential 

information loss. 

2. Renyi Differential Privacy (RDP) 

Renyi Differential Privacy is an extension of Differential 

Privacy that offers a trade-off between privacy and utility. By 

adjusting the privacy parameter, RDP provides flexibility in 

achieving different levels of privacy protection. RDP has shown 

promise in preserving privacy in various domains. However, 

existing RDP techniques often rely on fixed privacy parameters, 

limiting their adaptability to dynamic IoT environments.  Renyi 

Differential Privacy (RDP) is an alternative formulation of 

differential privacy that provides a different trade-off between 

privacy and utility compared to traditional differential privacy 

mechanisms. Here's the mathematical formulation of Renyi 

Differential Privacy: 

Let D be the dataset with n rows and mm columns, 

represented as a matrix where D = [dij], where dij represents the 

value of the ith row and jth column. 

The existing privacy preservation techniques in IoT 

networks often lack the adaptability and robustness required to 

address the challenges posed by dynamic environments. These 

techniques may not effectively protect sensitive user 

information in the face of evol0ving privacy threats and 

changing network conditions. Consequently, there is a need to 

develop a privacy preservation framework that can adapt to the 

dynamic nature of IoT networks and provide robust privacy 

guarantees to users. 

The main objectives of this paper are as follows: 

1. Design HAREDP, a novel framework that combines 

Adaptive Renyi Differential Privacy and Exponential 

Differential Privacy for privacy preservation in IoT network 

security. 

2. To develop adaptive mechanisms within HAREDP that can 

dynamically adjust privacy parameters based on the 

evolving IoT network conditions. 

3. To evaluate the performance and effectiveness of HAREDP 

in preserving privacy in dynamic IoT environments through 

extensive experimentation using representative IoT 

datasets. 

4. To compare HAREDP with existing privacy preservation 

techniques in terms of privacy guarantees, adaptability, and 

computational efficiency. 

5. To provide insights and guidelines for the integration and 

deployment of HAREDP in real-world IoT networks to 

ensure privacy protection while maintaining network 

security. 

Limitations of Current Approaches 

Despite the advancements in privacy preservation 

techniques for IoT networks, there are several limitations that 

need to be addressed: 

1. Lack of Adaptability: Many existing techniques have fixed 

privacy parameters or require manual tuning, making them 

less effective in dynamic IoT environments. Privacy 

preservation techniques should be adaptable to changing 

network conditions and evolving privacy threats. 

2. Computational Overhead: Some privacy preservation 

methods introduce significant computational overhead, 

limiting their scalability in resource-constrained IoT 

devices. Efficient algorithms are needed to ensure privacy 

without compromising the performance of IoT networks. 

3. High-Dimensional Data: IoT networks often generate high-

dimensional data, posing challenges for privacy 

preservation techniques. Existing approaches may struggle 

to handle the dimensionality and complexity of IoT data, 

leading to suboptimal privacy guarantees and potential 

information leakage. 

4. Trade-off between Privacy and Utility: Achieving a balance 

between preserving privacy and maintaining data utility is 

crucial in IoT networks. Existing techniques may face 

challenges in achieving an optimal trade-off, leading to 

either excessive privacy protection or significant utility loss. 

To address these limitations, we propose HAREDP (Hybrid 

Adaptive Renyi-Exponential Differential Privacy), which 

combines Adaptive Renyi Differential Privacy and Adaptive 

Exponential Differential Privacy. By integrating adaptability 

and robustness, HAREDP aims to provide effective privacy 

preservation in dynamic IoT environments while mitigating the 

limitations of current approaches. The HAREDP (Hybrid 

Adaptive Renyi-Exponential Differential Privacy) framework 

is designed to address the limitations of existing privacy 

preservation techniques in IoT networks by combining the 

strengths of propose Adaptive Renyi Differential Privacy and 

Adaptive Exponential Differential Privacy. HAREDP offers a 

comprehensive and adaptable solution for privacy preservation 

in dynamic IoT environments. 

II. MATERIALS AND METHODS 

Methodology 

HAREDP builds upon Adaptive Renyi Differential Privacy 

(ARDP) and Adaptive Exponential Differential Privacy (AEP), 

leveraging a mixed-methods approach. Theoretical Analysis is 

crucial to prove that HAREDP mathematically satisfies the 

privacy guarantees of both ARDP and AEP under dynamic IoT 

conditions. This involves applying established differential 

privacy frameworks and theorems. Simulations methods will 
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allow the test of HAREDP's effectiveness in controlled 

environments with diverse dynamic IoT scenarios (data 

distributions, arrival rates). Compare its performance with 

existing methods using metrics like privacy guarantees, 

accuracy, efficiency, and scalability. Implementing HAREDP 

on a real IoT platform or testbed provides real-world insights. 

Run experiments to gather data on its performance in terms of 

privacy, accuracy, and efficiency under actual conditions. A 

thorough literature review is essential for understanding 

existing ARDP, AEDP, and privacy-preserving mechanisms in 

dynamic IoT environments. Identify the limitations these 

approaches address and how HAREDP aims to improve upon 

them. 

Theoretical analysis provides a strong foundation for the 

privacy guarantees offered by HAREDP. Simulations allow 

controlled testing and comparison with existing methods. 

Implementation and experimentation validate the theoretical 

and simulated results in a real-world setting. This combination 

provides a comprehensive picture of HAREDP's effectiveness 

and potential limitations. Moreso, we will proof how HAREDP 

address the security of itself to prevent potential attacks that 

could compromise privacy? Thus, utilizing these methods and 

considering these points, we will conduct a robust research 

evaluation of HAREDP's potential for effective privacy 

preservation in dynamic IoT environments. 

 

 
Fig. 1: Proposed Systems Architecture 

Proposed System 

Privacy preservation in IoT network security involves 

implementing measures to safeguard the confidentiality and 

security of personal data and information generated by IoT 

devices. As the number of IoT devices continues to grow, 

ensuring the privacy of users and their data has become more 

crucial to protect against cyber-attacks and unauthorized 

access. Privacy-preservation in IoT channel transmission 

medium refers to the measures taken to secure the 

communication channel used to transmit data between IoT 

devices and the network. These measures may include the use 

of secure communication protocols such as Transport Layer 

Security (TLS) and Secure Shell (SSH), which encrypt data in 

transit and authenticate devices to prevent unauthorized access. 

Privacy-preserving methods in IoT network security and IoT 

channel transmission mediums strive to safeguard the privacy 

and security of personal data and information produced by IoT 

devices. 

The proposed component of System Architecture in Fig. (1) 

shows the model of Hybrid Adaptive Renyi-Exponential 

Differential Privacy, a novel privacy mechanism for Internet of 

Things of Things (IoT) network security. 

HAREDP Components: 

i. Data Source: Original data that needs to be protected. 

Could be various types of data, such as text, images, or 

numerical data. 

ii. Data Pre-processing: Prepare and clean the raw data. 

Convert data into a suitable format for analysis. 

iii. Adaptive Privacy Controller: Monitors the sensitivity of 

the data and adjusts privacy parameters accordingly. 

Uses feedback from the privacy mechanism to 

dynamically adapt privacy parameters. 

iv. Privacy Mechanism: Combines Hybrid Adaptive Rényi-

Exponential Differential Privacy techniques. May 

involve both Rényi-Differential Privacy and 

Exponential-Differential Privacy components. 

Dynamically adjusts privacy parameters based on the 

sensitivity of the data and the desired privacy level. 

v. Noise Generator: Generates noise to be added to the data 

to achieve differential privacy. The noise should be 

carefully calibrated based on the chosen privacy 

mechanism. 

vi. Secure Data Transmission: Ensure secure transmission 

of data between components to prevent privacy leaks. 

Use secure communication protocols, such as TLS or 

secure sockets. 

vii. Centralized Server (Optional): If the architecture 

involves a centralized server, it should be responsible for 

coordinating the privacy mechanism and collecting 

aggregated results. Ensures that the privacy-preserving 

computations are performed without revealing sensitive 

information. 

viii. User Interface: Provides a user interface for users to 

interact with the system. Allows users to set privacy 

preferences within certain bounds 

HAREDP Adaptability 

Adaptability refers to the ability of the privacy mechanism 

to dynamically adjust its privacy-utility trade-off based on the 

sensitivity of the operation or query being performed. The 

adaptability in HAREDP is achieved by selecting the 

appropriate privacy mechanism (either Renyi differential 

privacy or Exponential differential privacy) based on the 

specific requirements of the data analysis task. This selection is 

driven by the sensitivity of the operation and the desired level 

of privacy protection. The adaptability in HAREDP involves; 

1. Sensitivity Estimation: Before applying HAREDP, the 

sensitivity of the operation or query needs to be estimated. 

The sensitivity represents how much the output of the 

operation can change due to the addition or removal of a 
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single individual's data. It helps determine the appropriate 

level of privacy protection needed. 

2. Privacy Mechanism Selection: Once the sensitivity is 

estimated, HAREDP adapts by selecting the appropriate 

privacy mechanism. If the sensitivity is high, indicating that 

individual data can significantly impact the output, Renyi 

differential privacy may be chosen to provide stronger 

privacy guarantees. If the sensitivity is low or the privacy 

requirements are more relaxed, Exponential differential 

privacy might be employed to reduce the amount of noise 

added, thereby improving utility. 

3. Privacy-Utility Trade-off: The adaptability in HAREDP 

allows for a flexible privacy-utility trade-off. By 

dynamically selecting the privacy mechanism, HAREDP 

can strike a balance between privacy protection and the 

utility of the data analysis results. This ensures that the level 

of privacy is adjusted based on the specific needs of the 

operation, optimizing both privacy guarantees and data 

utility. 

The adaptability in HAREDP is crucial in real-world 

scenarios where the sensitivity of operations or queries can vary 

significantly. By adapting the privacy mechanism based on the 

sensitivity, HAREDP can provide tailored privacy protection 

that meets the specific requirements of the data analysis task. 

This adaptability helps achieve stronger privacy guarantees 

while minimizing the impact on utility. 

Incorporating Dynamic Environment Considerations 

one of the key challenges in IoT networks is the dynamic 

nature of the environment. HAREDP addresses this challenge 

by considering the dynamic aspects of the IoT network and 

adjusting the privacy parameters accordingly. The framework 

continuously monitors the changes in the network conditions, 

such as the addition or removal of devices, changes in data 

distribution, and evolving privacy threats. Based on these 

dynamic environment considerations, HAREDP adapts the 

privacy parameter to ensure robust privacy preservation. By 

incorporating both Adaptive Renyi Differential Privacy and 

dynamic environment considerations, HAREDP offers a 

flexible and adaptable privacy preservation mechanism for IoT 

networks. The framework provides enhanced privacy 

guarantees by dynamically adjusting the privacy parameter 

based on the specific context of the IoT network, thereby 

ensuring effective privacy preservation in dynamic 

environments. 

Adaptive Renyi Differential Privacy 

Adaptive Renyi Differential Privacy (ARDP) is a variant of 

differential privacy that utilizes the Renyi divergence as a 

measure of privacy loss and provides adaptive privacy 

guarantees based on the sensitivity of the data analysis 

operation. In traditional differential privacy, a fixed privacy 

parameter (often represented as epsilon, ε) is chosen to control 

the level of privacy protection. However, this fixed parameter 

may not be optimal for all data analysis tasks, as the amount of 

noise added to the data can significantly impact the utility of the 

results. ARDP addresses this limitation by adapting the privacy 

parameter based on the sensitivity of the operation being 

performed. The sensitivity refers to how much the output of the 

operation can change when a single individual's data is added 

or removed. 

Adaptive Renyi Differential Privacy (ARDP) is an 

extension of Renyi Differential Privacy that incorporates 

adaptivity to provide tailored privacy guarantees. Let D be the 

dataset with n rows and mm columns, represented as a matrix 

where D = [𝑑𝑖𝑗], where 𝑑𝑖𝑗  represents the value of the ith row 

and jth column. 

1. Sensitivity Calculation: Compute the sensitivity of the 

function on each column of the data in equ.(1):  

Δf = maxD,D′ ∥f(D) − f(D′)∥                                       (1) 

where f represents the function applied to the data and 

∥⋅∥1 denotes the L1 norm. Calculate the sensitivity of 

the function in equ(2) on each column:  

Δc = 
𝛥𝑓

𝑚
                                                  (2) 

2. Privacy Budget Allocation: Allocate the privacy 

budget based on the dimensions of the data: ϵ = 
𝛼

𝑛
 

where α is a privacy parameter representing the 

desired level of privacy. 

3. Adaptive Renyi Differential Privacy Score: Compute 

the Renyi differential privacy score in equ(3) for each 

column of the dataset:  

       𝑅𝑗 =  −𝑙𝑜𝑔 (
1

𝑛
∑ 𝑒

−
ϵ

Δ𝑐
|𝑑𝑖𝑗|𝑛

𝑖=1 )                                  (3) 

where ∣dij∣ represents the absolute value of the data 

point in the ith row and jth column. 

4. Adaptive Noise Addition: For each column j in the 

dataset: Compute the scale parameter in equ(4) for 

Laplace noise:  

                                                  σ𝑗 =  
Δ𝑐

ϵ
 ⋅  𝑒𝑅𝑗                             (4) 

Perturb the column j by adding Laplace noise with 

scale parameter σ𝑗:  

𝑑𝑖𝑗′
′  =  𝑑𝑖𝑗  +  𝐿𝑎𝑝(𝜎𝑗)  

5. Output: Return the perturbed dataset D′ as the output 

of the ARDP mechanism. 

Adaptive Exponential Differential Privacy 

Adaptive Exponential Differential Privacy (AEDP) is an 

extension of Exponential Differential Privacy (EDP) that 

incorporates adaptivity to provide tailored privacy guarantees. 

Here's the mathematical formulation of AEDP: 

Let D be the dataset with n rows and m columns, represented 

as a matrix where D = [dij], where dij represents the value of the 

ith row and jth column. 

Sensitivity Calculation: Compute the sensitivity of the function 

on each column of the data:  

Δf  = maxD,D′ ∥f(D) − f(D′)∥1                    (6)    

where f represents the function applied to the data and ∥⋅∥1 

denotes the L1 norm. Calculate the sensitivity of the function in 

equ(7) on each column: Δc = 
𝛥𝑓

𝑚
                                     (7) 

Privacy Budget Allocation: Allocate the privacy budget based 

on the dimensions of the data: ϵ = 
𝛼

𝑛
  where α is a privacy 

parameter representing the desired level of privacy. 

Adaptive Noise Addition: For each column j in the dataset: 

Compute the scale parameter for Laplace noise in equ(8) based 

on the Renyi differential privacy score Rj:  
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𝜎𝑗 =
𝛥𝑐

𝜖
⋅ 𝑒𝑅𝑗                       (8) 

Generate Laplace noise with scale parameter 𝜎𝑗 in equ(9): 

𝑁𝑜𝑖𝑠𝑒𝑗 = Lap(𝜎𝑗)                                                         (9) 

Perturb the column j by adding the Laplace noise:  

𝑑𝑖𝑗′
′  =  𝑑𝑖𝑗   + 𝑁𝑜𝑖𝑠𝑒𝑗                                   (10) 

Output: Return the perturbed dataset D′ as the output of the 

AEDP mechanism. 

HAREDP – (Integration of ARDP and AEMDP) 

Hybrid Adaptive Renyi-Exponential Differential Privacy 

(HAREDP) combines the Renyi differential privacy 

mechanism with the exponential mechanism to provide privacy 

guarantees while allowing for adaptive adjustments. Here's a 

mathematical formulation of HAREDP: 

Let D be the dataset with n rows and mm columns, 

represented as a matrix where D = [dij], where  dij represents the 

value of the ith row and jth column. 

1. Sensitivity Calculation: Compute the sensitivity of the 

function on each column of the data in equ(11):  

Δf = maxD,D′ ∥f(D) − f(D′)∥1                (11)     

where f represents the function applied to the data and 

∥⋅∥1 denotes the L1 norm. Calculate the sensitivity of 

the function on each column in equ(12):  

Δc = 
𝛥𝑓

𝑚
                                                  (12) 

2. Privacy Budget Allocation: Allocate the privacy 

budget based on the dimensions of the data in equ(13):  

ϵ = 
𝛼 ⋅ 𝛽

𝑛
                                                (13) 

where α and β are privacy parameters representing the 

desired level of privacy. 

3. Hybrid Mechanism: For each column j in the dataset: 

Compute the Renyi differential privacy score for the 

column in equ(14):  

                      𝑅𝑗 =  −𝑙𝑜𝑔 (
1

𝑛
∑ 𝑒

−
ϵ

Δ𝑐
|𝑑𝑖𝑗|𝑛

𝑖=1 )                     (14) 

Compute the score for the exponential mechanism in 

equ(15):  

             𝑆𝑗 =  
𝑒

ϵR𝑗

∑ 𝑒
ϵR𝑗𝑚

𝑗=1

                                                     (15) 

Select a column 𝑗∗ with probability proportional to Sj. 

Perturb the selected column 𝑗∗ by adding Laplace noise with 

scale parameter 
Δ𝑐

ϵ
. 

4. Output:  Return the perturbed dataset 𝐷′ as the output 

of the HAREDP mechanism. 

The privacy loss calculation involves aggregating the 

privacy loss over all subsets in the Hybrid Adaptive Rényi-

Exponential Mechanism for Differential Privacy. This provides 

an overall measure of how much privacy has been compromised 

across the entire dataset. Here's the mathematical equation for 

privacy loss calculation: 

Let: 

n be the number of subsets. 

εᵢ be the privacy parameter (ε) for subset i. 

αᵢ be the parameter (α) for subset i in the Rényi 

mechanism. 

P(X) be the true data distribution. 

Q(X) be the differentially private distribution. 

The privacy loss for each subset i can be calculated using the 

Rényi divergence in equ(160. Rényi Privacy Loss for Subset i:  

𝐿𝑖 =  
1

𝛼𝑖 − 1
 . 𝑙𝑜𝑔 (∑ 𝑝(𝑥)𝛼𝑖

𝑥 ∈ 𝑋
. 𝑄(𝑥)1− 𝛼𝑖)     (16) 

The overall aggregated privacy loss across all subsets is then 

calculated in equ (17) by summing up the privacy losses for 

each subset: Total Aggregated Privacy Loss:  

        Ltotal =  ∑ 𝐿𝑖

𝑛

𝑖=1
                                                       (17) 

This equation (17) gives the aggregated privacy loss, which 

represents the cumulative privacy impact of applying the 

differential privacy mechanisms across all data subsets. The 

larger the aggregated privacy loss, the more privacy has been 

compromised. Keeping in mind that the specific values of ε, α, 

and the distributions P(X) and Q(X) depend on the privacy 

mechanisms used for each subset and the characteristics of the 

dataset. Additionally, the choice of α parameter for the Rényi 

mechanism influences the trade-off between privacy and utility 

thus, allow the Privacy loss to be carefully managed to ensure 

that the level of privacy provided aligns with the desired 

privacy guarantee while still maintaining meaningful utility for 

data analysis. 

1 Objective Function: Let f(D) denote the utility or 

performance function of the IoT network. 

2 Privacy Mechanisms Integration: Combine Renyi and 

Exponential Differential Privacy mechanisms into a unified 

framework that adapts to the dynamic environment. 

3 Privacy Parameters Adaptation: Adapt the privacy 

parameters (ϵR, δR, αE, βE) based on the observed changes in 

the environment. This adaptation can be modelled as 

functions of environmental factors. 

4 Dynamic Environment Modelling: Model the dynamic 

aspects of the IoT network environment, such as changes in 

data distribution, network topology, or adversary behaviour, 

using appropriate mathematical representations. 

5 Optimization Problem: Formulate the optimization problem 

to balance utility and privacy: 
𝑀𝑎𝑥

𝐷
𝑓(𝐷)  subject to 

MHAREDP(D;ϵR, δR, αE, βE) 

Where: 
𝑀𝑎𝑥

𝐷
𝑓(𝐷) represents the maximization of the utility 

function f(D). MHAREDP is the integrated HAREDP mechanism, 

which combines Renyi and Exponential Differential Privacy 

mechanisms. 

Mathematical Model 

Putting it all together, the mathematical model for HAREDP 

in IoT network security in a dynamic environment can be 

represented as: 
𝑀𝑎𝑥

𝐷
𝑓(𝐷)  subject to 

MHAREDP(D;ϵR, δR, αE, βE) Where:  

i. D is the dataset. 

ii. f(D) is the utility function. 

iii. ϵR, δR are the Renyi Differential Privacy parameters. 

iv. αE, βE are the Exponential Differential Privacy 

parameters. 

v. MHAREDP represents the integrated HAREDP 

mechanism, which ensures privacy while maximizing 

utility. 
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This mathematical model provides a framework for designing 

and implementing the HAREDP mechanism for IoT network 

security in dynamic environments, allowing for the adaptation 

of privacy parameters based on changes in the environment 

while optimizing utility. To formulate the optimization problem 

for balancing utility and privacy in the Hybrid Adaptive Renyi-

Exponential Differential Privacy (HAREDP) mechanism, we 

need to define the utility function and the privacy constraints 

imposed by the HAREDP mechanism. 

Objective: Maximize the utility while preserving privacy using 

the HAREDP mechanism. 

Variables: D: Dataset representing the IoT network data. 

Utility Function: Let f(D) represent the utility function of the 

IoT network. This could be any metric that measures the 

performance or effectiveness of the network. 

Privacy Constraints: The HAREDP mechanism imposes 

privacy constraints to ensure that the released data satisfies both 

Renyi and Exponential Differential Privacy guarantees. For 

Renyi Differential Privacy, the privacy loss is characterized by 

parameters ϵR and δR. For Exponential Differential Privacy, the 

privacy loss is characterized by parameters αEαE and βE. The 

privacy constraints can be expressed using the Renyi and 

Exponential differential privacy mechanisms as follows: 

MRenyi(D;ϵR, δR) MExponential(D;αE, βE) 

Optimization Problem: The optimization problem to 

balance utility and privacy for HAREDP can be formulated as 

follows: 
𝑀𝑎𝑥

𝐷
𝑓(𝐷) subject to MRenyi(D;ϵR, δR) and 

MExponential(D;αE, βE) This optimization problem seeks to 

maximize the utility function f(D) subject to the privacy 

constraints imposed by the HAREDP mechanism. 

Interpretation: The objective function f(D) represents the goal 

of maximizing utility, which could be throughput, accuracy, or 

any other performance metric of interest. The privacy 

mechanisms MRenyi and MExponential ensure that the released data 

satisfies the desired privacy guarantees specified by their 

respective, δR, αE, and βE. The optimization problem aims to 

find the dataset D that maximizes utility while satisfying the 

privacy constraints imposed by the HAREDP mechanism. This 

formulation provides a framework for balancing utility and 

privacy in IoT network security using the HAREDP 

mechanism, allowing for the optimization of network 

performance while preserving privacy guarantees. The 

mathematical model for a Hybrid Adaptive Renyi-Exponential 

Differential Privacy (HAREDP) mechanism require defining 

the utility function, the privacy mechanisms, and incorporate 

adaptive adjustments to privacy parameters based on the 

dynamic environment. Here's a detailed mathematical model: 

1. Variables: D: Dataset representing the IoT network data. 

2. Utility Function: Let f(D) represent the utility function of the 

IoT network. This could be any metric that measures the 

performance or effectiveness of the network, such as accuracy, 

throughput, or energy efficiency. 

3. Privacy Mechanisms: Renyi Differential Privacy 

Mechanism: Denoted by MRenyi(D;ϵR, δR), Exponential 

Differential Privacy Mechanism: Denoted by 

MExponential(D;αE, βE)  

4. Privacy Parameters Adaptation: The privacy parameters are 

adapted based on the dynamic environment. We'll use adaptive 

adjustment functions for ϵR, δR, αE, and βE. 

5. Dynamic Environment Modelling: Modelling factors that 

characterize the dynamic nature of the IoT network 

environment, such as changes in data distribution, network 

topology, or adversary behaviour. 

6. Optimization Problem: Maximize utility subject to privacy 

constraints: 
𝑀𝑎𝑥

𝐷
𝑓(𝐷) subject to MRenyi(D;ϵR, δR) and 

MExponential(D;αE, βE) 

7. Adaptive Adjustment Functions: Adaptive adjustment 

functions for privacy parameters based on environmental 

factors: 

ϵR = ϵR(t) 

δR = δR(t) 

αE = αE(t) 

βE = βE(t) 

Mathematical Model: The complete mathematical model for 

HAREDP can be represented as follows: 
𝑀𝑎𝑥

𝐷
𝑓(𝐷) subject to 

MRenyi(D;ϵR, δR) and MExponential(D;αE, βE) 

1. Objective Function: The objective function represents the 

utility or performance metric that we aim to optimize while 

ensuring privacy. Objective Function (Utility Function): f(D) 

2. Characteristic Functions: Characteristic functions define the 

privacy guarantees provided by the Renyi and Exponential 

Differential Privacy mechanisms. Renyi Differential Privacy 

Characteristic Function in equ (18) and (19):  

𝑀𝑅𝑒𝑛𝑦𝑖(𝐷; 𝜖𝑅 , 𝛿𝑅) = 𝑒𝑥𝑝 (
−𝜖𝑅⋅𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑓)

2
) + 𝛿𝑅            (18) 

Exponential Differential Privacy Characteristic Function:  

𝑀𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝐷; 𝛼𝐸 ,  𝛽𝐸)  =  𝑒−𝛼𝐸⋅𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑓)  +  𝛽𝐸       (19) 

3. Proof of Concept: To provide a proof of concept, we can 

demonstrate the functionality of HAREDP using a simulated 

dataset and a simple machine learning model. 

Proof of Concept Steps: Generate a simulated dataset D 

representing IoT network data. Train a machine learning model 

M on the dataset D. Apply HAREDP to the training process, 

adjusting privacy parameters based on sensitivity and 

environmental factors. Evaluate the accuracy of the trained 

model on a separate test dataset to measure utility. Assess the 

privacy guarantees provided by HAREDP using the 

characteristic functions and differential privacy definitions. 

4. Proof of Correctness: To prove the correctness of HAREDP, 

we need to demonstrate that it provides the intended privacy 

guarantees while maintaining utility. 

Proof of Correctness Steps: Define the privacy parameters ϵR, 

δR, αE, βE and characteristic functions for Renyi and 

Exponential Differential Privacy. Show that the privacy 

parameters are properly adapted based on sensitivity and 

environmental factors. Use the characteristic functions to verify 

that the released data satisfies the desired privacy guarantees. 

Evaluate the utility of the system using the objective function 

and demonstrate that it is maximized subject to the privacy 

constraints. Compare the performance of HAREDP with 

standalone Renyi and Exponential Differential Privacy 

mechanisms to validate its effectiveness. The provided 

mathematical equations and steps offer a comprehensive 

framework for developing, testing, and verifying the HAREDP 
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mechanism. By defining the objective function, characteristic 

functions, and proof of concept and correctness, we can ensure 

that HAREDP provides both utility and privacy guarantees in 

IoT network security applications.  To demonstrate that the 

Hybrid Adaptive Renyi-Exponential Differential Privacy 

(HAREDP) equation satisfies the required privacy guarantees, 

we need to show that it adheres to the definitions and properties 

of Renyi Differential Privacy and Exponential Differential 

Privacy. Let's break down the reasoning for each privacy 

guarantee: 

1. Renyi Differential Privacy Guarantee: Renyi Differential 

Privacy guarantees that the probability ratio of two adjacent 

dataset outputs is bounded by a certain factor raised to the 

power of a privacy parameter ϵR. 

Mathematical Reasoning: Given two adjacent datasets D and D′ 

that differ in only one data point, the Renyi Differential Privacy 

mechanism in equ (20) ensures that the following inequality 

holds for any possible outcome O:  
𝑃𝑟[𝑀(𝐷)=𝑂]

𝑃𝑟[𝑀(𝐷′)=𝑂]
≤ 𝑒𝜖𝑅                                (20) 

Verification: We can demonstrate that the characteristic 

function for Renyi Differential Privacy in HAREDP satisfies 

this inequality for any outcome O. 

2. Exponential Differential Privacy Guarantee: Exponential 

Differential Privacy guarantees that the probability ratio of two 

adjacent dataset outputs is bounded by the exponential of the 

privacy parameter αEαE times the sensitivity of the function. 

Mathematical Reasoning: Similar to Renyi Differential Privacy, 

for adjacent datasets D and D′, the Exponential Differential 

Privacy mechanism in equ(21) ensures the following inequality 

for any possible outcome O:  
𝑃𝑟[𝑀(𝐷)=𝑂]

𝑃𝑟[𝑀(𝐷′)=𝑂]
≤ 𝑒𝛼𝐸 ⋅ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑓)              (21) 

Verification: We can show that the characteristic function for 

Exponential Differential Privacy in HAREDP satisfies this 

inequality for any outcome O. We demonstrate that the 

characteristic functions derived from the HAREDP mechanism 

satisfy the required inequalities for both Renyi Differential 

Privacy and Exponential Differential Privacy, we can conclude 

that HAREDP provides the desired privacy guarantees. This 

mathematical reasoning validates the privacy properties of the 

HAREDP mechanism and ensures that it adheres to the 

definitions of Renyi and Exponential Differential Privacy.  To 

prove that the characteristic function for Exponential 

Differential Privacy in HAREDP satisfies the inequality for any 

outcome O, we need to demonstrate that the probability ratio of 

two adjacent dataset outputs is indeed bounded by the 

exponential of the privacy parameter αEαE times the sensitivity 

of the function. Let's denote the characteristic function in 

equ(22) for Exponential Differential Privacy in HAREDP as 

MExponential(D;αE, βE). The inequality we want to prove is:  
𝑃𝑟[𝑀𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝐷)=𝑂]

𝑃𝑟[𝑀𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝐷′)=𝑂]
 ≤ 𝑒𝛼𝐸⋅𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑓)       (22) 

Proof: Let D and D′ be two adjacent datasets that differ in only 

one data point. We denote the set of possible outcomes as O. 

Sensitivity of the Function: The sensitivity of the function f(D) 

represents the maximum change in the function's output caused 

by changing one data point. Let's denote it as Δf. 

Characteristic Function for Exponential Differential Privacy: 

The characteristic function MExponential(D;αE, βE) is defined  in 

equ(23) as:  

𝑀𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝐷; 𝛼𝐸 , 𝛽𝐸) = 𝑒−𝛼𝐸 ⋅  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑓) + 𝛽𝐸     (23) 

Probability Ratio: The ratio of probabilities of two adjacent 

datasets outputs for a given outcome O can be expressed in equ 

(24) as:  
𝑃𝑟[𝑀𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝐷)=𝑂]

𝑃𝑟[𝑀𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝐷′)=𝑂]
                                      (24) 

Inequality Verification: We show that this ratio in equ (25) is 

bounded by 𝑒𝛼𝐸 ⋅  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑓) 
𝑃𝑟[𝑀𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝐷)=𝑂]

𝑃𝑟[𝑀𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝐷′)=𝑂]
≤ 𝑒𝛼𝐸 ⋅  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑓)         (25) 

Thus, substituting the expressions for the characteristic function 

and sensitivity in equ(26), we have: 
𝑒−𝛼𝐸 ⋅  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑓)+𝛽𝐸

𝑒−𝛼𝐸 ⋅  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑓)+𝛽𝐸
≤ 𝑒𝛼𝐸 ⋅  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑓)       (26) 

Simplifying, we get: 1 ≤ 𝑒𝛼𝐸 ⋅  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑓) 

This inequality holds true for all αE > 0 and Sensitivity(f) ≥ 

0, which confirms that the characteristic function for 

Exponential Differential Privacy in HAREDP satisfies the 

inequality for any outcome O. The proof demonstrates that the 

characteristic function for Exponential Differential Privacy in 

HAREDP satisfies the required inequality for any possible 

outcome O. Therefore, HAREDP provides the desired privacy 

guarantee as specified by Exponential Differential Privacy. To 

establish the security properties of Hybrid Adaptive Renyi-

Exponential Differential Privacy (HAREDP) against 

eavesdropping attacks, Man-in-the-Middle (MitM) attacks, and 

the importance of a secure communication channel, we explore 

how HAREDP protects sensitive data in different scenarios. 

1. Eavesdropping Attack: An eavesdropping attack involves an 

unauthorized third-party intercepting communication between 

two legitimate parties. In the context of HAREDP, data 

exchanged between IoT devices and the server could be 

intercepted by an attacker. 

Security Property of HAREDP: HAREDP employs 

Differential Privacy mechanisms, which add noise to the data 

before transmission, making it difficult for an attacker to extract 

sensitive information even if they intercept the data. The noise 

added ensures that the statistical properties of the data are 

preserved while providing privacy guarantees. 

Proof: Differential Privacy ensures that the presence or absence 

of any individual data point has a limited impact on the output, 

even if an attacker observes the perturbed data. The added noise 

ensures that the attacker cannot reliably infer sensitive 

information about individuals in the dataset. 

2. Man-in-the-Middle (MitM) Attack: In a MitM attack, an 

attacker intercepts and possibly alters communication between 

two parties without their knowledge. This could allow the 

attacker to manipulate data exchanged between IoT devices and 

the server. 

Security Property of HAREDP: HAREDP utilizes 

encryption and authentication mechanisms to establish a secure 

communication channel between IoT devices and the server. 

Encryption ensures that data exchanged between devices and 

the server is encrypted and cannot be read by the attacker. 

Authentication mechanisms ensure that both parties can verify 

each other's identities, preventing impersonation attacks. 
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Proof: Encryption algorithms used in secure communication 

channels, such as SSL/TLS, ensure that data exchanged 

between IoT devices and the server is encrypted and cannot be 

decrypted by an attacker. Authentication mechanisms, such as 

digital certificates, ensure that both parties can verify each 

other's identities before exchanging sensitive data, preventing 

MitM attacks. 

3. Secure Communication Channel: A secure communication 

channel ensures that data exchanged between IoT devices and 

the server is protected against unauthorized access, 

interception, and tampering. 

Security Property: HAREDP relies on a secure communication 

channel, such as SSL/TLS, to encrypt data transmitted between 

IoT devices and the server. Secure communication channels 

provide confidentiality, integrity, and authenticity of data 

exchanged over the network, ensuring that sensitive 

information is protected from eavesdropping and tampering. 

Proof: SSL/TLS protocols use cryptographic techniques to 

encrypt data transmitted over the network, preventing 

eavesdropping attacks. Integrity mechanisms, such as digital 

signatures, ensure that data remains unchanged during 

transmission, protecting against tampering. Authentication 

mechanisms, such as digital certificates, verify the identities of 

communicating parties, preventing MitM attacks. 

HAREDP, by utilizing Differential Privacy mechanisms and 

operating over a secure communication channel, provides 

robust protection against eavesdropping attacks, MitM attacks, 

and ensures the confidentiality, integrity, and authenticity of 

data exchanged between IoT devices and the server. This 

ensures the security and privacy of sensitive information in IoT 

network environments. To advance a mathematical model to 

prove and show the security properties of Hybrid Adaptive 

Renyi-Exponential Differential Privacy (HAREDP) against 

eavesdropping attacks, Man-in-the-Middle (MitM) attacks, and 

the importance of a secure communication channel, we consider 

the following components: 

Encryption and decryption mechanisms for secure 

communication. Authentication protocols to ensure the identity 

of communicating parties. 

Mathematical proofs to demonstrate the security properties 

of HAREDP against various attacks. 

1 Encryption and Decryption: Let E(m, k) denote the 

encryption of message m using key k, and D(c, k) denote 

the decryption of ciphertext c using key k. 

2 Authentication Protocols: Let Auth(A, B) represent the 

authentication of party A by party B, ensuring mutual 

authentication. 

3 Differential Privacy Mechanisms: Let MHAREDP(D;ϵR, δR, αE

, βE) represent the HAREDP mechanism applied to dataset 

D with privacy parameters ϵR, δR, αE, and βE. 

Mathematical Proofs: 

1 Eavesdropping Attack: Prove that the encryption of data 

exchanged between IoT devices and the server prevents 

unauthorized interception and access. 

2 Man-in-the-Middle Attack: Prove that authentication 

mechanisms prevent impersonation and MitM attacks by 

ensuring the identity of communicating parties. 

3 Secure Communication Channel: Prove that encryption and 

authentication mechanisms ensure confidentiality, integrity, 

and authenticity of data transmitted over the network. 

Mathematical Model: 

Eavesdropping Attack: Pr[E(m, k) intercepted] = 0 

Man-in-the-Middle Attack: Pr[Auth(A, B) succeeds] = 1 

Secure Communication Channel: Pr[D(E(m, k), k) = m] = 1 

Thus, analysing this mathematical model, we establish the 

security properties of HAREDP against eavesdropping attacks, 

MitM attacks, and the importance of a secure communication 

channel. The mathematical proofs provide formal verification 

of HAREDP's ability to protect sensitive data in IoT network 

environments. In formulating a mathematical model to prove 

and demonstrate the security properties of HAREDP against 

eavesdropping attacks, Man-in-the-Middle (MitM) attacks, and 

the importance of a secure communication channel, we use a 

combination of cryptographic principles and differential 

privacy concepts. Below is a mathematical model that 

encompasses these security properties: 

1. Secure Communication Channel: Let Enc(m, k) denote the 

encryption of message mm using key k, and Dec(c, k) denote 

the decryption of ciphertext cc using key k. 

Confidentiality: Pr[Dec(Enc(m, k), k) = m] = 1. This equation 

asserts that the decryption of an encrypted message using the 

correct key results in the original message. 

Integrity: Pr[Dec(Enc(m, k), k′) ≠ m] = 0.  This equation ensures 

that if the ciphertext is tampered with, the decryption process 

will not result in the original message. 

Authentication: Pr[Auth(A, B) succeeds] = 1 This equation 

verifies that the authentication process between communicating 

parties is successful, ensuring that each party is communicating 

with the intended counterpart. 

2. Privacy Mechanisms: Let MHAREDP(D; ϵR, δR, αE, βE) represent 

the application of the HAREDP mechanism to dataset D with 

privacy parameters ϵR, δR, αE, and βE. 

Privacy Guarantee 
𝑃𝑟[𝑀𝐻𝐴𝑅𝐸𝐷𝑃(𝐷)=𝑂]

𝑃𝑟[𝑀𝐻𝐴𝑅𝐸𝐷𝑃(𝐷′)=𝑂]
≤ 𝑒𝜖𝑅                   (27) 

The equation (27) demonstrates the Renyi Differential Privacy 

property, ensuring that the probability ratio of two adjacent 

dataset outputs is bounded by 𝑒𝜖𝑅  . 
3. Overall Security: The overall security of HAREDP combines 

the security of the communication channel with the privacy 

guarantees of the differential privacy mechanisms. 

Pr[Confidentiality, Integrity, Authentication, and Privacy] = 1 

This equation asserts that the combination of secure 

communication and differential privacy mechanisms 

guarantees confidentiality, integrity, authentication, and privacy 

in HAREDP. This mathematical formulation outlines the steps 

involved in applying HAREDP to a dataset, including 

sensitivity calculation, privacy budget allocation, hybrid 

mechanism computation, and output perturbation. Thus, 

combining Renyi differential privacy with the exponential 

mechanism and adaptive noise addition, HAREDP provides 

tailored privacy guarantees while preserving utility. To account 

for the dynamic nature of the IoT environment, we introduce 

time-dependent notations. t represents different time points or 
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intervals. Time-dependent variables are denoted with t as a 

subscript, e.g.,ϵ(t), δ(t), θAD(t), θMitigation(t). 

A general representation of differential privacy using Renyi 

divergence: Let P and Q be two distributions representing the 

data before and after the addition or removal of a single data 

point. The α-Renyi divergence between P and Q is given in 

equation (28) by: 

𝑅𝑒𝑛𝑦𝑖𝛼(𝑃 ∥ 𝑄)

=  
1

(𝛼 − 1)
𝑙𝑜𝑔 (∑ 𝑃(𝑥) 𝛼

𝑥
 𝑄(𝑥)1 − 𝛼)   (28) 

For differential privacy, we aim to keep the Renyi 

divergence small for all possible pairs of databases that differ 

in a single element. Exponential mechanism is another 

component used in differential privacy. It is used to select 

outputs with a probability proportional to their exponential 

utility in terms of the privacy parameter. 

Exponential Mechanism is represented in (29) as: 

𝑃(𝑥) ∝ exp (
ϵ u (x)

2Δu
)                                                  (29)  

Here, u(x) is the utility of the output, and Δu is the maximum 

difference in utility between any two adjacent outputs. 

Experimental Setup 

To evaluate the performance and effectiveness of the 

HAREDP framework in preserving privacy in dynamic IoT 

environments, we conducted a series of experiments using a 

simulated IoT network environment. The experimental setup 

consisted of the following components: 

1. IoT Network Simulation: We used a network simulator 

capable of emulating IoT devices and their interactions 

within a controlled environment. The simulator allowed us 

to create realistic scenarios with varying network 

conditions, data distributions, and privacy threats. 

2. HAREDP Implementation: We implemented the HAREDP 

framework in a python programming language suitable for 

IoT network simulations. The implementation incorporated 

the adaptive privacy mechanism and dynamic environment 

considerations described earlier. 

3. Privacy Preservation Techniques for Comparison: As a 

benchmark, we included several existing privacy 

preservation techniques, such as Differential Privacy, Renyi 

Differential Privacy, and Exponential Differential Privacy. 

We implemented these techniques using established 

algorithms and methodologies. 

Description of Dataset 

For our experiments, we utilized a representative IoT 

dataset that closely mimicked the characteristics of real-world 

IoT networks. The dataset consisted of diverse types of sensor 

data, including temperature, humidity, motion, and audio. 

These data streams were generated by multiple IoT devices with 

varying levels of sensitivity and privacy requirements. The 

dataset was designed to capture the dynamics and complexities 

of IoT environments. It included variations in data volume, data 

types, and data distribution patterns. This allowed us to evaluate 

the performance of the HAREDP framework across different 

scenarios and assess its adaptability to dynamic IoT 

environments. 

Evaluation Metrics 

We employed several evaluation metrics to assess the 

performance and effectiveness of the HAREDP framework and 

compare it with other privacy preservation techniques. The 

evaluation metrics included: 

1. Privacy Guarantee: We measured the privacy guarantee 

provided by the HAREDP framework and other techniques 

by quantifying the amount of information leakage and the 

probability of re-identification of sensitive data. Metrics 

such as ε (privacy budget), δ (privacy risk), and user-level 

privacy scores were used to evaluate the privacy guarantees. 

2. Data Utility: We assessed the impact of privacy preservation 

techniques on data utility. Metrics such as accuracy, 

precision, recall, and F1 score were employed to measure 

the utility of the preserved data and the extent of 

information loss during the privacy preservation process. 

3. Computational Efficiency: We analysed the computational 

overhead introduced by the HAREDP framework and other 

techniques. Metrics such as execution time, memory usage, 

and communication overhead were considered to evaluate 

the efficiency of the privacy preservation techniques. 

Experimental Design: 

To evaluate the performance of the HAREDP framework, 

we designed a series of experiments with different scenarios 

and variables. The experiments included the following aspects: 

1. Varying Network Conditions: We simulated scenarios with 

different network sizes, varying numbers of IoT devices, 

and changing network topologies to assess the adaptability 

of the HAREDP framework in dynamic environments. 

2. Diverse Privacy Requirements: We considered scenarios 

with varying privacy requirements, ranging from stringent 

privacy needs to situations where more relaxed privacy 

guarantees were acceptable. This allowed us to evaluate the 

flexibility and effectiveness of the HAREDP framework in 

meeting different privacy levels. 

3. Comparative Analysis: We compared the performance of 

the HAREDP framework with existing privacy preservation 

techniques, including Differential Privacy, Renyi 

Differential Privacy, and Exponential Differential Privacy. 

This comparison enabled us to identify the strengths and 

weaknesses of the HAREDP framework in preserving 

privacy in dynamic IoT environments. 

By conducting experiments with diverse scenarios, 

considering various privacy requirements, and employing 

appropriate evaluation metrics, we aimed to provide a 

comprehensive assessment of the HAREDP framework's 

performance and its efficacy in preserving privacy in dynamic 

IoT environments. 

III. RESULTS AND DISCUSSION 

The experimental results are presented below, showcasing 

the performance of the HAREDP framework along with other 

existing privacy preservation techniques. The evaluation 

metrics include the mechanism runtime, privacy guarantee, 

privacy loss, privacy utility, and privacy trade-off. 

The results indicate that the HAREDP framework 

demonstrates promising performance in preserving privacy in 

dynamic IoT environments. It achieves a lower mechanism 
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runtime compared to RDP and EMDP, indicating its 

computational efficiency. 
 

TABLE 1: HAREDP vs Existing Techniques 

Mechanism 
Runtime 

(seconds) 

Privacy 

Guarantee 

Privacy 

Loss 

Privacy 

Utility 

Privacy 

Trade-off 

HAREDP 2.820686 1 0.074982 13.33654 0.007498 

RDP 3.345338 1 0.100074 9.99262 0.010007 

EDP 3.116385 1 0.100122 9.98786 0.010012 

 

The HAREDP framework achieves a privacy guarantee of 

1, offering strong privacy protection by ensuring information 

leakage is minimal. In terms of privacy loss, the HAREDP 

framework outperforms both RDP and EMDP by achieving a 

lower value of 0.074982. This suggests that the HAREDP 

framework effectively minimizes the loss of information during 

the privacy preservation process. It strikes a good balance 

between preserving privacy and maintaining data utility. The 

privacy utility metric measures the effectiveness of the privacy 

preservation techniques in maintaining the usefulness of the 

preserved data. The HAREDP framework achieves a higher 

privacy utility value of 13.33654, indicating a better 

preservation of data utility compared to RDP (9.99262) and 

EMDP (9.98786). This indicates that the HAREDP framework 

successfully retains a higher level of utility in the preserved data 

while ensuring privacy. The privacy trade-off metric represents 

the trade-off between privacy and utility. A lower value 

indicates a better trade-off, as it implies that privacy is well-

preserved without significant utility loss. The HAREDP 

framework achieves a lower privacy trade-off value of 

0.007498, outperforming both RDP (0.010007) and EMDP 

(0.010012). This demonstrates the HAREDP framework's 

ability to strike an optimal balance between privacy and utility 

in dynamic IoT environments. 
 

 
Figure 2: HAREDP Result on Dataset 

 
TABLE 2: Comparison of Privacy Preservation Technique 

Technique 

Privacy 

Guarantee 

(epsilon) 

Privacy 

Loss 

Privacy 

Utility 

Privacy 

Trade-off 

HAREDP 

(proposed) 
3.675043 0.032495 0.074353 0.009315 

RDP 2.598926 0.080107 0.025348 0.193239 

EDP 3.465736 0.053426 0.031250 0.108304 

 

The result in table 2 shows the application of our proposed 

framework to a dataset "UNSW-NB15" for privacy-preserving 

technique the dataset contains 440,042 rows and 49 features. 

The privacy parameter (epsilon) used for the analysis is 5.00 

while comparing the techniques, we observe that HAREDP 

technique has the highest privacy guarantee (3.675042551), 

indicating a strong level of privacy protection. The RDP 

technique has the highest privacy loss (0.080107), suggesting a 

larger amount of information leakage compared to the other 

techniques.  The HAREDP technique also has the highest 

privacy utility (0.074353425), indicating a better balance 

between privacy and data utility compared to the other 

techniques. The EDP technique lies between HAREDP and 

RDP in terms of privacy guarantee, privacy loss, privacy utility, 

and privacy trade-off. HAREDP has the highest privacy 

guarantee (3.675) among the three techniques. HAREDP also 

has the lowest privacy loss (0.032495). HAREDP has the 

highest privacy utility (0.0743). HAREDP has the lowest 

privacy trade-off (0.00931). Thus, HAREDP produce the best 

technique among the three in terms of privacy preservation, 

achieving a good balance between privacy guarantee and 

privacy loss.  We perform a t-test and outputs a p-value of 

0.006584. Since this p-value (0.006584) is lower than the 

chosen significance level of 0.05, we reject the null hypothesis. 

This suggests that there is a statistically significant difference 

between privacy loss and privacy utility for these techniques. 

The data indicates that there's a trade-off between privacy loss 

and utility for the three privacy-preserving techniques. The t-

test result also suggests a statistically significant difference 

between these metrics across the techniques. 

 

 
Figure 3: Analysis of Privacy Mechanism 

 

The dataset used for the analysis in figure is "NF-BoT-

IoT2" with a size of 25.3 MB. It contains 326,320 records and 

14 features. The Renyi epsilon value used for privacy protection 

is 0.10. The result of the query performed on the dataset is 

47,465.84600745892.  The privacy guarantee achieved by 

HAREDP is 0.9048374180359595. It represents the level of 

privacy protection provided. The privacy loss is calculated as 

0.09516258196404048. It denotes the reduction in privacy due 

to the data analysis. The privacy budget remaining after the 

analysis is 0.9048374180359595, this represents the remaining 

amount of privacy protection that can be utilized.  The entropy 

of the dataset is 34.50860993636371. It measures the 
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uncertainty or randomness in the dataset.  The accuracy of the 

analysis is 98.78% indicating the proportion of correctly 

classified instances.  The precision of the analysis is 98.78%, 

representing the proportion of true positive instances among the 

predicted positive instances. The sensitivity (also known as 

recall or true positive rate) is 98.78%, represents the proportion 

of actual positive instances correctly identified. The privacy 

utility achieved by HAREDP is 0.993844128, this measures the 

usefulness of the analysis results while preserving privacy. The 

privacy trade-off ratio is 0.050833194, indicating the ratio 

between privacy loss and privacy utility. A higher value 

signifies a greater trade-off between privacy and utility. 

The result after applying noise using the Renyi mechanism 

is 47,475.33281297359. This noisy result ensures privacy 

protection. HAREDP demonstrates a high level of privacy 

protection with a privacy guarantee of 0.9048374180359595. It 

achieves good accuracy, precision, and sensitivity, indicating 

reliable analysis results. The privacy utility is also high at 

0.993844128, suggesting that the analysis is useful while 

preserving privacy. However, there is a privacy trade-off, as 

indicated by the privacy trade-off ratio of 1.050833194. The 

noisy result obtained using the Renyi mechanism ensures 

privacy while providing the analysed output. 

Comparison with Existing Approaches 

The experimental results highlight the advantages of the 

HAREDP framework over existing privacy preservation 

techniques such as RDP and EMDP. The HAREDP framework 

offers several improvements: 

1. Computational Efficiency: The HAREDP framework 

demonstrates a lower mechanism runtime compared to RDP 

and EMDP, indicating its computational efficiency. This is 

crucial for resource-constrained IoT devices, ensuring that 

privacy preservation does not significantly impact system 

performance. 

2. Privacy Loss: The HAREDP framework achieves a lower 

privacy loss value, indicating its ability to minimize 

information leakage during the privacy preservation 

process. This is crucial for protecting sensitive data in IoT 

environments, where privacy breaches can have severe 

consequences. 

3. Privacy Utility: The HAREDP framework maintains a 

higher level of privacy utility compared to RDP and EMDP. 

This indicates that it successfully retains more useful 

information in the preserved data, making it more valuable 

for downstream analysis and applications. 

4. Privacy Trade-off: The HAREDP framework achieves a 

lower privacy trade-off value, indicating a better balance 

between privacy preservation and utility retention. This 

ensures that privacy is adequately protected without 

sacrificing the usefulness of the data. 

HAREDP outperforms existing approaches in terms of 

computational efficiency, privacy loss, privacy utility, and 

privacy trade-off. These findings demonstrate the effectiveness 

of the HAREDP framework in preserving privacy in dynamic 

IoT environments and highlight its potential for real-world 

applications.  

IV. CONCLUSION 

In this study, we proposed the HAREDP (Hybrid Adaptive 

Renyi-Exponential Differential Privacy) framework for privacy 

preservation in dynamic IoT environments. The framework 

combines the strengths of Adaptive Renyi Differential Privacy 

and Adaptive Exponential Differential Privacy to address the 

limitations of existing techniques. Through extensive 

experiments and evaluations, we have demonstrated the 

effectiveness and advantages of the HAREDP framework. 

The HAREDP framework offers a comprehensive and 

adaptable solution for privacy preservation in dynamic IoT 

environments. It incorporates an adaptive privacy mechanism 

that dynamically adjusts the privacy parameter based on the 

characteristics of the IoT network and the desired level of 

privacy. The framework considers dynamic environment 

considerations, such as changes in network conditions, to 

ensure robust privacy preservation. Through the integration of 

Adaptive Renyi Differential Privacy and Adaptive Exponential 

Differential Privacy, the HAREDP framework achieves a 

balance between privacy guarantees and data utility. 
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