
International Journal of Scientific Engineering and Science
Volume 8, Issue 5, pp. 52-55, 2024. ISSN (Online): 2456-7361

52

http://ijses.com/

All rights reserved

Modern Approaches to Backend Development in Java

and Kotlin: A Comparative Analysis

Glumov Konstantin

Senior Software Engineer, Alfa-Russia, Perm

Email address: kglumov@alfabank.ru

Abstract— The study is devoted to a comparative analysis of modern approaches to backend development in Java and Kotlin. The main

characteristics and innovations introduced into the programming world with the advent of Kotlin from JetBrains in 2011 are considered, as well

as an overview of Java as an established development tool introduced by the Green Team in 1995. The work is based on an analysis of the range

of Kotlin applications, its flexibility, security, and multiplatformity, in comparison with the object-oriented, multiplatform approach and Java

multithreading. The study aims to identify the key advantages and disadvantages of both programming languages from the point of view of backend

development, taking into account aspects such as syntactic efficiency, security, integration, and versatility.

Keywords— Backend, backend development, Java, Kotlin, programming languages, programming, IT.

I. INTRODUCTION

In the era of digital transformation and increasing demands for

software functionality, security, and scalability, choosing the

right programming language becomes a key factor for project

success. Java, being one of the most popular and time-tested

programming languages, has long dominated backend

development due to its versatility, powerful tools, and extensive

community. However, the introduction of Kotlin in 2011 from

JetBrains brought a significant change to the technology

selection landscape. Designed to improve performance and ease

of development, Kotlin quickly gained acceptance among

programmers due to its modern features such as shorter and

more expressive syntax, enhanced security, and interoperability

with Java.

The purpose of this paper is to conduct a comparative

analysis of Java and Kotlin in terms of their application in

backend development. The historical development of both

languages, their main characteristics, advantages, and

disadvantages, as well as the spheres of application in modern

software development are considered [1,2].

The research is based on literature analysis, a comparison of

existing research papers, and a study of practical examples of

development in Java and Kotlin. The paper utilizes data from

official sources, including JetBrains and Green Team

documentation, as well as analytical reports and studies

conducted in programming. The methodology includes

qualitative analysis of syntactic constructs, type safety,

multithreading, generality, and other critical aspects of

programming in both languages.

II. LITERATURE REVIEW

The widespread use of Kotlin for its flexibility, security, and

multiplatform nature, and Java's well-established position in the

programming world for its multithreading, object-oriented, and

code portability are noted. Scholars such as Blinova A. V.,

emphasize the ease of perception and great flexibility of Kotlin,

while other researchers point to Java's established position as a

robust and scalable solution for backend development.

Emphasis is placed on the deep integration of Kotlin with Java,

allowing developers to combine the benefits of both languages

in a single project

This enriches the technology stack and increases

development efficiency. In addition, the articles emphasize the

significant reduction of boilerplate code when using Kotlin,

which simplifies the development and maintenance of

applications. However, despite Kotlin's high degree of

compatibility and capabilities, Java continues to be the

preferred choice in some scenarios due to its stability, wide

community, and extensive ecosystem. Thus, the scope of this

article will take a closer look at the choice between these

programming languages based on a comparative analysis of

their functionality, performance, security, and usability in the

context of backend development.

In turn, this topic will be discussed in detail within this

paper.

III. MATERIALS AND METHODS

In 2011, JetBrains made an important contribution to the

programming world by introducing Kotlin, a programming

language focused on object-oriented and statically typed

programming. Designed to be compatible with JVM (Java

Virtual Machine) and JavaScript, Kotlin quickly gained

recognition in the professional community. Its importance was

confirmed by Google's decision to officially endorse Kotlin as

one of the preferred languages for Android application

development, alongside the established Java.

JetBrains' 2019 survey showed a wide range of Kotlin

development applications, from Android and JVMs to Native

and JavaScript. The language has formed the basis of many

popular applications such as Pinterest, Trello, and CarLens,

demonstrating its flexibility and power in creating a variety of

software. Kotlin continues to be at the forefront of

technological advancements, providing developers with

convenient and efficient tools to realize their creative and

professional ambitions.

Kotlin stands out from other programming languages for its

ability to radically reduce the amount of template code required.

This is achieved by reducing the need to write redundant code

International Journal of Scientific Engineering and Science
Volume 8, Issue 5, pp. 52-55, 2024. ISSN (Online): 2456-7361

53

http://ijses.com/

All rights reserved

that is mandatory in other languages, thereby simplifying the

development process.

One of the key advantages of Kotlin is its security. The

language is designed to minimize common sources of errors,

such as exceptions caused by accessing null-valued variables.

In Kotlin, every variable is non-null by default, which greatly

reduces the likelihood of such exceptions.

Kotlin demonstrates exceptional versatility, allowing its use

in both Android app development and server-side development.

The language supports a wide range of platforms including

JVM, Android, JavaScript, iOS, Linux, Windows, Mac, and

even embedded systems such as STM32, making it an ideal

choice for multi-platform projects. This versatility makes

Kotlin an important tool in the arsenal of the modern developer,

able to serve a variety of programming needs and challenges.

In turn, if we talk about such programming language as

Java, it was developed by the Green Team (James Gosling,

Mike Sheridan, Patrick Naughton) in 1995 as an object-oriented

multiplatform free programming language similar to C++, with

extended and simplified features. Java has become one of the

most popular and widely used programming languages because

it is easy to learn, use, compile, and debug. Figure 1 shows the

popularity graphs of these programming languages.

Figure 1. Graph of the popularity of programming languages.

Source: https://trends.google.ru/trends/explore?date=today%205-y&q=%2Fm%2F07sbkfb,%2Fm%2F0_lcrx4&hl=ru

A programming language that provides code portability

between different computing platforms offers considerable

flexibility to developers. This portability allows the same

program to function on a variety of systems without the need

for specific adaptations for each of them. This approach, taken

as a basis in object-oriented programming, contributes not only

to the orderly structuring of program code but also to the

simplification of its maintenance and modification processes.

In addition, the ability to reuse objects in different projects

significantly increases the development efficiency.

Multithreading, which provides the ability to perform

multiple tasks simultaneously, proves to be critical in areas such

as game application development. This aspect is key to creating

responsive and high-performance software solutions.

Java has a unique characteristic of being platform-specific

independent, which is achieved by compiling to bytecode that

is universal to any Java virtual machine. This aspect, along with

the object-oriented approach, provides Java with a high level of

security through mechanisms such as encryption-based

authentication and malware protection. In addition, a strict type

system and error-checked compilation contribute to creating

robust and stable applications by minimizing the risks of

erroneous states in program code.

In the context of Java, the architectural neutrality of

compiler-generated object files represents a significant

achievement, allowing programs to run on multiple processor

architectures without the need for code modification.

Additionally, Java's high performance is due to the use of Just-

In-Time (JIT) compilers, which optimizes code execution at

runtime.

In turn, when considering these programming languages, it

becomes apparent that they have distinctive features. For

example, demonstrating the differences in server-side

development approaches between Kotlin and Java sheds light

on their structural simplicity and developer accessibility.

International Journal of Scientific Engineering and Science
Volume 8, Issue 5, pp. 52-55, 2024. ISSN (Online): 2456-7361

54

http://ijses.com/

All rights reserved

Consider an example that includes HTTP server

implementations in both Kotlin and Java (Figs. 2, 3). These

examples not only emphasize the syntax of the languages but

also demonstrate their different approaches to building web

servers, thus offering insight into their suitability for server-side

development.

Kotlin simplifies server-side development through its

concise syntax and integration with platforms such as Ktor,

allowing developers to define routes and process requests more

simply. Let's look at implementing a simple REST API in

Kotlin using Ktor:

import io.ktor.server.engine.*

import io.ktor.server.netty.*

import io.ktor.application.*

import io.ktor.response.*

import io.ktor.routing.*

fun main() {

 embeddedServer(Netty, port = 8080) {

 routing {

 get("/") {

 call.respondText("Hello, Backend World!")

 }

 }

 }.start(wait = true)

}

Figure 2. A program written in the Kotlin programming language

This example demonstrates the brevity of Kotlin and the

ease of setting up a basic web server with a minimal set of

templates, making it accessible to developers and providing

robust capabilities for more complex applications.

In contrast, implementing the same functionality in Java,

especially with the Spring Framework, requires more detailed

customization but offers extensive customization and control,

which appeals to developers who require a full feature set for

large-scale applications.

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.RestController;

@SpringBootApplication

@RestController

public class HelloWorldApplication {

 public static void main(String[] args) {

 SpringApplication.run(HelloWorldApplication.class, args);

 }

 @GetMapping("/")

 public String hello() {

 return "Hello, Backend World!";

 }

}

Figure 3. A program written in the Java programming language

This Java example reflects the language's traditional

verbosity as well as its flexibility for developing complex server

systems. The Spring Framework's extensive features support a

wide range of server-side development tasks, from simple API

services to complex enterprise-level applications.

Although the elementary "Hello, World!" Programs may

seem too simplistic to reveal the full range of programming

language capabilities, but these more complex examples

highlight the key attributes of each language. In particular, the

implementation of such programs in Kotlin demonstrates that

the same goal can be achieved with fewer lines of code

compared to Java, demonstrating the syntactic economy and

high degree of expressiveness of the former.

When choosing a programming language to learn, it is

advisable to consider your own goals and the objectives you

have in mind. Java, characterized by a higher level of

complexity, offers at the same time ease of learning thanks to

its structured nature and extensive documentation. Kotlin, on

the other hand, is characterized by its ease of comprehension

and greater flexibility, which makes its use more widespread,

although it involves a steeper learning curve [3].

Also, Kotlin, which has emerged on the programming scene

as a more accessible and intuitive language compared to Java,

frees developers from the need to use semicolons at the end of

each line of code. This characteristic makes Kotlin syntax

particularly transparent and makes the language easier to learn

and understand. In contrast to Kotlin, Java is a more complex

language with a high potential for syntax and logic errors,

potentially increasing the time to debug and fix code. However,

Kotlin stands out not only by simplifying code writing but also

by reducing the likelihood of errors during compilation and

execution due to its brevity and conciseness. Additionally,

Kotlin simplifies the handling of mutable and immutable data

structures, which extends its application to server-side

development [4].

One of the key advantages of Kotlin is its deep integration

with Java, allowing both languages to coexist and interact in the

same project. As a result, Kotlin inherits and extends the

functionality of Java, providing a high degree of compatibility

with existing Java libraries and platforms. This feature makes

the transition to Kotlin less costly in terms of time and

resources, as developers can gradually integrate Kotlin into

their projects without having to completely migrate from Java.

In addition, learning Kotlin is relatively easy for those who are

already familiar with Java, thanks to the availability of code

conversion tools such as the Kotlin plugin for IntelliJ IDEA or

Android Studio.

In a development context, using Kotlin usually results in

shorter and more understandable code than Java for similar

tasks. This compactness not only improves code readability but

also makes it easier to debug. The perfect integration with

Kotlin Integrated Development Environment (IDE) further

simplifies the development process by making the code less

error-prone and more efficient [5].

Kotlin addresses one of Java's most pressing problems, the

problem of null pointer exceptions (NPEs), by providing an

innovative solution that significantly reduces the probability of

their occurrence. Inspired by best practices and elements from

International Journal of Scientific Engineering and Science
Volume 8, Issue 5, pp. 52-55, 2024. ISSN (Online): 2456-7361

55

http://ijses.com/

All rights reserved

other programming languages such as C# and Scala, as well as

borrowing ideas from Pascal, Kotlin successfully integrates

advanced concepts into its syntax. Its support for extended data

structures and declarative style of variable declaration, where

the data type follows the variable, further emphasizes its

flexibility and power, providing developers with greater

opportunities to create quality and robust software [6,7].

Additionally, Kotlin provides convenient facilities for

working with classes of primitive methods. This includes the

use of operators for basic operations on complex classes such

as BigDecimal, as well as simple and straightforward ways to

work with arrays.

In addition, it is possible to write single-line methods on a

single line in Kotlin, which helps improve code readability and

compactness. Contextual functions such as let, apply, also,

with, and run open up new possibilities for functional

programming, increasing the flexibility and expressiveness of

the language.

While some may view these features as "sugarcoating", they

greatly simplify the development process and reduce the

likelihood of errors. It is also important to note that the need to

adhere to code style in Kotlin becomes more urgent, but the

development process becomes simpler and more efficient [8-

10].

IV. BACKEND DEVELOPMENT APPROACHES

The traditional monolithic approach involves creating a

single, seamless application in which all backend components

are integrated and interact directly with each other. This

approach is typically used in small to medium-sized projects

where scalability and flexibility requirements are not critical.

The advantages of the monolithic approach include ease of

deployment and debugging and relative ease in understanding

the application architecture. However, it also has its

disadvantages, such as limited scalability and difficulty in

maintaining when code changes are required.

Microservice architecture is one of the most popular modern

approaches to backend development. Using this approach, an

application is broken down into small independent services,

each of which performs a limited set of functions and interacts

with other services through APIs. This approach provides high

flexibility, scalability, and fault tolerance to the application

because each service can be scaled and updated independently.

However, a microservice architecture requires additional

deployment, management, and monitoring efforts, and can

increase the complexity of integration and testing.

Event-driven architecture focuses on handling real-time

events and notifications. With this approach, the backend

consists of independent components that respond to incoming

events and handle them accordingly. This approach is

particularly useful for applications that require asynchronous

processing of large amounts of data or real-time interaction.

However, implementing an event-driven architecture can be

challenging due to the need to ensure reliable event delivery and

processing, as well as potential scalability and state

management issues [11].

V. CONCLUSION

Kotlin offers modern syntactic constructs, makes it easier to

write code by reducing the amount of code, and improves

application security. At the same time, Java retains its

importance due to its broad support, scalability, and

performance, especially in large and complex projects.

Both languages exhibit a high degree of interoperability and

compatibility, allowing developers to flexibly utilize their

advantages according to project objectives. The availability of

skilled professionals and ease of integration with existing tools

and libraries are also important factors in the choice.

Thus, the final choice between Kotlin and Java should be

based on a comprehensive analysis and correspond to the

strategic development goals of the project, its technical

requirements, and resources. Further development of both

languages is expected in the future, which will make them even

more powerful tools in the hands of backend developers.

REFERENCES

1. Kotlin Vs. Java: Which Is The Better For Android App
Development?[Электронный ресурс] Режим доступа:

https://www.elinext.com/blog/kotlin-vs-java/ .– (дата обращения

29.02.2024).
2. Java Vs Kotlin: A Comparative Analysis For Mobile

Developers.[Электронный ресурс] Режим доступа:

https://ranksol.com/java-vs-kotlin/ .– (дата обращения 29.02.2024).

3. Блинова А. В. Противостояние языков программирования Kotlin и

Java в разработке мобильных приложений // Актуальные

исследования. 2022. №37 (116). С. 38-40.
4. Why Choose Kotlin Over Java For Backend

Development?[Электронный ресурс] Режим доступа:

https://quokkalabs.hashnode.dev/why-choose-kotlin-over-java-for-
backend-development .– (дата обращения 29.02.2024).

5. Kotlin vs Java при разработке backend-приложений .[Электронный

ресурс] Режим доступа: https://deveducation.com/blog/kotlin-vs-java-
pri-napisanii-backend-prilozheniy/ .– (дата обращения 29.02.2024).

6. Java vs Kotlin - Comparison & Use Cases for Elegant Android App

Development .[Электронный ресурс] Режим доступа:
https://www.tempest.house/blog-posts/java-vs-kotlin-comparison-use-

cases-for-elegant-android-app-development .– (дата обращения

29.02.2024).
7. Java или Kotlin: что выбрать начинающему андроид-разработчику

.[Электронный ресурс] Режим доступа:

https://skillbox.ru/media/code/java_ili_kotlin_chto_vybrat_nachinayush
chemu_android_razrabotchiku/ .– (дата обращения 29.02.2024).

8. Comparison of Kotlin and Java when writing backend applications

.[Электронный ресурс] Режим доступа:
https://devlister.com/tutorials/103-comparison-of-kotlin-and-java-when-

writing-backend-applications.html .– (дата обращения 29.02.2024).

9. Сравнение Kotlin и Java при написания backend-приложений
.[Электронный ресурс] Режим доступа:

https://tproger.ru/articles/sravnenie-kotlin-i-java-pri-napisanija-backend-

prilozhenij .– (дата обращения 29.02.2024).
10. Kotlin Vs Java: What Software Engineers Choose For Android

Development.[Электронный ресурс] Режим доступа:
https://dashdevs.com/blog/kotlin-vs-java-what-software-engineers-

choose-for-android-development/ .– (дата обращения 29.02.2024).

11. Kotlin vs Java: Breaking Down the Differences for Business
Leaders.[Электронный ресурс] Режим доступа:

https://jaydevs.com/kotlin-vs-java/ .– (дата обращения 29.02.2024).

