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Abstract—Each client designs its own model independently, making the task even more difficult. Existing algorithms are not efficient in solving 

the problem of varying noise in local clients, which is caused by the difficulty of data labeling and hitchhiking clients. In this paper, we address 

the challenging problem of federated learning with noisy and heterogeneous clients. We propose a new solution, Federated Classifier Jointing 

(FedClassJoint), which simultaneously handles label noise and performs federated learning in a single framework. The deep neural network 

used for the supervised learning task consists of a feature extractor layer and a classifier layer. Additionally, we apply local feature 

representation learning to stabilize the decision boundary and improve the local feature extraction capability of the client. FedClassJoint is 

characterized by three aspects: (1) efficient communication between heterogeneous models, achieved by requiring the client to communicate 

with only a few fully connected layers; (2) reduction of negative impact caused by internal label noise through the use of contrastive 

regularization loss function (CCTR). (3) To address noisy feedback from other participants, we have designed a new client confidence 

reweighting scheme. This scheme adaptively assigns appropriate weights to each client classifier during the collaborative learning phase. The 

classifier weights are then aggregated into a decision boundary protocol on the feature space, resulting in a powerful global classifier. Our 

approach has been extensively tested and has proven effective in minimizing the negative impact of various noise rates and types in both 

homogeneous and heterogeneous federated learning settings. It consistently outperforms existing methods. 
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I. INTRODUCTION  

Local clients such as mobile devices or entire organizations 

typically have limited private data and limited generalizability. 

Therefore, centralized learning of public models using private 

data from all clients would greatly improve performance. 

However, the existence of data silos and data privacy prevents 

us from using traditional centralized learning in real-world 

applications [1]. To address these challenges, McMahan 

proposed federated learning (FL) [2]. Federated learning is a 

distributed machine learning framework that allows multiple 

clients and a global server to train by exchanging knowledge 

from local training and the data itself. Clients never share 

private data with the server, ensuring basic privacy. Starting 

with FedAvg [2], many studies have been proposed to 

improve the generalization performance of federated learning 

algorithms. However, because federated learning concentrates 

on improving global models, the performance of client models 

with local data distribution deteriorates. Therefore, the concept 

of personalized federated learning has been proposed. Its goal 

is to allow clients to collaboratively train personalized models 

while maintaining model performance on local data 

distributions. Therefore, many heterogeneous federated 

learning approaches have been proposed in order to perform 

federated learning with heterogeneous models [5-8]. FedDF 

[6] performs an integrated extraction using unlabeled data for 

each of the different model architectures. FedMD [5] is a 

framework based on knowledge distillation by means of class 

scores of the client models on a public dataset. These 

strategies mainly rely on a unified global consensus or shared 

model. However, one major limitation of learning global 

consensus is that clients cannot individually adjust their 

learning directions to accommodate differences between 

clients. In addition, building additional models will increase 

computational overhead, which affects efficiency and 

effectiveness. Therefore, it is a challenge to perform joint 

learning using heterogeneous clients without relying on global 

consensus or shared models. 

The above methods mainly rely on the assumption that 

each client has a clean dataset, which cannot be satisfied in 

many practical applications. When the clients contain 

unavoidably noisy samples, existing joint learning methods 

are unable to eliminate the negative effects of labelling noise, 

and thus suffer significant performance degradation [8]. Since 

joint learning involves a large number of clients, the data in 

each client usually has different noise patterns. Typically, in 

practice, labelling noise is caused by two aspects: (1) The 

quality of the labelled data is affected by human subjective 

factors and due to the limited and scarce human expertise, 

which means that high-quality labelled data requires a high 

cost, which inevitably leads to some incorrect labelling. (2) In 

the federated learning framework, considering the issue of 

user fairness, there may be some free riders in the system who 

want to learn from the global model but do not want to 

provide useful information. So, some users are not willing to 

share their real information with other users and deliberately 

generate some false labels. To reduce the negative effects of 

labelling noise, existing methods [10-13] are usually 

developed for image classification tasks with a single model. 

These methods can be classified into four categories: label 

transfer matrix estimation [14-17], robust regularization [18], 

robust loss function design [20], and clean sample selection 

[22]. Under the joint learning framework, we expect each class 

of samples to be fully learned while avoiding overfitting noisy 

samples. Therefore, how to reduce the negative impact of 

internal labelling noise on the local model convergence during 
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the local update phase is an important issue. In addition, how 

to reduce the negative and noisy effects of other clients in a 

collaborative learning framework is also an important issue. 

Existing approaches to address noise in machine learning can 

only eliminate the negative impact of internal model labeling 

noise, but not noise from other clients. Therefore, it is crucial 

to deal with noisy feedback from other noisy clients in a joint 

learning framework. 

This paper presents solutions to FedClassJoint for 

federated learning with noisy and heterogeneous clients. 

Firstly, we propose locally noisy learning with contrast 

regularized loss functions to address the negative impact of 

internal model labeling noise. During the local learning phase, 

the contrast regularization function retains information related 

to the true labels and discards information related to the 

corrupted labels. (2) Client Confidence Re-weighting for 

External Noise. To reduce the impact of label noise resulting 

from feedback from other clients, we employ Client 

Confidence Re-weighting (CCR) in joint communication. No 

changes in content have been made. This technique reduces 

the contribution of noisy clients and unites the uniform client 

classifier weights to form a powerful global classifier via CCR. 

With a formal register and exact word choice, the language is 

objective, clear, and succinct. The content follows standard 

formatting guidelines and organization, with uniform citation 

and footnote styles. The grammar, spelling, and punctuation 

are correct. 

The contributions of this paper and the proposed 

FedClassJoint are as follows: We further investigate the robust 

federated learning problem with noisy and heterogeneous 

clients. We adaptively adjust the weights of the classifiers for 

each client during the loss update by CCR to reduce the 

contribution of noisy clients and increase the contribution of 

clean clients, resulting in a robust global classifier. By 

combining classifier aggregation and local representation 

learning, we introduce FedClassJoint, a novel framework for 

personalized federation learning on heterogeneous models. We 

validate the proposed approach in various settings, including 

heterogeneous and homogeneous models with different noise 

types and noise rates. Experimental results show that 

FedClassJoint consistently works better than other methods.  

II. RELATED WORK  

2.1 Heterogeneous Federated Learning 

Several studies have identified the possibility of joint 

learning approaches for heterogeneous models [24, 25]. 

Personalized joint learning approaches for heterogeneous 

models using knowledge transfer have also been proposed in 

the literature [26]. Knowledge refinement or transfer transfers 

learned information to models with different architectures, 

making them suitable for successful application in 

heterogeneous training. KT-pFL[27] is a knowledge transfer-

based personalized federated learning algorithm for 

heterogeneous models that has achieved state-of-the-art 

performance. In this algorithm, a global server aggregates 

local soft predictions from clients on broadcast public data. 

The server then computes the knowledge transfer coefficient, 

which determines how much knowledge should be updated 

from one client to another. However, collecting more public 

data remains a major issue. It is important to ensure that public 

and private data have similar distributions. This can only be 

achieved if semantic information on private client data is 

available. Knowledge transfer-based algorithms require local 

models to be trained for multiple periods, which can be 

computationally expensive for clients that are often assumed 

to be edge devices. Furthermore, the computation of 

knowledge coefficients and their application to the local 

model necessitates additional computation on the client side. 

Previous studies have not addressed this issue, but FedZKT 

[28] resolves it by shifting computationally intensive tasks 

from the client to the global server through the aggregation of 

client model weights. This approach, however, sacrifices 

communication overhead. In summary, current knowledge 

transfer-based approaches either compromise client privacy, 

overburden edge computing resources, or require excessive 

communication. However, FedClassJoint exchanges only two 

fully connected layers without using auxiliary datasets. This 

promotes effective communication. 

2.2 Label Noise Learning 

In machine learning, several methods have been proposed 

to handle labeling noise. These methods can be classified into 

four main groups:  

(1) Label transfer matrices. The primary concept is to estimate 

the probability of each labeling class flipping to another class. 

Sukhbaatar [14] introduced a noise layer to the network to 

align the network output with the noisy labeling distribution. 

Patrini [15] developed an end-to-end loss correction 

framework to enable the application of state-of-the-art noise 

estimation techniques to multi-class settings. 

(2) Robust regularization. Robust regularization was employed 

to prevent models from overfitting noisy labels. Zhang [18] 

proposed Mixup, which trains convex combinations of sample 

pairs and their labels to regularize hybrid neural networks. 

Arpit[19] showed that regularization slows down the recall of 

noise while not affecting the learning of real data. 

(3) Robust loss functions. Some methods achieve robust 

learning by using noise-tolerant loss functions. Rooyen [20] 

proposed a convex classification calibration loss which is 

robust to symmetric labeling noise. Ghosh[21] analyzed some 

widely used loss functions in deep learning and proved that 

MAE is robust to noise. 

(4) Select potentially clean samples. These methods select 

clean samples from a noisy training dataset to use for learning, 

or reweight each sample. The core idea is to reduce the focus 

on noisy labeled samples in each iteration of training. In order 

to train two deep neural networks concurrently and choose 

data with possibly clean labels for cross-training, Han[22] 

developed Cooperative Teaching. Wei[23] proposed JoCoR, 

which uses joint regularization to compute the joint loss, and 

then selects small-loss samples to update the network 

parameters. 

Previous methods to solve label noise are mainly in local 

learning. But in joint learning, the server does not have direct 

access to the client's private dataset. Different model 

architectures result in varying noise patterns and inconsistent 
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decision boundaries in model heterogeneity environments. 

How to effectively combine inconsistent decision boundaries 

is an important issue that will be explored in this paper. 

III. METHODOLOGY 

3.1 Definition of the problem 

In joint learning, each K-client learns local model weights 

using local data containing noise to improve the performance 

of the global model. Thus, the goal of joint learning can be 

stated as follows: 

 
Where  is the loss function,  is the model architecture,  is 

the global model weight parameter,  is the model weight 

parameter of client k,  denotes the oracle dataset, 

i.e., when aggregating client data, where x is the input data 

and y is the corresponding label.  

However, personalized federated learning for heterogene-

ous models aims to minimize the average client loss over the 

local data distribution. The goal of personalized federated 

learning for client loss , data  and model 

architecture  can be stated as follows: 

 

3.2 Local noise Learning 

In fact, since we only get a noisy dataset, we do not know 

if the labels are clean or not. Therefore, simply minimizing (1) 

leads to performance degradation. To see this, note that (1) 

activates only when { } = 1. Thus, two representations 

from different classes will be pulled together when noisy 

labels are present. Since the deep network first fits examples 

with clean labels and the probabilistic output of these 

examples is higher than that of examples with corrupted labels, 

it helps in representation learning only in the early stages. 

After that time, the examples with corrupted labels will 

dominate the learning process, as the magnitude of the 

gradient from the correct contrast pair overwhelms the 

magnitude of the gradient from the incorrect contrast pair. In 

particular, given two clean examples xi, xj, yi = yj and one 

mislabeled example xm, ym = yi = yj, after an early phase, the 

deep network begins to fit the mislabeled data. At this point, 

the incorrect comparison pairs (xi, xm) and (xj, xm) are 

incorrectly pulled together, and they impair representation 

learning over the correct pair (xi, xj).  

To address this problem, we propose the following 

regularization function to avoid the negative impact of 

incorrect contrast pairs: 

 
The purpose of (3) remains to learn similar representations 

of data with the same true label. Furthermore, gradient 

analysis of (3) shows that the L2 paradigm gradient increases 

when and  converge. Our proposed regularization 

function is not dominated by the gradient of the wrong pair, 

and the model does not overfit clean examples even if the 

gradient of (3) for the correct pair is larger than that of the 

wrong pair. The magnitude of its gradient can be viewed as 

the strength of pulling clean samples of the same class closer 

together, which is not directly related to overfitting clean 

samples. In addition, we use a separate identical linear layer at 

the top of each client representation as a classifier, so as long 

as the gradient of the classification loss relative to the 

parameters in the linear layer is not large on the clean 

examples, the model will not overfit them.  

Finally, the overall objective function is given: 

 

where  serves as the contrast regularization (CTRR) of the 

representation and  controls the strength of the regularization. 

To balance local knowledge with knowledge learned from 

other clients, we set up a local learning phase. Clients will 

update the local model using their own private dataset to 

prevent local knowledge from being forgotten. During the 

training iterations, labeling noise can cause the model to 

update in the wrong direction and eventually fail to converge. 

To avoid this result, we use (4) to calculate the loss between 

the pseudo-label predicted by the model and the corresponding 

given label. Customers utilize (4) to update the model while 

enhancing local knowledge, avoiding overfitting of noisy 

labels and facilitating adequate learning. 

3.3 Client Confidence Re-weighting 

We propose the Client Confidence Re-weighting (CCR) 

method to reduce the adverse effects of label noise from other 

clients during the collaborative learning phase. CCR can 

personalize the weights of each client during the 

communication process, reduce the contribution of noisy 

clients, and pay more attention to the clients with clean 

datasets and efficient models. And the weights of each client 

after CCR reconstruction are utilized to weight its classifier, 

resulting in a powerful global classifier. To estimate the label 

quality, (4) is used to compute the loss between the predicted 

output of a local model for a private noisy dataset and a given 

label. To quantify the learning efficiency, we compute the (4) 

drop rate for each round of iterations. the Loss drop rate 

returned by the client in T rounds of iterations is denoted as 

∆L. Specifically, the loss decrease rate can reflect the learning 

efficiency of the model to some extent. Then we simply use 

the Loss drop rate to quantify the learning efficiency of the 

client . By quantifying the label quality of the private 

dataset and the learning efficiency of the local model, the 

confidence of each client is measured separately. In the 

collaborative learning phase, we reweight the confidence of 

each client so that the client can learn more from the quality 

clients and reduce the learning weight for the inferior clients, 

while assigning a larger weight to the classifiers of the quality 

clients and a smaller weight to the classifiers of the inferior 

clients. As the training iterates, each model is updated towards 

clean and efficient clients and a strong global classifier is 

formed. 
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3.4 Summary 

The whole process is shown in Fig. 1. First, each client  

updates the local model  and its classifiers with a private 

noise dataset to obtain a set of pre-trained models and their 

classifiers . In collaborative learning, clients  utilize CCR 

to align the feedback distributions of other clients, and clients 

can then individually adjust their learning direction according 

to the differences in the models, instead of simply learning the 

global consensus. Therefore, to reduce the effect of local noise, 

we use CCTR in (4) to update the local model, and then 

calculate the client confidence based on label quality and 

model learning efficiency. When learning knowledge 

distributions from other clients, the client's confidence is 

reweighted to the participants and their classifiers. Through 

personalized weighting, the participation of noisy clients in the 

federated system is adjusted to form a powerful global 

classifier that avoids the effect of noise in the communication 

process. 

 
Fig. 1. Architecture diagram of FedClassJoint. Feature Extractor is the feature 

extractor and Classifier is the classifier. FedClassJoint aggregates client 

classifiers and builds a global classifier. 

IV. EXPERIMENTS 

A. Experimental settings 

Datasets and models. Our experiments are conducted on 

two datasets, Cifar10 and Cifar100, which are widely used in 

the study of labeling noise. Here we set the public dataset on 

the server as a subset of Cifar100 and randomly partition 

Cifar10 into different clients as the private dataset. 

In the heterogeneous model scenario, we assign four 

different networks ResNet10, ResNet12, ShuffleNet and 

Mobilenetv2 to each of the four clients. While in the 

homogeneous model scenario, the network of all four clients is 

set to ResNet12. 

Noise type. We use the label transfer matrix M to add label 

noise to the dataset. Matrix M has two widely used 

structures:symmetric flip and pair flip. Symmetric flip means 

that the original class label will be flipped to any wrong class 

label with equal probability. For pair flipping, it means that 

the original class labels will only be flipped to very similar 

wrong classes. 

Implementation details. The sizes of the private and public 

datasets are specified as Nk = 10,000 and N0 = 5,000, 

respectively. we perform Tc = 40 co-learning epochs for 

different models. We use the Adam optimizer with an initial 

learning rate of α = 0.001 and a batch size of 128. λ is set to 

0.1 and η is set to 0.5. We select the noise rate µ = 0.1 and 0.2 

because the main focus of this research is on the robustness of 

federated learning under noisy supervision. We next go over 

the results under both pair-flipping and symmetric flipping 

noise types. To generate noisy datasets, we invert 20% of the 

labels in the training dataset of Cifar10 to the wrong labels and 

keep the test dataset of Cifar10 unchanged to observe the 

robustness of the model. Results of the experiment 

B. Results of the experiment 

In the same setting, we compare with state-of-the-art 

heterogeneous federated learning methods. The baseline is the 

method where the client trains a local model on a private 

dataset without federated learning. Therefore, the comparison 

of the two noise rates is shown in Tables 1 and 2. The 

experiments show that our proposed method outperforms the 

existing strategies under different noise conditions. In Pairflip 

noise, our proposed method FedClassJoint outperforms the 

current SOTA method RHFL by 0.49%, FedDF by 1.70%, and 

FedMD by 1.86%. In Symflip FedClassJoint is 0.36% higher 

than RHFL, 3.84% higher than FedDF, and 3.58% higher than 

FedMD. FedClassJoint has good results in either noise 

scenario. 

 
TABLE I. Experimental results under Pairflip noise. 

Method 
Pairflip 

    Avg 

Baseline 77.98 76.75 66.89 74.33 73.99 

FedMD 74.98 76.89 67.10 76.64 73.90 

FedDF 76.26 75.51 68.41 76.04 74.06 

RHFL 78.76 79.72 67.99 74.20 75.17 

FedClassJoint  79.90 77.68 68.11 77.43 75.76 

 
TABLE Ⅱ. Experimental results under Symflip noise. 

Method 
Symflip  

    Avg 

Baseline 76.20 76.05 64.96 74.31 72.88 

FedMD 73.23 73.66 67.72 75.54 72.54 

FedDF 72.07 75.18 67.38 74.47 72.28 

RHFL 77.71 79.04 70.54 76.20 75.76 

FedClassJoint  78.84 76.98 71.11 77.53 76.12 

V. CONCLUSION 

In this paper, we study the problem of how to perform 

robust federated learning under noisy heterogeneous clients. 

To solve this problem, a new FedClassJoint solution is 

proposed. In order to avoid overfitting of each model to the 

noise during the local learning process, the CCTR loss is used 

to update the local models. For the noise feedback from other 

participants, we use a flexible reweighting method, CCR, 

which effectively avoids overlearning from noisy clients, and 

at the same time unites the classifiers of all participating 

clients to form a powerful global classifier, realizing noise-

resistant federated learning. A large number of experiments 

demonstrate the effectiveness in our approach. 
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