
International Journal of Scientific Engineering and Science
Volume 8, Issue 4, pp. 46-48, 2024. ISSN (Online): 2456-7361

46

http://ijses.com/

All rights reserved

Optimizing Database Performance in Large Projects

Mykyta Machekhin

Senior Software Engineer, Curbside Technologies Inc., US, New York City

machekhinn@gmail.com

Abstract— With the growing volume of data and increasing complexity of information systems, database optimization is becoming a key factor in

the success of large projects. High database performance directly impacts query processing speed, application load times, and ultimately user

satisfaction. This article examines modern methods and practices that help maximize database efficiency in large projects. The article focuses on

aspects such as data structuring and normalization, indexing, sharding and replication. Various approaches to query optimization and transaction

management are considered. It also covers scaling and load balancing, as well as using caching to reduce load on the underlying database. Real-

life examples are provided to demonstrate the application of these methods in large projects. Another important aspect is the selection and

configuration of a suitable caching mechanism, which helps reduce the load on the database. Considering horizontal scaling and data replication

also plays an important role in maintaining high availability and performance in large projects. The purpose of the work is to consider the

possibilities of optimizing database performance in large projects. Scientific works served as the theoretical basis.

Keywords— IT, digitalization, modern technologies, databases, performance optimization.

I. INTRODUCTION

Tuning the performance of SQL code in a live environment

becomes relevant only after the main database development has

been completed and logic errors have been eliminated. Users

are generally satisfied with the functionality of the application,

but strive to improve its performance.

Optimizing database performance includes the

following steps:

1. Identify and analyze queries that are impacting

performance.

2. Drawing up an optimal execution plan for identified queries.

3. Making changes to queries or database structure to achieve

an optimal execution plan [1].

In this regard, the improvement of databases significantly

reduces the response time to requests, providing instant access

to data. This plays a key role in user experience and meeting

business requirements. Secondly, optimization reduces the load

on servers, facilitating more efficient use of computing

resources. This opens up additional opportunities to scale the

system and meet growing needs. In addition, database

optimization has an impact on the overall performance of

applications, increasing their responsiveness - an aspect that is

extremely relevant in an environment of intense competition

and high service standards.

An integral part of effective management is the pursuit of

optimizing database performance to reduce operational costs

and improve user experience. The speed of operation of the

control system, its stability and reliability of information

storage, as well as economic efficiency depend on optimization

[2].

1. Key design strategies

For maximum efficiency in data management, ensure that

stores, partitions, and indexes are in optimal condition for

intended and actual use in the production environment.

Optimizing data usage improves query performance, optimizes

resources, and improves overall system efficiency.

● Data profiling: Explore the data, ensuring that the data

model matches the requirements of your own workload.

Consider data normalization, indexing strategies, and

partitioning techniques. For optimal data access, select

appropriate data types, define relationships between

entities, and select optimal indexing strategies.

Fig.1. Design strategies

● Data Storage Configuration: Match your storage

infrastructure to your production environment. Choose the

right storage technology, such as relational databases,

NoSQL databases, and data warehouses. Optimize storage

parameters including compression, caching, and buffer size.

● Query Performance Optimization: Analyze and optimize

queries running in production. Take advantage of

techniques such as query optimization, indexing, and

caching. Use query plans and performance monitoring tools

to identify bottlenecks, then make the necessary

improvements.

International Journal of Scientific Engineering and Science
Volume 8, Issue 4, pp. 46-48, 2024. ISSN (Online): 2456-7361

47

http://ijses.com/

All rights reserved

● Regular system monitoring and tuning: Continuously

monitor production environment performance and iterate on

data warehouse configuration and query optimization.

Based on performance tuning recommendations, analyze

system metrics, identify areas for improvement, and

implement necessary changes.

● Data profiling: Data profiling involves analyzing data from

a source and gathering insights about it. This allows you to

understand the quality, structure and characteristics of the

production environment data. Assessing data structure helps

you understand how data is organized and how it is

interconnected. It is also important to estimate the volume

of data to determine storage requirements and identify

scalability issues.

● Define data relationships: Analyze relationships between

data elements, such as primary and foreign keys. Learn how

data interacts to understand how changes to one table can

affect related data.

● Assessing Data Quality: Assess data quality by examining

completeness, accuracy, consistency, and uniqueness.

Identify data anomalies, such as missing values or duplicate

records, that can impact data integrity and query

performance. This will help identify areas for data

improvement.

● Collect distribution data: Analyze the distribution of values

in each column to identify patterns in the data. This will help

you select appropriate indexing strategies and query

optimization techniques, taking into account the data

distribution [3].

● Data Performance Monitoring: Continuous data

performance monitoring is a practice aimed at monitoring

the performance of data warehouses, partitions, and indexes

in real time. This process involves collecting and analyzing

key performance metrics associated with data operations.

Effective monitoring allows potential bottlenecks to be

identified and addressed, ensuring data efficiency.

Fig.2. Data monitoring strategies

Let's look at data performance monitoring strategies:

● Collecting Data Metrics: Monitoring key metrics that

impact data performance. These measurements include data

throughput, disk I/O related to data access, query response

time, and loading times for certain data sections.

● Alert Configuration: Configure alerts specific to data

metrics. Use predefined thresholds or anomaly detection to

trigger alerts. These alerts alert you when metrics exceed

acceptable limits or exhibit abnormal behavior.

● Diagnose data performance issues: Regularly review

collected data metrics to identify potential bottlenecks or

performance issues in data operations. Visualization tools

or dashboards can be helpful in this process by identifying

trends and anomalies in data performance.

● Data partitioning: Partitioning is the process of breaking up

huge datasets or tasks into smaller, more manageable

groups. This practice improves data performance by

distributing the workload and optimizing parallel

processing. Partitioning also enables efficient data access

based on specific needs and query patterns. Partitioning can

be implemented both vertically and horizontally (or

segmentation) [4].

TABLE 1. Data partitioning

Strategy Definition Example Use Cases

Vertical

partitioning

Divide the table into
smaller tables by

selecting specific

columns or fields
for each section.

Each partition

represents a subset
of the complete

data.

If you have a

table with
columns A, B,

C, and D, you

can create one
table with

columns A and

B and another
table with

columns C and

D.

— The table

contains many
columns, but

queries do not

access all
columns

together.

- Some columns
are larger than

others, and

separating them
can improve I/O

performance.

- Different
pieces of data

have different

access patterns.

Horizontal

partitioning

Dividing data into

rows or ranges of
values (also called

sharding). Each

section contains a
subset of rows with

similar

characteristics.

If you have a
table with

rows 1 through

1000, you can
create one

partition with

rows 1 through
500 and

another

partition with
rows 501

through 1000.

— The data set

is too large for

one location or
server.

— Data is

accessed based
on certain ranges

or filters.

— to improve
performance, it

is necessary to

distribute the
workload

between

physical nodes
or servers.

Let's look at a few strategies to optimize index performance:

• Examine query structure: Analyze database query patterns to

identify frequently performed and potentially slowing

operations. Understanding query structure can help you

determine which indexes may be most useful for optimizing

performance.

• Evaluate existing indexes: Review the current indexes in the

database and evaluate their effectiveness, performance impact,

and compliance with query patterns. Removing unused or

International Journal of Scientific Engineering and Science
Volume 8, Issue 4, pp. 46-48, 2024. ISSN (Online): 2456-7361

48

http://ijses.com/

All rights reserved

redundant indexes can free up resources and improve

performance.

• Selecting Columns for Indexing: Identify columns that are

heavily used in WHERE, JOIN, and ORDER BY clauses in

personal queries as potential candidates for indexing. This will

provide quick access to data [5].

• Index Type Selection: Select the best index type according to

the database system characteristics and query requirements.

Consider balancing requirements for equality, ranges, exact

match, and text search.

• Index column ordering: When creating composite indexes,

consider column ordering to provide more efficient access to

data. Placing the most frequently used columns at the beginning

of the index will improve its efficiency.

• Balancing index size: Avoid creating indexes on columns with

low selectivity as this can increase the size of the database.

Index columns with high selectivity for optimal performance.

• Maintain index usage: Regularly monitor index usage and

performance. Create new indexes or modify existing ones based

on changes in queries. Remove or update indexes that are no

longer useful.

• Testing and Validation: Before making changes to your

production environment, conduct thorough testing to evaluate

the performance impact of the changes using real-world

workloads.

• Tradeoffs: Choose index types carefully, taking into account

their storage costs and specific query considerations. Balance

performance and storage requirements.

Effective index management helps speed up operations and

reduce database load, resulting in improved overall system

performance.

Recommendations for optimizing caching:

• Tune settings such as Time to Live (TTL) for optimal

performance.

• Use in-memory caching for resource-intensive data that

changes infrequently.

• Apply database query caching to avoid repeated execution of

the same queries.

• Consider content delivery network caching, especially for

static content, to improve delivery and reduce latency.

Introducing read cues:

• Use multiple read replicas to distribute load and improve

overall system performance.

• Adjust the use of read replicas based on traffic, which can

improve system responsiveness to requests.

Choosing the best strategies for caching and using read

replicas will help you effectively manage the load on your data

storage, ensuring fast access and high system performance.

When optimizing data consistency in a distributed

workload, where data is distributed across multiple nodes or

locations, it is important to balance the level of consistency with

compute resources to maintain performance. Eventual

consistency provides a trade-off between data accuracy and

performance, where changes are propagated gradually to ensure

consistent data across all nodes. This choice improves workload

performance and availability.

To optimize data updates, efficient use of optimistic

concurrency offers a solution for concurrent updates. A

versioned or timestamp-based approach minimizes conflicts

and allows multiple users or processes to work concurrently,

improving performance and reducing resource latency.

In the context of optimizing data movement and processing,

strategies such as extract, transform, and load (ETL)

optimization, parallel processing, and batch processing play a

key role in improving the efficiency of data operations. Using

these methods reduces processing time and provides high

throughput.

Optimizing the data warehouse design based on the

proximity of data to users or services provides faster access and

improves responsiveness. Designing for data proximity

involves assessing access patterns and selecting solutions that

support data movement and synchronization [6].

II. CONCLUSION

Thus, it can be noted that optimizing database performance

is a key aspect of the successful implementation of large

projects. All of these strategies represent a comprehensive

approach to data optimization, balancing accuracy,

performance, and availability, which are key tradeoffs in

distributed systems.

Given the constant development of technology, it is also

necessary to note the need to constantly update and improve

database optimization methods in order to adapt to changing

requirements and operating conditions. Optimized databases

not only improve project efficiency, but also help improve the

overall stability and reliability of information systems.

REFERENCES

1. Performance optimization in Microsoft SQL server DBMS. [Electronic
resource] Access mode: https://novainfo.ru/article/11469 .– (accessed

25.01.2024).

2. How to optimize work with databases: basic methods and
recommendations. [Electronic resource] Access mode:

https://eurobyte.ru/articles/kak-optimizirovat-rabotu-s-bazami-dannykh-

osnovnye-metody-i-rekomendacii/. – (accessed 25.01.2024).
3. Recommendations for optimizing data performance . [Electronic

resource] Access mode: https://learn.microsoft.com/ru-ru/azure/well-

architected/performance-efficiency/optimize-data-performance. –
(accessed 25.01.2024).

4. How to optimize work with databases: best practices and tips. [Electronic

resource] Access mode: https://serverspace.ru/about/blog/kak-
optimizirovat-rabotu-s-

bd/?utm_source=yandex.ru&utm_medium=organic&utm_campaign=ya

ndex.ru&utm_referrer=yandex.ru. – (accessed 25.01.2024).
5. A little bit about improving database performance: Practical tips.

[Electronic resource] Access mode:

https://habr.com/ru/companies/1cloud/articles/304642 /.– (accessed
01/25/2024).

6. Best Practices for Optimizing Database Performance: Tips and

Techniques for Developers. [Electronic resource] Access mode:
https://www.code-sample.com/2023/06/optimizing-database-

performance-tips.html .– (accessed 25.01.2024).

