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Abstract— In response to the significant losses caused by plant diseases, which call for a 70% increase in global food supply by 2050, scientists 

have created sophisticated deep learning models. These models, which were originally trained on datasets such as PlantVillage, have difficulties 

in real-world settings because of the intricate backgrounds and numerous leaves in each picture. This work presents FieldPlant, a new dataset 

with 5,170 photos of plant diseases that were gathered from plantations and painstakingly annotated by plant pathologists. The research assesses 

state-of-the-art classification algorithms such as MobileNet, VGG16, InceptionResNetV2, InceptionV3, Xception, and DenseNet with an emphasis 

on maize, cassava, and tomato diseases in tropical cultures. Furthermore, algorithms for plant detection like YoloV5, YoloV8, SSD, and 

FasterRCNN are evaluated. The findings highlight the dominance of Xception and DenseNet in classification, while YoloV5 performs exceptionally 

well in plant detection with a mean Average Precision (mAP) of 0.977 and an astounding 97% accuracy. This study emphasizes how cutting-edge 

methods have the power to transform agricultural disease diagnosis and reduce worldwide output losses. 
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I. INTRODUCTION  

With an estimated 10 billion people on the planet by 2050, there 

will be a significant need for food, which will present a difficult 

task due to the scarcity of arable land [1]. In order to 

accommodate the growing population, the Food and 

Agriculture Organization of the United Nations (FAO) 

recommends a 70% increase in the food supply by 2050 [2]. 

However, plant illnesses or abnormalities cause an astounding 

one-third of farmed food to be wasted, with an estimated yearly 

economic cost of US$ 220 billion [3], [4]. Amidst these 

difficulties, extensive study has been spurred by the significant 

impact of plant diseases on crop production loss. The 

emergence of Artificial Intelligence (AI), namely in the fields 

of Machine Learning and Computer Vision, has offered a viable 

solution to tackle this problem. Plant disease diagnosis and 

classification have found a major application for Deep 

Convolutional Neural Networks (CNN), a well-known aspect 

of artificial intelligence [5]. CNNs have been trained with 

notable datasets such as PlantVillage [2], iBean [6], citrus [7], 

rice [8], cassava [9], and AI Challenger 2018 [10], which have 

produced high classification accuracy in lab settings. It has been 

difficult, nevertheless, to apply these achievements. 

Images from the field, with their intricate backgrounds of 

fruits, leaves, stems, dirt, and mulch, stand in sharp contrast to 

the controlled environments of labs. Studies [11] have shown 

that the complex background features found in field photos 

have a major role in the performance drop that is seen when 

neural networks trained on lab datasets are used. This calls for 

the development of novel techniques, including background 

reduction, to improve disease recognition accuracy in actual 

agricultural settings. By 2050, this research hopes to increase 

food output worldwide by 70% by creating sophisticated deep 

learning models. In order to tackle issues that arise in actual 

field settings, the study presents Field Plant, a dataset that 

consists of 5,170 photos of plant diseases. The evaluation 

includes plant detection algorithms (YoloV5, YoloV8, SSD, 

FasterRCNN) and classification algorithms (MobileNet, 

VGG16, InceptionResNetV2, InceptionV3, Xception, 

DenseNet) on crops such as corn, cassava, and tomato, 

demonstrating the effectiveness of DenseNet, Xception, and 

YoloV5 in their respective tasks. 

II. LITERATURE SURVEY 

The literature review emphasizes the integration of 

computer vision, deep learning, and novel methodologies to 

improve agricultural productivity and crop management. It also 

covers notable developments and projects in plant disease 

diagnosis and agricultural automation. A system that combines 

deep learning and computer vision technologies in [1] tackles 

issues in small-scale field farming and encourages intelligent 

agricultural production management. Obstacles encompass the 

perpetual progress in technology and the requirement for 

proficient experts in agricultural automation. While integrating 

with massive datasets improves productivity and spurs 

economic growth, it's still difficult to get reliable performance 

in a variety of settings. In order to support the aims of global 

food security and reduce yield losses caused by infectious 

illnesses, [2] suggests using carefully chosen photos of plant 

health for mobile disease diagnostics. A dataset for visual plant 

disease identification is introduced by PlantDoc, which is 

covered in [4]. It shows significant accuracy gains and lowers 

obstacles to the application of cutting-edge computer vision 

techniques in agriculture. gives a summary of deep learning-

based plant disease detection algorithms in [5], stressing their 

critical significance in improving agricultural practices while 

drawing attention to issues like data quality and model 

interpretability. Last but not least, [7] addresses the financial 

losses brought on by citrus illnesses by introducing a hybrid 

method for disease identification and categorization. 

Notwithstanding several difficulties with dataset quality and 

computational complexity, the suggested approach has promise 
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for real-world use in agriculture. These programs recognize 

persistent issues like dataset quality and computational 

complexity while highlighting the significance of incorporating 

cutting-edge technologies in agriculture. Notwithstanding these 

obstacles, the innovations under discussion have the potential 

to transform farming methods and solve issues with 

global food security. 

III. METHODOLOGY 

A. Proposed Work 

The suggested solution uses cutting-edge deep learning 

algorithms for improved crop disease diagnosis and mitigation, 

addressing the urgent requirement for a 70% increase in global 

food production by 2050. Seeing that models trained on datasets 

such as PlantVillage struggle with complex backgrounds and 

multiple leaves per image in real-world field settings, the study 

presents FieldPlant, an extensive dataset with 5,170 carefully 

annotated images of plant diseases taken straight from 

plantations. The study gains specificity from its emphasis on 

tomato, cassava, and corn diseases in tropical cultures. Modern 

classification algorithms including MobileNet, VGG16, 

InceptionResNetV2, InceptionV3, Xception, and DenseNet are 

evaluated, and the results show that DenseNet and Xception are 

particularly effective at solving classification problems with 

97% accuracy. Concurrently, the evaluation of YoloV5, 

YoloV8, SSD, and FasterRCNN plant identification algorithms 

demonstrates YoloV5's exceptional performance in attaining a 

noteworthy 0.977 mean Average Precision (mAP) in plant 

detection. This study presents a comprehensive method for 

detecting agricultural diseases, demonstrating how cutting-edge 

methods have the power to revolutionize agriculture worldwide 

and significantly reduce production losses. 

B.   System Architecture 

The urgent need for a 70% increase in global food 

production by 2050—a demand related to losses from plant 

diseases—is met by the suggested system architecture. The 

basis is based on sophisticated deep learning models, which 

diverge from traditional training on datasets such as 

PlantVillage. The system presents FieldPlant, a new dataset 

with 5,170 photos of plant diseases taken from plantations and 

carefully annotated by plant pathologists. With a focus on 

tropical corn, cassava, and tomato illnesses, the architecture 

assesses state-of-the-art classification algorithms like Xception, 

DenseNet, MobileNet, VGG16, and InceptionResNetV2. 

Furthermore, the effectiveness of YoloV5, YoloV8, SSD, and 

FasterRCNN plant detection algorithms is evaluated. The 

design highlights how effective DenseNet and Xception are at 

classification, while YoloV5 performs remarkably well at plant 

detection. This all-encompassing strategy, which combines 

cutting-edge methods with a customized dataset, has the 

potential to transform crop disease detection and greatly reduce 

losses in global food production. 

 
Fig 1. System Architecture 

C. Algorithms 

Mobile Net - Convolutional neural networks of the MobileNet 

kind are intended for embedded and mobile vision applications. 

Their foundation is a simplified architecture that builds 

lightweight deep neural networks with reduced latency for 

mobile and embedded devices using depthwise separable 

convolutions. 

VGG16: VGG-16 is a 16-layer convolutional neural network. 

The ImageNet database contains a pretrained version of the 

network that has been trained on over a million images [1]. The 

pretrained network is capable of classifying pictures into 1000 

different object categories, including several animals and 

keyboards, mice, and pencils. InceptionResNetV2-A 

convolutional neural network called Inception-ResNet-v2 was 

trained using over a million pictures from the ImageNet 

collection [1]. With 164 layers, the network is capable of 

classifying photos into 1000 different object categories, 

including several animals and keyboards, mice, and 

pencils.Inception V3-Convolutional neural network Inception-

v3 has 48 layers deep. A pretrained version of the network, 

trained on over a million photos from the ImageNet collection, 

is available for download [1]. Images of 1000 different object 

categories, including a keyboard, mouse, pencil, and numerous 

animals, can be classified by the pretrained network.  

Xception- Xception is a 71-layer convolutional neural network. 

A pretrained version of the network, trained on over a million 

photos from the ImageNet collection, is available for download 

[1]. Images of 1000 different object categories, including a 

keyboard, mouse, pencil, and numerous animals, can be 

classified by the pretrained network. 

DenseNet- A DenseNet is a kind of convolutional neural 

network that makes use of dense connections between layers. 

Specifically, Dense Blocks allow us to connect all layers 

directly with one another (provided that their feature-map sizes 

match). We now talk about detection methods, which include: 

SSD: One-Time MultiBox Detector. Using a single stage of 

object detection, SSD divides the bounding box output space 

into a set of default boxes with varying aspect ratios and scales 

for each feature map location. FasterRCNN-By combining the 

CNN model with a region proposal network (RPN), the 

FasterRCNN - Faster R-CNN object detection model 

outperforms the Fast R-CNN model. Region recommendations 

are almost entirely free thanks to the RPN's sharing of full-

image convolutional features with the detection network. 

YoloV5: Yolo v5 generates the anchor boxes using a novel 
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technique known as "dynamic anchor boxes." The ground truth 

bounding boxes are first grouped into clusters using a clustering 

method, and the anchor boxes are subsequently made using the 

centroids of the clusters. 

YoloV8: The newest model in the YOLO family is called 

YOLOv8. You Only Look Once, or YOLO, is how this set of 

models got its name—they can accurately predict every object 

in a picture with just one forward pass. The way the YOLO 

models framed the problem at hand was the primary distinction 

they introduced. 

IV. EXPERIMENTAL RESULTS 

Accuracy: A test's accuracy is determined by how well it can 

distinguish between patient and healthy cases. We should 

compute the percentage of true positive and true negative in 

each analyzed case in order to assess the accuracy of a test. This 

can be expressed mathematically as follows:  

Accuracy = TP + TN TP + TN + FP + FN 

 

 

 
 

Precision: Precision measures the percentage of correctly 

categorized samples or instances among the positive samples. 

Consequently, the following is the formula to determine the 

precision: 

Precision = True positives/ (True positives + False positives) = 

TP/ (TP + FP) 

 
Recall: Recall is a machine learning metric that assesses a 

model's capacity to locate all pertinent instances of a given 

class. It is a measure of how well a model captures examples of 

a particular class: the ratio of correctly predicted positive 

observations to the total number of real positives. 

F1-Score: The F1-Score is a machine learning evaluation 

metric that quantifies the accuracy of a model. It integrates a 

model's precision and recall ratings. The number of times a 

model correctly predicted throughout the whole dataset is 

calculated by the accuracy metric. 

 

 

 

 
 

 

 

V. CONCLUSION 

Finally, by utilizing cutting-edge deep learning models for 

enhanced plant disease detection, this study tackles the pressing 

demand for increasing global food production. FieldPlant was 

introduced to address the limits of conventional training on 

datasets like PlantVillage in real-world outdoor situations. 

When classification algorithms were evaluated, YoloV5 

performed exceptionally well in plant detection (mean Average 

Precision = 0.977), although DenseNet and Xception performed 

better, obtaining 97% accuracy. These results demonstrate the 
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revolutionary potential of cutting-edge methods for agricultural 

disease identification, providing a way to reduce global 

production losses and feed the world's expanding population in 

a sustainable manner. In the future, more studies may examine 

how to combine remote sensing and real-time monitoring 

systems to improve early detection and intervention techniques, 

thus improving food security and agricultural sustainability. 
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