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Abstract— We analyzed the displacement state of a concrete beam subjected to a uniform load. The Mass (m), according to quantum theory is 

energy (E). This energy is in a constant state of flux. The continuous changes brought about by the displacement of particles in a solid, seems to 

deter normal explanation until a visible deformation occurs. Deformation usually occurs if displacement at the atomic and sub-atomic level are 

inhomogeneous. That is, there is variance in the path-lines of displacement. This differences in the path-line travelled by the particles between 

two points within a solid creates an extrema condition. Hence, the particles displaced can either take a straight path denoted 𝑢(𝑥), or a family of 

trajectories 𝑢̅(𝑥). The variation between these two paths of displacements   𝑢(𝑥) 𝑎𝑛𝑑 𝑢̅(𝑥) , within a solid, is what determines the equilibrium 

configuration of a solid. If the variance is maximum, the solid will deform. If minimum or equal, the solid will then be stationary. This displacement 

analysis lays the mathematical foundation for the derivation of Euler-Lagrange equation of solid mechanics; with which, we derived the equivalent 

form of the governing differential equation from any given functional (F). Whose solution (displacement) 𝑢(𝑥) is obtained using finite element 

method.  
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I. INTRODUCTION  

Displacement determination is the most preferred means for the 

dynamic analysis of solid structures. The determination of the 

primary field variable such as displacement is of utmost 

importance. There are different approaches used to determine 

the primary field variable some of which are as follows: [1] 

used a generalized method called linear variable differential 

transformer (LVDT) for displacement analysis and also 

highlights its limitation with structural systems as a function of 

height. [2] worked-on the inhomogeneous displacement of 

particles by numerically correlating a selected subset from the 

digitized intensified nature of the un-deformed object. Also, [3], 

and [4] centered their research on the digital image correlation 

(DIC) and particle image velocimetry (PIV), as some of the 

image base displacement analysis methods. Furthermore, [5] 

investigated the image processing based automated grid to 

determine the displacement and strain accuracy limit while [6] 

proposed a new strategy of obtaining displacement field from 

two different images at different times using an iterative optical 

flow method. Finite element analysis (FEA) had proved to be a 

powerful numerical tool in engineering analysis.  In this paper, 

we deploy FEA to determine the displacement state of a 

concrete beam, subjected to a uniform load. 

II. PROBLEM FORMULATION 

A concrete beam of length 𝑥,  fixed at both ends, with 

support at the center is subjected to a uniform load-force 𝑞. The 

total potential of the beam is represented by the functional 𝐹 =

1
2⁄ 𝐴𝐸 (

𝑑𝑢

𝑑𝑥
)

2

− 𝑞𝑢.  where, the first term in the functional 

expresses the strain energy stored in the beam, and the second 

term represents the potential of the external force as shown in 

figure 1. We are to determine the displacement state 𝑢(𝑥) in 

response to the loading force (F). 

 

 
Figure 1:  Concrete Beam Subjected to a uniformly Distributed Load 

III. MATHEMATICAL FORMULATIONS 

The beam, as a static object is mathematically represented 

by the definite integral [7] 

𝐼[𝑢(𝑥)] = ∫ 𝐹 (𝑢,
𝑑𝑢

𝑑𝑥
, 𝑥) 𝑑𝑥              

𝑏

𝑎
  (1) 

This formulation is backed by the Principle of Stationary 

Total Potential (PSTP), characterizing the equilibrium 

configuration of the structure [9]. Which states that the problem 

of finding 𝑢(𝑥) that make ′′𝐼’’ stationary with respect to small 

acceptable changes in 𝑢(𝑥)  is equivalent to the problem of 

finding 𝑢(𝑥) that satisfies the governing differential equation 

for the problem [11]. Hence, we wish to find 𝑢(𝑥) which makes 

the functional stationary, subject to the boundary condition 

𝑢(𝑎) = 𝑢𝑎    and  𝑢(𝑏) = 𝑢𝑏. Then for figure1, the functional 

𝐹 = 1
2⁄ 𝐴𝐸 (

𝑑𝑢

𝑑𝑥
)

2

− 𝑞𝑢, and the prescribed boundary 

conditions are 𝑢(0) = 0, 𝑎𝑛𝑑 𝑢(𝐿) = 0,  since both ends of the 

beam are fixed. 

Figure 2 depicts possible trajectories of displacement 𝑢̅(𝑥) 

and also the unknown solution 𝑢(𝑥). This will enable to us 

study what happens to 𝐼 in equation (1), if 𝑢(𝑥)  slightly varies 

to 𝑢̅(𝑥). That is, 
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Figure 2:  Admissible Solution  𝑢(𝑥) 

 

𝑢̅(𝑥) = 𝑢(𝑥) + 𝜀         (2) 

𝑤ℎ𝑒𝑟𝑒 𝜀 is a small parameter. 

The difference between 𝑢̅(𝑥) 𝑎𝑛𝑑 𝑢(𝑥) is called the variation 

in 𝑢(𝑥); denoted by, 

𝛿𝑢(𝑥) = 𝑢̅(𝑥) − 𝑢(𝑥) = 𝜀                                        (3) 

The distinction between 𝑑𝑢 𝑎𝑛𝑑 𝛿𝑢 at a given position 𝑥, is 

shown in Figure 3. The variation 𝛿𝑢  refer to the difference 

between 𝑢̅(𝑥) and 𝑢(𝑥);  while, 𝑑  refers to the differential 

change in 𝑢(𝑥) 𝑎𝑠 𝑥  changes to 𝑥 + 𝑑𝑥 

 

 
Figure 3: Difference between δu and du. 

 

𝛿(𝑢′)  is the difference in slope of 𝑢̅(𝑥)𝑎𝑛𝑑 𝑢(𝑥). That is, 

𝑢̅′(𝑥) − 𝑢′(𝑥) =   [𝛿𝑢]′                                                      (4) 

where (  )′ designates differentiation with respect to 𝑥 [8]. 

For a given 𝑥, as we move from 𝑢(𝑥) 𝑡𝑜 𝑢̅(𝑥), using equation 

(1) 

∆𝐹 = 𝐹(𝑢̅, 𝑢̅′, 𝑥) − 𝐹(𝑢, 𝑢′, 𝑥) = 𝐹(𝑢 + 𝛿𝑢,  𝑢′ + 𝛿𝑢′, 𝑥) −
𝐹(𝑢, 𝑢′, 𝑥)         (5) 

Expanding the first term in equation (5) by Taylor series [8]; we 

get, 

𝐹(𝑢 + 𝛿𝑢, 𝑢′ + 𝛿𝑢′, 𝑥) = 𝐹(𝑢, 𝑢′, 𝑥) + (
𝜕𝐹

𝜕𝑢
𝛿𝑢 +

𝜕𝐹

𝜕𝑢′
𝛿𝑢′) + 

                                                         
1

2!
(

𝜕2𝐹

𝜕𝑢2 𝛿𝑢2 + 2
𝜕2𝐹

𝜕𝑢𝜕𝑢′
𝛿𝑢𝛿𝑢′ +

𝜕2𝐹

𝜕𝑢′2 𝛿𝑢′2)                      (6) 

Hence 

∆𝐹 = (
𝜕𝐹

𝜕𝑢
𝛿𝑢 +

𝜕𝐹

𝜕𝑢′ 𝛿𝑢′) +
1

2!
(

𝜕2𝐹

𝜕𝑢2 𝛿𝑢2 + 2
𝜕2𝐹

𝜕𝑢𝜕𝑢′
𝛿𝑢𝛿𝑢′ +

𝜕2𝐹

𝜕𝑢′2 𝛿𝑢′2)                    (7) 

The first variation of F is defined as: 

 𝛿𝐹      =    
𝜕𝐹

𝜕𝑢
𝛿𝑢 +

𝜕𝐹

𝜕𝑢′ 𝛿𝑢′                  (8) 

And the second variation of F is: 

𝛿2𝐹 = 𝛿(𝛿𝐹) =
𝜕2𝐹

𝜕𝑢2 𝛿𝑢2 + 2
𝜕2𝐹

𝜕𝑢𝜕𝑢′
𝛿𝑢𝛿𝑢′ +

𝜕2𝐹

𝜕𝑢′2 𝛿𝑢′2 (9) 

So that, 

∆𝐹      
=         𝛿𝐹

+
1

2!
𝛿2𝐹                                                                                                                           (10) 

Studying what happens to ‘𝐼’, in the neighborhood of  𝑢(𝑥).  
That is, 

∆𝐼 = 𝐼(𝑢̅, 𝑢̅′, 𝑥) − 𝐼(𝑢, 𝑢′, 𝑥)

= ∫ 𝐹(𝑢̅, 𝑢′̅, 𝑥)
𝑏

𝑎

𝑑𝑥 − ∫ 𝐹(𝑢 , 𝑢′ 𝑥)
𝑏

𝑎

𝑑𝑥 

                                                     = ∫ ∆𝐹
𝑏

𝑎
𝑑𝑥 = ∫ (𝛿𝐹 +

𝑏

𝑎
1

2!
𝛿2𝐹 + ⋯)𝑑𝑥                       (11) 

The first variation of 𝐼 is defined as: 

𝛿𝐼 = ∫ 𝛿𝐹𝑑𝑥                                                                      
𝑏

𝑎
  (12) 

And the second variation of 𝐼 is given as 

𝛿2𝐼 = ∫ 𝛿2𝐹𝑑𝑥                     
𝑏

𝑎
   (13) 

So that 

∆𝐼      =         𝛿𝐼 +
1

2!
𝛿2𝐼                                                      (14) 

If the variation of the stationary 𝐼 expresses the total potential 

of a structure, and we are looking for a stable equilibrium 

configuration; then, we wish to find 𝑢(𝑥)  that minimizes 𝐼. 
Since 𝑢(𝑥)   minimizes 𝐼, ∆𝐼 ≥ 0 𝑎𝑠  𝜀 is reduced.   ∆𝐼 →
0 when 𝑢̅(𝑥) = 𝑢(𝑥). Then 𝐼 attains a minimum and ∆𝐼 ≡
𝛿𝐼 = 0  [7] 
From equation (8) and (12); we get, 

𝛿𝐼 = ∫ (
𝜕𝐹

𝜕𝑢
𝛿𝑢 +

𝜕𝐹

𝜕𝑢′ 𝛿𝑢′) 𝑑𝑥
𝑏

𝑎
                                     (15) 

Also, from equation (4); we have, 

𝛿(𝑢′) = (𝛿𝑢′) =
𝑑

𝑑𝑥
𝛿𝑢              (16) 

Hence, substituting equation (16) into the second term in 

equation (15); that is, 

∫
𝜕𝐹

𝜕𝑢′

𝑏

𝑎
𝛿𝑢′𝑑𝑥 = ∫

𝜕𝐹

𝜕𝑢′

𝑑

𝑑𝑥
𝛿𝑢𝑑𝑥 = ∫

𝜕𝐹

𝜕𝑢′ 𝑑(𝛿𝑢) 
𝑏

𝑎

𝑏

𝑎
 (17) 

Performing integration by parts on the right hand term of 

equation (17); we get, 

∫
𝜕𝐹

𝜕𝑢′ 𝑑(𝛿𝑢) = [
𝜕𝐹

𝜕𝑢′
𝛿𝑢]

𝑎

𝑏

− ∫ (𝛿𝑢)
𝑑

𝑑𝑥

𝑏

𝑎
(

𝜕𝐹

𝜕𝑢′
)

𝑏

𝑎
𝑑𝑥 (18) 

Substituting equation (18) into equation (15); we obtain, 

𝛿𝐼 = ∫ [
𝜕𝐹

𝜕𝑢
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑢′
)] 𝛿𝑢𝑑𝑥 +

𝑏

𝑎
[
𝜕𝐹

𝜕𝑢′
𝛿𝑢]

𝑎

𝑏

        (19) 

Since the beam is fixed at both ends, the changes in 

displacement  𝛿𝑢(𝑎) = 𝛿𝑢(𝑏) = 0. 
Making the second term in equation (19) to vanish; leaving, 

𝛿𝐼 = ∫ [
𝜕𝐹

𝜕𝑢
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑢′
)] 𝛿𝑢𝑑𝑥   

𝑏

𝑎
 (20) 
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𝑢(𝑥)minimizes I when 𝑢̅(𝑥)
= 𝑢(𝑥); implying, the variation in 𝐼; 𝑖. 𝑒, 𝛿𝐼
= 0. 

Leaving equation (20) 
𝜕𝐹

𝜕𝑢
−

𝑑

𝑑𝑥
(
𝜕𝐹

𝜕𝑢′
) = 0       

Equation (21) is the famous Euler-Lagrange equation of solid 

mechanics [7] [10], the necessary condition for 𝐼[𝑢(𝑥)] =

∫ 𝐹 (𝑢,
𝜕𝑢

𝜕𝑥
, 𝑥) 𝑑𝑥

𝑏

𝑎
 to be an extremun (minimum or maximum). 

Where 

𝐹 = 1
2⁄ 𝐴𝐸 (

𝑑𝑢

𝑑𝑥
)

2

− 𝑞𝑢        (22) 

Differentiating equation (22) with respect to the terms in 

equation (21). 

That is, 
𝜕𝐹

𝜕𝑢
= −𝑞                                                              (23) 

And 
𝜕𝐹

𝜕𝑢′
= 𝐴𝐸

𝑑𝑢

𝑑𝑥
                                                               (24) 

Substituting equation (23) and (24) into equation (21); we have, 

−𝑞 −
𝑑

𝑑𝑥
(𝐴𝐸

𝑑𝑢

𝑑𝑥
) = 0 

−(𝑞 + 𝐴𝐸
𝑑2𝑢

𝑑𝑥2
) = 0 

Rearranging the above; we get, 

𝐴𝐸
𝑑2𝑢

𝑑𝑥2
+ 𝑞 = 0                                                                (25) 

Equation (25) is the governing differential equation for the 

beam subjected to the uniformly distributed load 𝑞. 

IV. SOLUTION TO THE DIFFERENTIAL EQUATION BY 

FINITE ELEMENT METHOD 

The beam in Figure 1, is of length 𝐿 = 2𝑙 is disc retized into 

two finite line elements as: 
 

 
Figure 4: Describing the Shape Function for the Beam 

 

Then, we introduce the general representation of interpolation 

or shape function for the field variable within an element valid 

for any number of nodes as [11]. 

𝑢(𝑥) = (1 − 𝑥
𝑙⁄ )𝑢𝑘 + (𝑥 𝑙⁄ )𝑢𝑘+1                                  (26) 

We can; then, deduce the weighting function from equation (26) 

as: 

Note: In figure 4, the beam has three load concentration points 

called nodes. Hence, we describe the displacement state at these 

three different points with the weight function 𝑊(𝑥) 𝑎𝑠 [11]: 
𝑊1(𝑥) = 1 − 𝑥

𝑙⁄          0 < 𝑥 < 𝑙   in the first element 

            = 0                                        0 < 𝑥 <
𝑙, in the second element 
𝑊2(𝑥) = 𝑥

𝑙⁄             0 < 𝑥 < 𝑙, in the first element 

= 1 − 𝑥
𝑙⁄       0 < 𝑥 < 𝑙, in the second element 

𝑊3(𝑥) = 0                                     0 < 𝑥
< 𝑙, in the first element 

             = 𝑥
𝑙⁄              0 < 𝑥 < 𝑙, in the second element 

Also, we describe the primary field variable (displacement) 

in three states 𝑢1, 𝑢2𝑎𝑛𝑑 𝑢3  corresponding to the weighting 

functions 𝑊1,𝑊2, 𝑎𝑛𝑑 𝑊3. 
Substituting the above mention two components to the weak 

form representation of the governing differential equation. 

That is, 

The governing differential equation is, 

𝐴𝐸
𝑑2𝑢

𝑑𝑥2
+ 𝑞 = 0 

The weighted residual statement is given as, 

∫ 𝑊(𝑥) (𝐴𝐸
𝑑2𝑢

𝑑𝑥2
+ 𝑞)𝑑𝑥 = 0                                  (27)

𝐿

0

 

Then, the weak form can be derived from the weighted residual 

statement [11] as follows:  

 

Expanding equation (27); we get, 

∫ 𝑊(𝑥)𝐴𝐸
𝑑2𝑢

𝑑𝑥2

𝐿

0

𝑑𝑥 + ∫ 𝑊(𝑥)𝑞
𝐿

0

𝑑𝑥

= 0                                                                                 (28) 

Applying integration by part, on the first integral of 

equation (28); that is, 

∫𝑢
𝑑𝑣

𝑑𝑥
= 𝑢𝑣 − ∫ 𝑣

𝑑𝑢

𝑑𝑥
                                        (29) 

𝑢 = 𝑊(𝑥);                              
𝑑𝑢

𝑑𝑥
=

𝑑𝑊(𝑥)

𝑑𝑥
 

𝑑𝑣

𝑑𝑥
= 𝐴𝐸

𝑑2𝑢

𝑑𝑥2
;                         𝑣 = 𝐴𝐸

𝑑𝑢

𝑑𝑥
 

Coupling the above into equation (29); we have, 

∫ 𝑊(𝑥)𝐴𝐸
𝑑2𝑢

𝑑𝑥2

𝐿

0

𝑑𝑥

= [𝑊(𝑥)𝐴𝐸
𝑑𝑢

𝑑𝑥
]
0

𝐿

− ∫ 𝐴𝐸
𝑑𝑊

𝑑𝑥

𝑑𝑢

𝑑𝑥

𝐿

0

𝑑𝑥     (30) 

Substituting the right hand part of equation (30) into equation 

(28); we get, 

 

[𝑊(𝑥)𝐴𝐸
𝑑𝑢

𝑑𝑥
]
0

𝐿

− ∫
𝑑𝑊

𝑑𝑥

𝐿

0

𝑑𝑢

𝑑𝑥
𝑑𝑥 + ∫ 𝑊(𝑥)

𝐿

0

𝑞𝑑𝑥 = 0 

Re-arranging the above, we have the weak form of our 

governing as: 

∫ 𝐴𝐸
𝑑𝑊

𝑑𝑥

𝐿

0

𝑑𝑢

𝑑𝑥
𝑑𝑥 = ∫ 𝑊(𝑥)

𝐿

0

𝑞𝑑𝑥

+ [𝑊(𝑥)𝐴𝐸
𝑑𝑢

𝑑𝑥
]
0

𝐿

                   (31) 

Recalling from the general shape function in equation 

(26) 
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𝑢(𝑥) = (1 − 𝑥
𝑙⁄ )𝑢𝑘 + (𝑥 𝑙⁄ )𝑢𝑘+1 

            K= 1, 2, 3. 
𝑑𝑢

𝑑𝑥
= −

1

𝑙
𝑢𝑘 +

1

𝑙
𝑢𝑘+1 = [−

1

𝑙

1

𝑙
] [

𝑢𝑘

𝑢𝑘+1
]

=
(−𝑢𝑘 + 𝑢𝑘+1)

𝑙

=
(𝑢𝑘+1 − 𝑢𝑘)

𝑙
                 (32) 

And 

          𝑊1(𝑥) = 1 − 𝑥
𝑙⁄ ;           

𝑑𝑊1

𝑑𝑥
= −

1

𝑙
 

𝑊2(𝑥) = 𝑥
𝑙⁄ ;                                                 

𝑑𝑊2

𝑑𝑥
=

1

𝑙
 

𝑊3(𝑥) = 0                                                      
𝑑𝑊3

𝑑𝑥
= 0 

Substituting the derivatives 
𝑑𝑢

𝑑𝑥
 and 

𝑑𝑊

𝑑𝑥
 into: 

L. H. S. of equation (31) 

∫ 𝐴𝐸
𝑑𝑊1

𝑑𝑥

𝐿

0

𝑑𝑢

𝑑𝑥
𝑑𝑥 = ∑∫ 𝐴𝐸

𝑑𝑢

𝑑𝑥

𝑙

0

𝑑𝑊1

𝑑𝑥

2

1

𝑑𝑥

= ∫ 𝐴𝐸 (
𝑢2 − 𝑢1

𝑙
)

𝑙

0

(−
1

𝑙
) 𝑑𝑥 + 0 

=
𝐴𝐸

𝑙
[𝑢1 −𝑢2]                                           31(𝑖) 

∫ 𝐴𝐸
𝑑𝑊2

𝑑𝑥

𝐿

0

𝑑𝑢

𝑑𝑥
𝑑𝑥 = ∑∫ 𝐴𝐸

𝑑𝑢

𝑑𝑥

𝑙

0

𝑑𝑊2

𝑑𝑥

2

1

𝑑𝑥

= ∫ 𝐴𝐸 (
𝑢2 − 𝑢1

𝑙
)

𝑙

0

(
1

𝑙
) 𝑑𝑥

+ ∫ 𝐴𝐸 (
𝑢3 − 𝑢2

𝑙
)

𝑙

0

(−
1

𝑙
) 𝑑𝑥                                    

=                                                
𝐴𝐸

𝑙
[(−𝑢1 + 𝑢2) + (𝑢2

− 𝑢3)]                               31(𝑖𝑖) 

∫ 𝐴𝐸
𝑑𝑊2

𝑑𝑥

𝐿

0

𝑑𝑢

𝑑𝑥
𝑑𝑥 = ∑∫ 𝐴𝐸

𝑑𝑢

𝑑𝑥

𝑙

0

𝑑𝑊2

𝑑𝑥

2

1

𝑑𝑥

= 0 + ∫ 𝐴𝐸 (
𝑢3 − 𝑢2

𝑙
)

𝑙

0

(
1

𝑙
) 𝑑𝑥 

=
𝐴𝐸

𝑙
[𝑢3  −𝑢2]                                               31(𝑖𝑖𝑖) 

Right hand first term of equation (31): 

∫ 𝑊1(𝑥)
𝐿

0

𝑞𝑑𝑥 = ∑∫ 𝑊1(𝑥)𝑞𝑑𝑥 = ∫ (1 −
𝑥

𝑙
) 𝑞𝑑𝑥 + 0

𝑙

0

𝑙

0

2

1

= 
𝑞𝑙

2
                                            31(𝑖𝑣) 

∫ 𝑊2(𝑥)
𝐿

0

𝑞𝑑𝑥 = ∑∫ 𝑊2(𝑥)𝑞𝑑𝑥
𝑙

0

2

1

= ∫ (
𝑥

𝑙
)

𝑙

0

𝑞𝑑𝑥 + ∫ (1 −
𝑥

𝑙
) 𝑞𝑑𝑥 =

𝑞𝑙

2

𝑙

0

+
𝑞𝑙

2
                  31(𝑣) 

∫ 𝑊3(𝑥)
𝐿

0

𝑞𝑑𝑥 = ∑∫ 𝑊3(𝑥)𝑞𝑑𝑥 = 0 + ∫ (
𝑥

𝑙
)

𝑙

0

𝑞𝑑𝑥
𝑙

0

2

1

=
𝑞𝑙

2
                                                        31(𝑣𝑖) 

Right hand second term of equation (31): 

[𝑊1(𝑥)𝐴𝐸
𝑑𝑢

𝑑𝑥
]
0

𝐿

= ∑[𝑊1(𝑥)𝐴𝐸
𝑑𝑢

𝑑𝑥
]
0

𝑙2

1

= [(1 −
𝑥

𝑙
) 𝑃] + 0

= −𝑃0                                         31(𝑣𝑖𝑖) 

[𝑊2(𝑥)𝐴𝐸
𝑑𝑢

𝑑𝑥
]
0

𝐿

= ∑ [𝑊2(𝑥)𝐴𝐸
𝑑𝑢

𝑑𝑥
]
0

𝑙2

1

= [
𝑥

𝑙
𝑃] + [(1 −

𝑥

𝑙
)𝑃] + 0

= 𝑃𝑙 − 𝑃0                  31(𝑣𝑖𝑖𝑖) 

[𝑊3(𝑥)𝐴𝐸
𝑑𝑢

𝑑𝑥
]
0

𝐿

= ∑ [𝑊3(𝑥)𝐴𝐸
𝑑𝑢

𝑑𝑥
]
0

𝑙2

1

= 0 + [
𝑥

𝑙
𝑃]

= 𝑃𝑙                                                         31(𝑖𝑥) 

Where 

𝐴𝐸
𝑑𝑢

𝑑𝑥
= 𝑃, is the body force.  

Hence assembling the system level equation of equation (31) 

(i.e, from eqn 31(i) to 31(ix)  

 

𝐴𝐸

𝑙
[

1 −1 0
−1 1 + 1 −1
0 −1 1

] [

𝑢1

𝑢2

𝑢3

]

=

[
 
 
 
 
 

𝑞𝑙

2
𝑞𝑙

2
+

𝑞𝑙

2
𝑞𝑙

2 ]
 
 
 
 
 

+ [

−𝑃0

𝑃𝑙 − 𝑃0

𝑃𝑙

]                (33) 

𝐴𝐸

𝑙
[

1 −1 0
−1 2 −1
0 −1 1

] [

𝑢1

𝑢2

𝑢3

] = [

𝑓1
𝑓2

𝑓3

] + [

𝑓𝐵

𝑓𝐵

𝑓𝐵

]                    (34) 

𝐾 𝑈     =     𝐹 

𝐹          =    𝐾𝑈                                                 (35) 

Where, F is the loading force, K is the global stiffness matrix, 

and U is the primary field variable (displacement) 

Hence, the condense equation is; 

𝐾 [
2 −1

−1 1
] [

𝑢2

𝑢3
] = [

𝐹2

𝐹3
] 

On simplifying 

𝐾𝑢2 = 𝐹2                                                                             (36) 

Assuming the stiffness constant 𝐾 = 2; then, 

𝐹
= 2𝑈                                                                                                                                                       (37) 

Equation (37) is used to generate the following table: 

 
TABLE 1: Force and Displacement Values. 

F 0 1 2 3 4 5 

U 0 2 4 6 8 10 
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Figure 5: Graph of Force (F) against Displacement (U) 

V. RESULT/ DISCUSSION 

The graph in figure 5 shows a proportional relationship, 

between the loading force (F), and the displacement state (U) of 

the beam [12]. This relationship is purely elastic in nature. The 

beam which is made of concrete, cannot exceed its elastic limit, 

into its yielding region, before deformation. Confirming a 

phenomenon common to all brittle materials. 

VI. CONCLUSION 

The simulation of a problem, formulated in analytic form as 

a functional and its equivalent governing differential equation 

is made possible, by deploying finite element analysis. Hence 

FEA enables the simplification of a complex differential 

equation into a linear system of equations, whose primary field 

variables we have determine in this research.  In the future, we 

would compute also the secondary field variables (strain and 

stress).  
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