

Volume 7, Issue 9, pp. 43-47, 2023.

Evaluating Groundwater Potential and Hydrogeological Environment by Classification of Transmissivity Magnitude and Variation in Aquifer Bearing Rocks in Parts of Oru LGA. Imo State, Southeastern Nigeria Using the Methods of Statistical Testing and Krasny's Classification

Agbodike Ifeanyi I. C. Ph.D Department of Physics, Imo State University Owerri Email: ifygift_2009@yahoo.com

Abstract— Krasny's classification scheme for Transmissivity magnitude and variation was used to identify the ground water supply potential and the nature of the hydrogeological environment of the study Area. Spatial variation of transmissivity values were analysed using Statistical testing and Krasny's classification systems; from the results of the statistical testing; 16.67% of the eighteen vertical electrical sounding points in the study area had transmissivity index in the class of negative anomalies (withdrawals for local water supply with limited consumption) with a range of between 6.418 and 5.887 with groundwater potential rated as very low. 61.11% of the sounding points were in the class of Background anomalies (smaller withdrawals for local water supply and for private consumption) with transmissivity index range of between 6.418 and 7.479 with groundwater supply potential rated as low. 22.2% of the sounding points were in the class of positive anomalies (withdrawals of lesser regional importance) with transmissivity index range of between 7.479 and 8.009 with groundwater potential rated as moderate. The standard deviation value of 0.53 in the transmissivity index (Y) represents a moderate transmissivity variation and characterized the study area as a fairly heterogeneous hydrogeological environment. From the results of Krasny's classification system; 5.56% of the sounding points were in the class of intermediate or moderate transmissivity magnitude with groundwater potential expressed as withdrawals for local water supply for small communities and plants. Most of the sounding points (94.4%) were in the class of High transmissivity magnitude with groundwater potential expressed as withdrawals of lesser regional importance.

Keywords— Groundwater; Groundwater Potential; Transmissivity; Transmissivity Index; Transmissivity Magnitude.

I. INTRODUCTION

Aquifer transmissivity is one of the properties that control the movement, storage and extraction of underground water. Aquifer transmissivity is defined as the product of hydraulic conductivity or permeability and thickness of the aquiferous units and is measured in m²/day. The majority of hydrogeology problems may be understood quantitatively (Ramakrishna, 1998), and field research is ongoing to determine and assess the transmissivity and storage coefficient of aquifers based on test results (Birpinar, 2003); It is an integral part of assessment and management of ground water study (Sarwade et al, 2007; K . Srinivasa Reddy (2014).

Agbodike I (2021) in His paper titled "Estimating Aquifer Hydraulic Conductivity and Transmissivity for parts of Oru LGA Imo State, Southeastern Nigeria Using resistivity data was able to compute the aquifer hydraulic parameters including transmissivity values for 18 vertical electrical sounding points distributed within the area of Study. A table showing these parameters according to Agbodike I (2021) is shown below.

Our discussion on classification of transmissivity magnitude and variation in aquifer bearing rocks in the study area shall be based on the data on table 1. Meanwhile Spatial variation of transmissivity magnitude and variation has been identified as best useful in groundwater management practices. K. Srinivasa Reddy (2014).

II. LOCATION AND GEOMORPHOLOGY OF THE STUDY AREA

The study area lies between longitude $6^{0}50$ E and $7^{0}00$ E and latitude $5^{0}50$ N and $5^{0}37$ N as shown in the location map of the area as in figure 1. It covers a land mass of about 315km² south East Nigeria. The study area is made up of communities like Nempi, Aji, Akatta, Akuma , Mgbidi, etc .It is within the equatorial climate , which consists mainly of two major seasons; rainy season(March –October) and the dry season(November—February). The harmattan occurs within the dry season. The study area has a daily temperature range of 31° C to 33° C during the dry season and a range of 24° C to 26° C during the rainy season.

III. GEOLOGY AND HYDROGEOLOGY OF THE STUDY AREA

A study of the geology of Nigeria shows that the Oru Area is made up of two geological formations; the Ogwashi-Asaba and the Benin formation which was formerly known as coastal plain sands (Reyment, 1965). According to, Whiteman (1982). Clays, sands, grits, and lignites alternate with one another in the Ogwashi-Asaba formation. Reyment (1965) hypothesized that this strata is Oligocene-Miocene in age. The sands and

sandstones of the Benin formation are typically granular in texture and range in grain size from coarse to fine.

TABL	E (1a): Aqu	ifer Hydrau	lic parameters of	of the study area usi	ng data from surface el	ectrical soundings accord	ding to Agbodike (2019)
VES NO	Tanting	Resistivity	Aquifer depth	Aquifer Thickness	Aquifer Conductivity	Transverse Resistance	Longitudinal Conductance
	Location	(Ohm-m)	(m)	(m)	(Siemens)	(ohm-m ²)	(mhos)
1	Ubachima 1	395	110	119	0.0025	47005	0.30126
2	Ubachima 2	317	92.4	79.3	0.00315	251381	0.25016
3	Umuokwe	313	96.4	68.8	0.00319	21534.4	0.21981
4	Oteru	470	200	140	0.00213	65800	0.2979
5	Umuowa	636	86	103	0.00157	65508	0.1619
6	Otulu 1	640	120	115	0.00156	73600	0.1796
7	Ubahazu 1	642	125	115	0.00156	73830	0.1791
8	Ubahazu 2	645	117	109	0.00155	70305	0.1689
9	Otulu 2	618	155	122	0.00162	75396	0.1974
10	Umuoji	221	164	123	0.00452	27183	0.55656
11	Mgbidi1	196	205	90	0.0051	17640	0.4592
12	Mgbidi2	1831	87	67	0.00055	122677	0.03659
13	Ibiasoegbe	524	84	132	0.00191	69168	0.2519
14	Nempi	3934	81.6	63.5	0.00025	249809	0.1614
15	Akatta	3466	75	74	0.00029	256484	0.02135
16	Aji	557	27	24	0.00179	13368	0.04309
17	Ubulu	2915	36	69	0.00034	201135	0.02367
18	Akuma	96.5	39	41	0.01036	3956.5	0.42487

TABLE (1b): Aquifer Hydraulic and transmissivity values for the study area according to Agbodike(2021)

VESNO	Location	Resistivity		Aquifer conductivity(siemens)	Transmissivity(m ² /day)	Hydraulic conductivitym/day
VESITO	Location	(ohm-m)	Diagnostie constant(IXI)	Aquiter conductivity(siemens)	Transmissivity(m/day)	ilyuraune conductivityin/day
1	Ubachima1	395	0.01188	0.0025	558.255	4.633
2	Ubachima2	317	0.01188	0.00315	2985.53	37.594
3	Umuokwe	313	0.01188	0.00319	255.753	3.717
4	Oteru	470	0.01188	0.00213	781.704	8.889
5	Umuowa	636	0.01188	0.00157	778.006	7.545
6	Otulu1	640	0.01188	0.00156	874.11	7.592
7	Ubahazu 1	642	0.01188	0.00156	876.842	7.637
8	Ubahazu 2	645	0.01188	0.00155	834.977	7.663
9	Otulu2	618	0.01188	0.00162	895.441	7.349
10	Umuoji	221	0.01188	0.00452	322.839	2.623
11	Mgbidi 1	196	0.01188	00051	209.501	2.327
12	Mgbidi 2	1831	0.01188	0.00055	1456.97	21.741
13	Ibiasoegbe	524	0.01188	0.00191	821.474	6.229
14	Nempi	3934	0.026	0.00025	6495.03	10.221
15	Akatta	3466	0.026	0.00029	6668.58	89.956
16	Aji	557	0.01188	0.00179	158.765	6.596
17	Ubulu	2915	0.026	0.00034	5229.51	75.777
18	Akuma	96.5	0.026	0.01036	102.869	2.508

Figure 1. Location Map of the Study Are

The formation is partly estuarine, partly lagoon, partly deltaic and fluid, lacustrine in origin. Reyment(1965). The sands and sandstones in this formation are coarse grained, very granular, pebbly to very fine grained, they are either white in colour or yellowish brown. Hermatite grains and feldspars are also obtained. The shale isgreyish brown, sandy to silty and contains some plant remains and dispersed lignites (Reyment (1965). The formation has an average thickness of 600ft(196.85m) Kogbe(1976)

Surface waters are not a major feature of the Oru Area. The Njaba and Obana rivers seem to be the onlysurface waters in the area. Agbodike(2010). The two formations are known to have reliable groundwater that could sustain borehole development. The high permeability of the coastal plain sands, the overlying lateritic earth and the weathered top of this formation provides the hydraulic conditions favouring aquifer formation in the study area. The copious rainfall that prevails in the area makes the aquifer prolific and continuously provides

the groundwater recharge. The geological map of the Study Area is in fig 2.

Figure 2. Geological Map of the Study Are

IV. THEORY OF SPATIAL ANALYSIS OF TRANSMISSIVITY

The Transmissivity analysis is carried out using two methods. One method is based on descriptive statistical testing for identification of background transmissivity and anomalies and the second method is classification scheme introduced by Krasny (1993.) for appraisal of groundwater supplypotential.

Statistical Testing Method

In this method, all the transmissivity values collected are pooled in a particular region using Transmissivity index Y, the relationship between Transmissivity (T) and logarithmic Transmissivity index

$$T (m^2/day) = 10^{Y - 8.96} X 86400$$
(1)

Found by Jetal and Krasny in 1968. It is used to calculate the logarithmic transmissivity index (Y) from transmissivity (T) values. The above stated equation can be modified as, Logarithmic transmissivity index,

$$Y = LOG \{T/86400\} + 8.96$$
 (2)
Where T = Transmissivity in m²/day

TABLE 2. Krasny's Classification of Transmissivity of Magnitude an	ıd
Variation; Classification of Transmissivity T Magnitude	

Coefficient Of T (M ² /D)	Class Of T Magnitude	Designation Of TMagnitude	Ground Water Supply Potential
>1000	Ι	Very high	Withdrawal of greatregional importance
1000100	Π	High	Withdrawals of lesser regional importance
100-10	III	Intermediate	Withdrawals for localwater supply(small communities and plants)
10-1	IV	Low	Smaller withdrawals forlocal water supply(private consumption)
1-0.1	V	Very low	Withdrawals for localwater supply with limited consumption
<0.1	VI	Negligible	Sources for local water supply are difficult

The logarithmic Transmissivity index (Y) values are calculated using the modified equation.

The Transmissivity classification systems for the study area based on the magnitudes and variations of the Transmissivity index (Y) as proposed by krasny (1993) are given in tables 2 and 3.

The Standard deviation of the transmissivity index (Y) Variations represents the degree of heterogeneity of the hydrogeological environment.

By using the transmissivity analysis based on transmissivity index (Y) classification (table 4), the ground water supply potential designation for the various localities in the study area was identified asgiven in table 5.

TABLE 3.	Classification	Of	Transmissivity	(T)) Variation
Standard				Г	

Standard DeviationOf T Index (Y)	Class Of T Variation	Designation Of T Variation	Hydrogeological Environment
< 0.2	а	Insignificant	Homogeneous
0.2-0.4	b	small	Slightly heteregenous
0.4 -0.6	с	moderate	Fairly heterogenous
0.6—0.8	d	large	Considerably heterogenous
0.8—1.0	е	Very large	Very heterogenous
>1.0	f	Extremely large	Extremely heterogenous

TABLE 4. transmissivity analysis based on transmissivity index (y) classification

S/N	Classification	Description	Range of y	Ground water supply potential
1	Negative extreme anomalies	Less than(mean –(2x standard deviation)	< 5.887	Negligible
2	Negative anomalies	Between (mean—standard deviation) and (mean –(2 x Standard deviation)	6.418 and 5.887	Very low
3	Background anomalies	Between (mean-standard deviation) and (mean—(2 x standard deviation)	6.418 and 7.479	Low
4	Positive anomalies	Between (mean +standard deviation) and (mean + (2x standard deviation)	7.479 and 8.009	Moderate
5	Positive extreme anomalies	Greater than(mean + (2x standard deviation))	> 8.009	High

V. RESULTS AND DISCUSSIONS

Transmissivity analysis based on transmissivity magnitude Classification as in table 2 delineated the study area as follows; None (0%) of the vertical electrical sounding points have negligible transmissivity magnitude (sources for local water supply are difficult) None (0%) of the sounding points had very low magnitude(withdrawals for local water supply with limited consumption) None (0%) had low transmissivity magnitude (smaller withdrawals for local water supply(private consumption) Only 5.56% of the vertical electrical sounding points had intermediate transmissivity magnitude (withdrawals for local water supply for communities and plants. Most of the sounding points (94.4%) had High transmissivity magnitude with ground water potential expressed as withdrawals of lesser regional importance.

Volume 7,	Issue 9,	pp. 43-47,	2023.
-----------	----------	------------	-------

	TABLE 5. Results of summary statistics of transmissivity index (y), Krasny's transmissivity magnitude and variation						
S /	V NI.	I CO	$T(m^2/d)$	T Inde	Describes of The desc (N)	December of TMs and a	Results of T
\mathbf{N}	ves no	Location	ay)	X (Y)	Results of Tindex (Y)	Results of T Magnitude	Variation
1	One	Ubachima 1	558.255	6.77 0	Background anomalies(smallerwithdrawals for local water supplyand for private consumption)	High(withdrawals oflesser regional importance))	Fairly heterogen ous
2	Two	Ubachima 2	2985.53	7.49 9	Positive anomalies(withdrawal for less regional importance)	High (Withdrawalsof lesser regional importance)	Fairly heterogen ous
3	Three	Umuok we	255.753	6.43 1	Background anomalies(withdrawals for local water supply and for private consumption)	High(Withdrawals oflesser regional importance)	Fairly heterogen ous
4	Four	Oteru	781.704	6.91 7	Background anomalies (withdrawals for local water supplyand for private consumption)	High(Withdrawals oflesser regional importance)	Fairly heterogen ous
5	Five	Umuowa	778.006	6.91 5	Background anomalies(withdrawal for local water supply and for private consumption)	High(Withdrawals oflesser regional importance)	Fairly heterogen ous
6	Six	Otulu 1	874.11	6.96 5	Background anomalies(withdrawal for local water supply and for private consumption)	High(Withdrawals oflesser regional importance)	Fairly heterogen ous
7	Seven	Ubahazu1	876.842	6.96 6	Background anomalies(withdrawals for local water supplyand for private consumption)	High(Withdrawals oflesser regional importance)	Fairly heterogen ous
8	Eight	Ubahazu2	834.977	6.94 5	Background anomalies(withdrawal for local water supply and for private consumption)	High(Withdrawals oflesser regional importance	Fairly heterogen ous
9	Nine	Otulu 2	895.441	6.97 6	Background anomalies(withdrawal for local water supply and for private consumption.)	High(Withdrawals oflesser regional importance)	Fairly heterogen ous
10	Ten	Umuoji	322.839	6.53 2	Background anomalies(withdrawal for local water supply and for private consumption)	High(Withdrawals oflesser regional importance)	Fairly heterogen ous
11	Eleven	Mgbidi1	209.501	6.34 5	Negative anomalies(withdrawal for local watersupply with limited consumption)	High(Withdrawals oflesser regional importance)	Fairly heterogen ous
12	Twelve	Mgbidi2	1456.97	7.18 7	Background anomalies(withdrawal for local water supply and for private consumption)	High (Withdrawalsof lesser regional importance)	Fairly heterogen ous
13	Thirteen	Ibiasoeg be	821.474	6.93 8	Background anomalies(withdrawals for local water supplyand for private consumption)	High (Withdrawals oflesser regional importance)	Fairly heterogen ous
14	Fourteen	Nempi	6495.03	7.83 6	Positive anomalies(withdrawal for less regional importance)	High (Withdrawalsof lesser regional importance)	Fairly heterogen ous
15	Fifteen	Akatta	6668.58	7.84 8	Positive anomalies(withdrawal for less regional importance)	High(Withdrawals oflesser regional importance)	Fairly heterogen ous
16	Sixteen	Aji	158.765	6.22 4	Negative anomalies(withdrawal for local watersupply with limited consumption)	High(Withdrawals oflesser regional importance)	Fairly heterogen ous
17	Sevente en	Ubulu	5229.51	7.74 2	Positive anomalies(withdrawal for less regional importance)	High (Withdrawalsfor lesser regionalimportance)	Fairly heterogen ous
18	Eighteen	Akuma	102.869	6.03 4	Negative anomalies(withdrawal for local water supply with limited consumption)	Intermediate(Withdrawals for local watersupply for small communities andplants)	Fairly heterogen ous

Looking at the transmissivity analysis based on transmissivity Index (Y) Classification as in table 4, the study area were delineated as follows; None (0%) of the sounding points were in the class of negative extreme anomalies (Zones without groundwater supply prospect) with transmissivity index range of < 5.887. 16.67% of the sounding points had transmissivity index in the class of negative anomalies (withdrawals for local water supply with limited consumption) with range of between 6.418 and 5.887 with ground water potential rated as very low. 61.11% of the sounding points were in the class of Background anomalies (smaller withdrawals for local water supply(private consumption)) with transmissivity index range between 6.418 and 7.479 and groundwater supply potential rated as low. 22.2% of the sounding points were in the Class of positive anomalies (Withdrawal for less regional importance) with transmissivity index range of between 7.479 and 8.009 and a ground water supply potential rated as moderate.. None of the sounding points transmissivity index were in the class of extreme positive anomaly. The standard deviation value of 0.53 in the Transmissivity index (Y) represents a moderate Transmissivity variation and characterized the Study area as a fairly heterogenous hydrogeological environment.

VI. CONCLUSION

Spatial variation of transmissivity magnitude and variation has been identified as best useful in management practices and sustainable development of groundwater .Transmissivity analysis based on Transmissivity magnitude classification in table 2 show that in the Study area there is actually a potential for groundwater and this quantitatively expressed about 94.4% of the Eighteen sounding points had high transmissivity magnitude with groundwater potential expressed as withdrawals of lesser regional importance. Also considering transmissivity analysis based on transmissivity index(Y) classification in table 4 the study area was delineated as follows; Class of negative anomalies 16.67% with very low groundwater potential: class of Background anomalies 61.11% with low groundwater potential; class of positive anomalies 22.2 % with moderate groundwater potential .Also the standard deviation value of 0.53 in the transmissivity index (Y) represents a moderate transmissivity variation and characterized the study area as a fairly heterogenous hydrogeological environment.

REFERENCES

[1] Ramakrishna S (1998). Textbook of groundwater.1st Edition, K.J

International Journal of Scientific Engineering and Science ISSN (Online): 2456-7361

Graphars, Chennai

Volume 7, Issue 9, pp. 43-47, 2023.

- [2] Birpinar ME(2003). Aquifer parameter identification and interpretation with different analytical methods. Water SA, 29(3):251-256
- [3] Sarwade DV ,Singh VS, Puranik, SC, Mondal NC(2007).Comparative study of analytical and numerical methods for estimation of aquifer parameters; A case study of basaltic terrain. J.Geol. Soc. India 70(6);1039-1046
- [4] Srinivasa k Reddy (2014) Classification of transmissivity magnitude and variation in Calcarious soft rocks of Bhaskar Rao Kunta Watershed, Nalgonda District, India; International journal of water resources and environmental engineering vol 6(3). pp 106-111
- [5] Agbodike I (2021) Estimating Aquifer Hydraulic conductivity and transmissivity for parts of Oru LGA Imo State, Southeastern Nigeria Using Resistivity Data; International Journal of Water Research.
- [6] Agbodike I.I.C (2019) Estimation of aquifer characteristics in parts of Oru LGA of Imo StateNigeria using resistivity data; Oriental Journal of Physical Sciences vol 4 pp 70—84
- [7] Agbodike I.I.C(2010) Geoelectric exploration for groundwater in Oru Area of Imo State of South Eastern Nigeria. An Msc project submitted to school of postgraduate studies Abia State University Uturu pp 134

- [8] Reyment RA (1965), Aspects of geology of Nigeria, University Press Ibadan.145p
- [9] Whiteman A(1982); Nigeria its petroleum geology, resources and potential. Vol 1 Grahamand Trotman
- [10] Short KC and Stauble A J.(1967) Outline of geology of Niger Delta, AAPG Bulletin, Vol 51 (11)Kogbe CA (1976);Geology of Nigeria, Elizabeth Publishing company Lagos
- [11] Achilike Kennedy.O(2020) Hydrogeophysical studies for the determination of Aquifer hydraulic characteristics and evaluation of groundwater potential; A case study of some selected parts of Imo River Basin, Southeastern Nigeria; International Journal of Scientific and research publications, volume 10 pp 738—754
- [12] Achilike Kennedy O(2020) Geoelectrical Techniques Applied to Evaluation of Aquifer Potential and the protective Capacity of its Overburden Units in some Parts of Bende LocalGovernment Area, Abia State ,,,,Southeastern Nigeria; International Journal of Innovative Research in Science, Engineering and Technology vol 9