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Abstract— The metric space is typically denoted as (𝑿, 𝑮), which is a generalization of metric spaces. One of the extensively studied properties 

in 𝑮 −metric spaces is convergence. In a 𝑮 −metric space, a sequenc (𝒙𝒏) is said to 𝑮 −converge to 𝒙 if 𝒍𝒊𝒎 𝑮(𝒙, 𝒙𝒏, 𝒙𝒎) = 𝟎, which means 

that for every 𝜺 ∈ ℝ, 𝜺 > 𝟎, there exists 𝑲 ∈ ℕ such that for all 𝒎, 𝒏 ∈ ℕ with 𝒎, 𝒏 ≥ 𝑲, we have 𝑮(𝒙, 𝒙𝒏, 𝒙𝒎) < 𝜺. Many mathematicians have 

discussed the concept of convergence, including the notion of statistical convergence first introduced by Fast (1951). This research aims to 

investigate the concept of 𝑰 −convergence, which is a generalization of statistical convergence. Furthermore, the study establishes the connection 

between 𝑰 −Cauchy sequences, an extension of 𝑰 −convergence, and convergence in 𝑮 −metric spaces. Additionally, the properties of 𝑰 −Cauchy 

and 𝑰∗ −Cauchy sequences, as well as 𝑰 −localized sequences in 𝑮 −metric spaces, are examined. The objective of this research is to enhance 

the understanding of the properties of 𝑰 −Cauchy sequences within the context of G−metric spaces. The new findings from this study can contribute 

to the development of the theory of 𝑮 −metric spaces and expand our understanding of 𝑰 −convergence in sequences and 𝑰 −Cauchy sequences. 

These results may also have potential applications in various fields involving mathematical analysis and modeling. 
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I. INTRODUCTION  

In 1951 Fast published the idea of statistical convergence of a 

sequence of real numbers [1]. A sequence (𝑥𝑛) is called to 

converge statistically to 𝑥 ∈ ℝ and denoted by lim
𝑛→∞

𝑠𝑡𝑎𝑡 𝑥𝑛 =

𝑥, if for each 𝜀 > 0 the set 𝐴(𝜀) = {𝑛 ∈ ℕ: 𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥) ≥ 𝜀} 

has 𝛿(𝐴(𝜀)). In 2000, Kostyrko et al. [2] introduced a 

generalization of statistical convergence term as 

𝐼 −convergence and 𝐼∗ − convergence using the ideal notation 

of the set of natural numbers ℕ.  

Many other researches on the notion of 𝐼 −convergence 

and 𝐼∗ − convergence of sequence were extensively 

investigated by [3] they study some important topological 

properties. Another work has also been done by Banerjee & 

Rahul in 2016 [4]  on double sequences. Nabiev, et al. [5] 

showed the decomposition theorem of 𝐼∗ −convergent 

sequence and introduced the idea of 𝐼 −Cauchy and 𝐼∗ − 

Cauchy sequence. They also proved that 𝐼∗ −Cauchy sequence 

is 𝐼 −Cauchy and if the ideal 𝐼 satisfies the condition (AP), they 

are equivalent. In 2010, the idea of 𝐼 −divergent and 

𝐼∗ −divergent on metric spaces was studied by Das dan Ghosal 

[6]. Later Banerjee at al. studied the concept on S-metric spaces 

which are generalization of metric spaces [7]. We will use the 

following notations. 

Definition 1.1. [8] Let  𝑋 ≠ ∅ then a family of sets 𝐼 ⊂ 2𝑋 is 

called an ideal if 

a) 𝐴, 𝐵 ∈ 𝐼 implies 𝐴⋃𝐵 ∈ 𝐼 

b) 𝐴 ∈ 𝐼, 𝐵 ⊂ 𝐴 imply 𝐵 ∈ 𝐼 

If 𝐼 ≠ {∅} and 𝑋 ∉ 𝐼 then the ideal 𝐼 is called nontrivial. 

Definition 1.2. [9] Let 𝑋 ≠ ∅. A non-empty family ℱ ⊂ 2𝑋 is 

called a filter if 

a) ∅ ∉ ℱ 

b) 𝐴, 𝐵 ∈ ℱ implies 𝐴 ∩ 𝐵 ∈ ℱ 

c) 𝐴 ∈ ℱ, 𝐴 ⊂ 𝐵 ⊂ 𝑋 imply 𝐵 ∈ ℱ 

Lemma 1.1. [2] Let 𝐼 be a nontrivial ideal of 𝑋. Then the family 

ℱ(𝐼) = {𝑀 ⊂ 𝑋: ∃𝐴 ∈ 𝐼: 𝑀 = 𝑋\𝐴} is a filter on 𝑋 (It is often 

referred to as the filter related with the ideal 𝐼)  

Definition 1.3. [2] A nontrivial ideal 𝐼 is said to be admissible 

if for each 𝑥 ∈ 𝑋, {𝑥} ∈ 𝐼  

In 2006, the 𝐺 −metric space is a generalization of the 

metric space first introduced by Mustafa dan Sims [10]. Many 

works on this space have been conducted because there are 

many mathematical concepts that can be studied, such as those 

conducted by Gaba in 2017 [11] and Jakfar, et al. [12] they 

discussed metrics in 𝐺 −metric space and showed that the 

metric can be derived from the 𝐺 −metric in such a way that the 

convergence. 

Definition 1.4. [10] Let 𝑋 be a non-avoid set. A Function 

𝐺: 𝑋 × 𝑋 × 𝑋 → ℝ+ is called 𝐺 −metric on 𝑋 iff for each 

𝑥, 𝑦, 𝑧 ∈ 𝑋 satisfy this following conditions. 

i. 𝐺(𝑥, 𝑦, 𝑧) = 0 if only if 𝑥 = 𝑦 = 𝑧 

ii. 𝐺(𝑥, 𝑥, 𝑦) > 0 if 𝑥 ≠ 𝑦 for all 𝑥, 𝑦 ∈ 𝑋 

iii. 𝐺(𝑥, 𝑦, 𝑧) = 𝐺( 𝑥, 𝑧, 𝑦) = 𝐺(𝑦, 𝑥, 𝑧) = 𝐺(𝑦, 𝑧, 𝑥) =
𝐺(𝑧, 𝑥, 𝑦) = 𝐺(𝑧, 𝑦, 𝑥) 

iv. 𝐺(𝑥, 𝑥, 𝑦) ≤ 𝐺(𝑥, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 with 𝑦 ≠ 𝑧 

v. 𝐺(𝑥, 𝑦, 𝑧) ≤ 𝐺(𝑥, 𝑎, 𝑎) + 𝐺(𝑎, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋 

The pair (𝑋, 𝐺) is called a 𝐺 −metric space. 

Proposition 1.1. (in [10]) Let (𝑋, 𝐺) a 𝐺 −metric space, then 

for any 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝑎 ∈ 𝑋 it follows that 𝐺(𝑥, 𝑦, 𝑧) ≤
𝐺(𝑥, 𝑥, 𝑦) + 𝐺(𝑥, 𝑥, 𝑧) 

Definition 1.5. [11] Let (𝑋, 𝐺) be a 𝐺 −metric space and (𝑥𝑛) 

be sequence of points of 𝑋. The sequence (𝑥𝑛) is said to be the 

𝐺 − convergent to ke 𝑥 if 𝑙𝑖𝑚 𝐺(𝑥, 𝑥𝑛, 𝑥𝑚) = 0. It’s mean for 

any 𝜀 ∈ ℝ, 𝜀 > 0 there exists 𝐾 ∈ ℕ such that 𝐺(𝑥, 𝑥𝑛 , 𝑥𝑚) <
𝜀, for all 𝑚, 𝑛 ∈ ℕ with  𝑚, 𝑛 ≥ 𝐾. 

Definition 1.6. [10] Let (𝑋, 𝐺) be a 𝐺 −metric space and a 

sequence (𝑥𝑛) on 𝑋 is called 𝐺 −Cauchy if for any 𝜀 ∈ ℝ, 𝜀 >
0 there exists 𝐾 ∈ ℕ such that 𝐺(𝑥𝑛, 𝑥𝑚 , 𝑥𝑙) < 𝜀  for all 

𝑙, 𝑚, 𝑛 ∈ ℕ with  𝑙, 𝑚, 𝑛 ≥ 𝐾. 
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In recently, Nabieve, et al. [13] firstly introduced the idea 

of 𝐼 −localized and 𝐼∗ −localized sequence on metric spaces  

and show some of their properties in relation to 𝐼 −Cauchy 

concept and Granados, et al. [14] studied 𝐼 −localized doubles 

sequence and furthered this idea with the help of triples using 

ideal sets on metric spaces [15]. In addition, Banerjee, et al. [16] 

also studied 𝐼 −localized and 𝐼∗ −localized sequence and 

investigated some results related to 𝐼 −Cauchy sequence in 

𝑆 −metric space. 

In this paper, the concept of 𝐼 and 𝐼∗ − convergence in 

𝐺 −metric space is defined. In section II, we have investigated 

the relation between 𝐼 −Cauchy sequence and 𝐺 −
convergence in 𝐺 −metric. In section III, we have discussed 

some properties of the 𝐼 and  𝐼∗ −Cauchy sequence in 

𝐺 −metric space. In section IV, we have studied properties of 𝐼 

and 𝐼∗ −localized sequence related to the concept of 𝐼 −Cauchy 

sequence.  

II. PRELIMINARY RESULT 

Unless explicitly stated, we assume that 𝐼 ⊂ 2ℕ is a 

nontrivial ideal of the set of all positive integers ℕ and that 

(𝑋, 𝐺) is an 𝐺 −metric space.  

Definition 2.1. A sequence (𝑥𝑛) on 𝑋 is said to be  

𝐼 −convergent to 𝑥 ∈ 𝑋  if for every 𝜀 > 0, the set 𝐴(𝜀) = {𝑛 ∈
ℕ: 𝐺(𝑥𝑛, 𝑥𝑛 , 𝑥) ≥ 𝜀} ∈ 𝐼. 

Definition 2.2. An admissible ideal 𝐼 is said to satisfy the 

property (AP) if for every countable family {𝐴1, 𝐴2, 𝐴3, … . } of 

mutually disjoint sets of 𝐼, there exists a countable family of sets 

{𝐵1 , 𝐵2, 𝐵3, … . } such that for each 𝑖 ∈ ℕ, 𝐴𝑖∆𝐵𝑖  is a finite set 

and ⋃ 𝐵𝑖
∞
𝑖=1 ∈ 𝐼. 

Definition 2.3. A sequence (𝑥𝑛) on 𝑋 is said to be 𝐼∗ − 

convergent to 𝑥 ∈ 𝑋 if there exists a set 𝑀 ∈ ℱ(𝐼),  

𝑀 = {𝑚1, 𝑚2, … , 𝑚𝑘, …: 𝑚𝑘−1 < 𝑚𝑘} ⊂ ℕ 

such that 𝑙𝑖𝑚
𝑘→∞

𝐺(𝑥𝑚𝑘
, 𝑥𝑚𝑘

, 𝑥) = 0. 

Definition 2.4. Let 𝐼 ⊂ 2ℕ be an admissible ideal. A sequence 

(𝑥𝑛) on 𝑋 is called an  𝐼 −Cauchy sequence in (𝑋, 𝐺) if for 

every𝜀 > 0 there exists 𝑛0 = 𝑛0(𝜀) such that 𝐴(𝜀) = {𝑛 ∈

ℕ: 𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛0
) ≥ 𝜀} ∈ 𝐼. 

Definition 2.5. Let 𝐼 ⊂ 2ℕ be an admissible ideal. A sequence 

(𝑥𝑛) on 𝑋 is called an   𝐼∗ −Cauchy sequence in (𝑋, 𝐺) if there 

exists a set 𝑀 ∈ ℱ(𝐼), 𝑀 = {𝑚1, 𝑚2, … , 𝑚𝑘, …: 𝑚𝑘−1 <
𝑚𝑘} ⊂ ℕ such that the subsequence (𝑥𝑚𝑘

) is an ordinary 

Cauchy sequence in 𝑋 i.e., 𝑙𝑖𝑚
𝑘,𝑟→∞

𝐺(𝑥𝑚𝑘
, 𝑥𝑚𝑘

, 𝑥𝑚𝑟
 ) = 0 

Theorem 2.1. Let 𝐼 be an ideal admissible on ℕ. If (𝑥𝑛) in 

(𝑋, 𝐺) is 𝐺 −convergent to 𝑥 then (𝑥𝑛) is 𝐼 −convergent. 

Proof. Let a sequence (𝑥𝑛) is 𝐺 − convergent to 𝑥. This means 

that for every 𝜀 > 0, there is a positive integer 𝐾 such that for 

any natural number 𝑛 ≥ 𝐾, 𝐺( 𝑥𝑛 , 𝑥𝑛 , 𝑥) < 𝜀 holds. Therefore, 

for any such number 𝜀 > 0 there exist a finite set 𝐴(𝜀) = {𝑛 ∈

ℕ: 𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛0
) ≥ 𝜀} for 𝑛 < 𝐾. Hence, since 𝐴(𝜀) is a finite 

set, 𝐴(𝜀) ∈ 𝐼 is an admissible ideal. It is proved that a sequence 
(𝑥𝑛) 𝐺 −convergent to 𝑥. So for such number 𝜀 > 0, 𝐴(𝜀) =

{𝑛 ∈ ℕ: 𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛0
) ≥ 𝜀} is an admissible ideal. Thus, (𝑥𝑛) 

is 𝐼 − convergent to 𝑥. 

Theorem 2.2. Let 𝐼 be an ideal admissible on ℕ. If (𝑥𝑛) in 

(𝑋, 𝐺) is 𝐼 −Cauchy then (𝑥𝑛) is 𝐺 −Cauchy. 

Proof. Let  (𝑥𝑛) be an  𝐼 −Cauchy sequence in (𝑋, 𝐺). Then by 

definition there exists a positive integer 𝑛0 = 𝑛0(𝜀) for every 

𝜀 > 0 such that a set  𝐴(𝜀) = {𝑛 ∈ ℕ: 𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛0
) ≥ 𝜀} ∈ 𝐼. 

It can be shown that (𝑥𝑛) is 𝐼 −Cauchy if for any given 𝜀 > 0, 

there exists 𝐵 = 𝐵(𝜀) ∈ 𝐼 such that 𝑚, 𝑛 ∉ 𝐵 implies 

𝐺(𝑥𝑚, 𝑥𝑛 , 𝑥𝑛) < 𝜀. Let us take 𝑛0. Then for every 𝜀 > 0, for all 

𝑚, 𝑛 ≥ 𝑛0, we have 𝐺(𝑥𝑚, 𝑥𝑛 , 𝑥𝑛0
) < 𝜀. Hence, we get that 

(𝑥𝑛) be 𝐺 −Cauchy in (𝑋, 𝐺).  

III. 𝐼 −CAUCHY AND 𝐼∗ −CAUCHY CONDITIONS 

Theorem 3.1. Let 𝐼 ⊂ 2ℕ  be an admissible ideal. If  (𝑥𝑛)  is an 

𝐼∗ −Cauchy sequence in (𝑋, 𝐺) then (𝑥𝑛) is 𝐼 −Cauchy.   

Proof. Let (𝑥𝑛) is an 𝐼∗ −Cauchy sequence. Then by definition  

there exists 𝑀 = {𝑚1, 𝑚2, … , 𝑚𝑘, …: 𝑚𝑘−1 < 𝑚𝑘} ⊂ ℕ, 𝑀 ∈

ℱ(𝐼) such that 𝐺(𝑥𝑚𝑘
, 𝑥𝑚𝑘

, 𝑥𝑚𝑟
) < 𝜀 for all 𝜀 > 0 there exists 

a positive integer 𝑘0 = 𝑘0(𝜀) for every 𝑘, 𝑟 > 𝑘0 = 𝑘0(𝜀). 

Choose 𝑛0 = 𝑛0(𝜀) = 𝑚𝑘0+1, then for the real number  𝜀 > 0, 

we get 𝐺(𝑥𝑚𝑘
, 𝑥𝑚𝑘

, 𝑥𝑛0
) < 𝜀 with 𝑘 > 𝑘0. Let 𝐻 = ℕ\𝑀 and 

it is clear that 𝐻 ∈ 𝐼 so 𝐴(𝜀) = {𝑛 ∈ ℕ: 𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛0
) ≥ 𝜀} ⊂

𝐻⋃ = {𝑚1, 𝑚2, … , 𝑚𝑘, …: 𝑚𝑘−1 < 𝑚𝑘} ∈ 𝐼.  

Since for every 𝜀 > 0 there can be found a positive integer 

𝑛0 = 𝑛0(𝜀) such that 𝐴(𝜀) ∈ 𝐼, then (𝑥𝑛)  is  𝐼 −Cauchy. 

Lemma 3.1. (in [5]) If 𝐼 be an admissible ideal that satisfies 

the property (AP) then for every countable family (𝑃𝑛) ∈ ℱ(𝐼) 

for all 𝑛 ∈ ℕ there exists a set 𝑃 ∈ ℱ(𝐼) such that 𝑃\𝑃𝑛 is finite 

for all 𝑛 ∈ ℕ. 

Theorem 3.2. Let 𝐼 be an admissible ideal that satisfies the 

property (AP). If (𝑥𝑛) is 𝐼 −Cauchy sequence in (𝑋, 𝐺) then 

(𝑥𝑛) is 𝐼∗ −Cauchy also. 

Proof. Let (𝑥𝑛) be 𝐼 −Cauchy sequence in  (𝑋, 𝐺). Then by 

definition, for every 𝜀 > 0 there exists an 𝑛0 = 𝑛0(𝜀) such that 

𝐴(𝜀) = {𝑛 ∈ ℕ: 𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛0
) ≥ 𝜀} ∈ 𝐼. Let 𝑃𝑘 = {𝑛 ∈

ℕ: 𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥𝑚𝑘
) <

1

𝑘
} for 𝑘 ∈ ℕ, where 𝑚𝑘 = 𝑛0 (

1

𝑘
). It is 

clear that 𝑃𝑘 ∈  ℱ(𝐼) for 𝑘 ∈ ℕ. Since 𝐼 satisfy the property 

(AP), then then by Lemma 3.1 there exists a set 𝑃 ∈  ℱ(𝐼) such 

that 𝑃\𝑃𝑘 is finite for all 𝑘 ∈ ℕ. 

Then let 𝜀 > 0 and 𝑗 ∈ ℕ dengan 𝑗 >
2

𝜀
. Since 𝑃\𝑃𝑗 is 

finite set if 𝑚, 𝑛 ∈ 𝑃, so there exists 𝑘 = 𝑘(𝑗) such that 𝑚, 𝑛 ∈
𝑃𝑗 for all 𝑚, 𝑛 > 𝑘(𝑗). Therefore, the result of it 

𝐺(𝑥𝑛 , 𝑥𝑛, 𝑥𝑚) ≤ 𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥𝑚𝑘
) + 𝐺(𝑥𝑚 , 𝑥𝑚, 𝑥𝑚𝑘

) < 𝜀 for 

𝑚, 𝑛 ∈ 𝑘(𝑗). Thus, for any 𝜀 > 0 there exists 𝑘 = 𝑘(𝜀) ∈ ℕ 

such that for 𝑚, 𝑛 > 𝑘(𝜀) and 𝑚, 𝑛 ∈ 𝑃 ∈  ℱ(𝐼) implies 

𝐺(𝑥𝑛, 𝑥𝑛 , 𝑥𝑚𝑘
) < 𝜀. This shows that the sequence is 

𝐼∗ −Cauchy in (𝑋, 𝐺). 

Theorem 3.3. Let (𝑋, 𝐺) be a 𝐺 −metric space space 

containing at least one accumulation point. If for every 

sequence (𝑥𝑛) 𝐼 −Cauchy is 𝐼∗ −Cauchy then 𝐼 satisfies the 

property (AP). 

Proof. The approach used in [6] is used in the proof of this 

theorem. 
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IV. BASIC PROPERTIES 𝐼 −LOCALIZED AND 𝐼∗ −LOCALIZED 

Throughout the previous discussion using the notation 𝐼 as 

the admissible ideal of ℕ and 𝑋 is 𝐺 −metric space. We now 

give some definitions and properties of the localized sequence 

associated with the ideal 𝐼 in 𝐺 −metric space. 

Definition 4.1. Let (𝑥𝑛) is a sequence on 𝑋. If a positive real 

number sequence (𝑎𝑛 = 𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥)) converges in 𝑥 ∈ 𝑀 

and 𝑀 ⊂ 𝑋 then (𝑥𝑛) is called sequence in 𝑀.  

Definition 4.2. (i) A sequence (𝑥𝑛) in 𝑋 is said to be 

𝐼 −localized in subset 𝑀 ⊂ 𝑋 if for each 𝑥 ∈ 𝑀 the positive real 

sequence 𝑎𝑛 = (𝐺( 𝑥𝑛 , 𝑥𝑛 , 𝑥))𝑛∈ℕ   is 𝐼 − convergent in 𝑋. 

(ii) The maximal subset on (𝑥𝑛) is 𝐼 −localized, is called the 

𝐼 −locator of (𝑥𝑛) and it’s denoted by 𝑙𝑜𝑐𝐼(𝑥𝑛). 

(iii) A sequence (𝑥𝑛) is said to be 𝐼 −localized everywhere if 

the 𝐼 −locator (𝑥𝑛) is the whole set 𝑋 and denote as 𝑙𝑜𝑐𝐼(𝑥𝑛) =

𝑋. 
Lemma 4.1. The inequality |𝐺(𝑧, 𝑧, 𝑦) − 𝐺(𝑥, 𝑥, 𝑦)| ≤
𝐺(𝑧, 𝑧, 𝑥) holds good for any 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

Proof. Since 𝐺(𝑥, 𝑦, 𝑧) ≤ 𝐺(𝑥, 𝑥, 𝑦) + 𝐺(𝑥, 𝑥, 𝑧), then 

𝐺(𝑥, 𝑥, 𝑦) ≤ 𝐺(𝑥, 𝑦, 𝑧) = 𝐺(𝑧, 𝑥, 𝑦) ≤ 𝐺(𝑧, 𝑧, 𝑥) + 𝐺(𝑧, 𝑧, 𝑦) 

by using ii in Definition 1.5. So we have 
𝐺(𝑥, 𝑥, 𝑦) ≤ 𝐺(𝑧, 𝑧, 𝑥) + 𝐺(𝑧, 𝑧, 𝑦)  

Again we have 

𝐺(𝑦, 𝑦, 𝑧) ≤ 𝐺(𝑦, 𝑧, 𝑥) = 𝐺(𝑥, 𝑦, 𝑧) ≤ 𝐺(𝑥, 𝑥, 𝑦) + 𝐺(𝑥, 𝑥, 𝑧) 

Then we obtain 

−𝐺(𝑧, 𝑧, 𝑥) ≤ 𝐺(𝑧, 𝑧, 𝑦) − 𝐺(𝑥, 𝑥, 𝑦) ≤ 𝐺(𝑧, 𝑧, 𝑥) 

Hence 
|𝐺(𝑧, 𝑧, 𝑦) − 𝐺(𝑥, 𝑥, 𝑦)| ≤ 𝐺(𝑧, 𝑧, 𝑥) (4.1) 

Theorem 4.1. If (𝑥𝑛) is an  𝐼 −Cauchy sequence in 𝑋 then it is 

𝐼 −localized everywhere. 

Proof. Let (𝑥𝑛) is an  𝐼 −Cauchy sequence in 𝑋, then for every 

𝜀 > 0 there exists a 𝑛0 = 𝑛0(𝜀) such that the set 𝐴(𝜀) = {𝑛 ∈

ℕ: 𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛0
) ≥ 𝜀} ∈ 𝐼. Using the Lemma 4.1, we have 

|𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥) − 𝐺(𝑥𝑛0
, 𝑥𝑛0

, 𝑥)| ≤ 𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛0
) so we obtain  

{𝑛 ∈ ℕ: |𝐺(𝑥𝑛 , 𝑥𝑛, 𝑥) − 𝐺(𝑥𝑛0
, 𝑥𝑛0

, 𝑥)| ≥ 𝜀} ⊂ {𝑛

∈ ℕ: 𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛0
)  ≥ 𝜀} ∈ 𝐼 

This shows that for each 𝑥 ∈ 𝑋 the number sequence 

(𝐺(𝑥𝑛0
, 𝑥𝑛0

, 𝑥)) is 𝐼 −convergent. Hence the sequence (𝑥𝑛) is 

𝐼 −localized everywhere. 

Definition 4.3. A sequence (𝑥𝑛) is said to be 𝐼∗ −localized in 

𝑋, if for each 𝑥 ∈ 𝑋 the real sequence (𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥)) is 𝐼∗ − 

convergent. 

Theorem 4.2. Let 𝐼 be an admissible ideal. If a sequence (𝑥𝑛) 

in 𝑋 is 𝐼∗ −localized on the subset 𝑀 ⊂ 𝑋, then (𝑥𝑛) is 

𝐼 −localized on the set 𝑀 and 𝑙𝑜𝑐𝐼∗(𝑥𝑛) ⊂ 𝑙𝑜𝑐𝐼(𝑥𝑛). 

Proof. Let (𝑥𝑛) be 𝐼∗ −localized on 𝑀 ⊂ 𝑋, by Definition 4.2, 

then for each 𝑥 ∈ 𝑋 the number sequence (𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥)) is 𝐼∗ − 

convergent.Therefore, there exist a set 𝐻 ∈ 𝐼 such that for 𝐻𝐶 =

ℕ\𝐻 = {𝑘1 < 𝑘2 < ⋯ < 𝑘𝑗} we have 𝑙𝑖𝑚
𝑗→∞

𝐺( 𝑥𝑗 , 𝑥𝑗 , 𝑥) for all 

𝑥 ∈ 𝑀. By definition then 𝐺(𝑥𝑛 , 𝑥𝑛, 𝑥) is an 𝐼∗ −Cauchy 

sequence which implies the 𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥) is an 𝐼 −Cauchy. 

Hence, for each 𝑥 ∈ 𝑀 the number sequence (𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥)) 𝐼 − 

convergent, i. e. (𝑥𝑛) is 𝐼 −localized on 𝑀 and consequence 

𝑙𝑜𝑐𝐼∗(𝑥𝑛) ⊂ 𝑙𝑜𝑐𝐼(𝑥𝑛). 

Proposition 4.1. Let (𝑋, 𝐺) be 𝐺 −metric space, then 

i) If 𝑋 has no limit point, then 𝐼 and 𝐼∗ −localized sequences 

are the same in 𝑋, and 𝑙𝑜𝑐𝐼(𝑥𝑛) = 𝑙𝑜𝑐𝐼∗(𝑥𝑛) for any 

(𝑥𝑛) ∈ 𝑋. 

ii) If 𝑋 has a limit point 𝑥, then there is an admissible ideal 𝐼 

for which there exists an 𝐼 −localized  (𝑦𝑛) in 𝑋 such that 

(𝑦𝑛) is not 𝐼∗ −localized. 

It can be proved by standard techniques (see [13]). 

Theorem 4.3. If 𝐼 satisfies the property (AP) and (𝑥𝑛) is an 𝐼 −
𝑙ocalized on 𝑀 ⊂ 𝑋, then (𝑥𝑛) is 𝐼∗ − 𝑙ocalized on 𝑀. 

Proof. Let 𝐼 satisfies the property (AP) and (𝑥𝑛) is an 𝐼 −
localized sequence on 𝐸 ⊂ 𝑋. Then by Definition 4.2. the 

number sequence (𝐺( 𝑥𝑛 , 𝑥𝑛 , 𝑥))𝑛∈ℕ   is 𝐼 −convergent to 𝜌 =
𝜌(𝑥) ∈ ℝ+such that for each 𝜀 > 0 the set 𝐴(𝜀) = {𝑛 ∈
ℕ: |𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥) − 𝜌| ≥ 𝜀} ∈ 𝐼. Then given 𝐴1 = {𝑛 ∈
ℕ: |𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥) − 𝜌| ≥ 1} and for 𝑘 ≥ 2 with 𝑘 ∈ ℕ, 𝐴𝑘 =

{𝑛 ∈ ℕ:
1

𝑘
≤ |𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥) − 𝜌| <

1

𝑘−1
}. It is clear that for each 

𝑖, 𝑗 ∈ ℕ and 𝑖 ≠ 𝑗, 𝐴𝑖 ∩ 𝐴𝑗 = ∅. By the definition of property 

(AP), there exists a countable family of sets {𝐵1, 𝐵2 , 𝐵3, … . } 

such that for 𝑖 ∈ ℕ, 𝐴𝑖∆𝐵𝑖 is finite set and ⋃ 𝐵𝑖
∞
𝑖=1 ∈ 𝐼.  

Then we shall show that sequence (𝑥𝑛) is 𝐼∗ − localized. 

Then it needs to be shown that for each 𝑥 ∈ 𝐸 the number 

sequence (𝐺( 𝑥𝑛 , 𝑥𝑛 , 𝑥))𝑛∈ℕ   is I∗ −convergent to 𝑥. Let 

ℕ\𝐵 = 𝑀 = {𝑚1, 𝑚2, … , 𝑚𝑘: 𝑚𝑘−1 < 𝑚𝑘} ℱ(𝐼) such 

that 𝑙𝑖𝑚
𝑛→∞,𝑛∈𝑀

𝐺( 𝑥𝑛, 𝑥𝑛 , 𝑥) = 𝜌. Let for any 𝛿 > 0, chosen a  

𝑘 ∈ ℕ such that 
1

𝑘+1
< 𝛿. Then {𝑛 ∈ ℕ: |𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥) − 𝜌| ≥

𝛿} ⊂ ⋃ 𝐴𝑖
𝑘+1
𝑖=1 . Since 𝐴𝑖∆𝐵𝑖  is finite for 𝑖 = 1,2, … , 𝑘 + 1, then 

we chose  𝑛0 ∈ ℕ such that we obtained  

(⋃ 𝐵𝑖

𝑘+1

𝑖=1
) ∩ {𝑛 ∈ ℕ: 𝑛 ≥ 𝑛0}

= (⋃ 𝐴𝑖

𝑘+1

𝑖=1
) ∩ {𝑛 ∈ ℕ: 𝑛 ≥ 𝑛0} 

If 𝑛 ≥ 𝑛0 and 𝑛 ∉ 𝐵, then 𝑛 ∉ ⋃ 𝐵𝑖
𝑘+1
𝑖=1  and consecuence  𝑛 ∉

⋃ 𝐴𝑖
𝑘+1
𝑖=1  and now we have |𝐺(𝑥𝑛, 𝑥𝑛 , 𝑥) − 𝜌| <

1

𝑘+1
< 𝛿. With 

that said for 𝑥 ∈ 𝐸, the number sequence (𝐺( 𝑥𝑛 , 𝑥𝑛 , 𝑥))𝑛∈ℕ   is 

𝐼∗ − convergent. Hence (𝑥𝑛) is 𝐼∗ − localized. 

Theorem 4.4. If 𝑋 has a limit point and every 𝐼 −localized 

sequence implies 𝐼∗ −localized then 𝐼 will have the property 

(AP). 

Proof. Let 𝑥 is a limit point in 𝑋 and by definition there exists 

a sequence (𝑥𝑛) in 𝑋 such that 𝑥 = 𝑙𝑖𝑚
𝑛→∞

𝑥𝑛 and 

𝑙𝑖𝑚
𝑛→∞

𝐺( 𝑥𝑛 , 𝑥𝑛 , 𝑥) = 0 for 𝑎𝑛 = 𝐺( 𝑥𝑛 , 𝑥𝑛 , 𝑥) with 𝑛 ∈ ℕ. Let 

for 𝑛 ∈ ℕ, (𝐴𝑛) is a mutually disjoint family and 𝐴𝑛 ≠ ∅, 

𝐴𝑛 ∈ 𝐼.  

Given sequence (𝑦𝑛) = (𝑥𝑗) with 𝑛 ∈ 𝐴𝑗. For each 𝛿 > 0, 

chosen 𝑚 ∈ ℕ such that 𝑎𝑚 < 𝛿. Then 𝐴(𝛿) = {𝑛 ∈
ℕ: 𝐺(𝑦𝑛, 𝑦𝑛 , 𝑥) ≥ 𝛿} ⊂ 𝐴1 ∪ 𝐴2 ∪ … ∪ 𝐴𝑚. So, we obtain 

𝐴(𝜀) ∈ 𝐼 and 𝐼 − 𝑙𝑖𝑚
𝑛→∞

(𝑦𝑛) = 𝑥. Then we have (𝑦𝑛) is 𝐼 −

localized sequence in 𝑋. Since (𝑦𝑛) is also 𝐼∗ − localized 

sequence in 𝑋 such that 𝐼∗ − 𝑙𝑖𝑚
𝑛→∞

(𝑦𝑛) = 𝑥. Then there exists 

𝐵 ∈ 𝐼 such that for 𝑀 = ℕ\𝐵 = {𝑚1, 𝑚2, … , 𝑚𝑘: 𝑚𝑘−1 < 𝑚𝑘} 

we have 𝑙𝑖𝑚
𝑘→∞

𝑦𝑚𝑘
= 𝑥. Then for each 𝑗 ∈ ℕ, 𝐵𝑗 = 𝐴𝑗 ∩ 𝐵 and 



 International Journal of Scientific Engineering and Science 
Volume 7, Issue 8, pp. 50-53, 2023. ISSN (Online): 2456-7361 

 

 

53 

http://ijses.com/ 

All rights reserved 

𝐵𝑗 ∈ 𝐼. And so ⋃ 𝐵𝑗
∞
𝑗=1 = 𝐵 ∩ ⋃ 𝐴𝑗

∞
𝑗=1 ⊂ 𝐵. With that said 𝑗 ∈

ℕ, ⋃ 𝐵𝑗
∞
𝑗=1 ∈ 𝐼.  

Since 𝑙𝑖𝑚
𝑘→∞

𝑦𝑚𝑘
= 𝑥, then 𝐴𝑗 has only a finite number of 

elements that are same as the set of 𝑀. Then there exists 𝑘0 ∈

ℕ such that 𝐴𝑗 ⊂ (𝐴𝑗 ∩ 𝐵) ∪ {𝑚1, 𝑚2, … , 𝑚𝑘0
}. Hence, 

𝐴𝑗∆𝐵𝑗 = 𝐴𝑗\𝐵𝑗 ⊂ {𝑚1, 𝑚2, … , 𝑚𝑘0
} and It can be concluded 

that for every 𝑗 ∈ ℕ,  𝐴𝑗∆𝐵𝑗  is a finite set and it is proven that 

ideal 𝐼 satisfies the property (AP). 

Definition 4.4. Let a sequence (𝑥𝑛) on 𝑋 is called 𝐼 −bounded 

if there exists 𝑥 ∈ 𝑋 such that for any 𝐵 ∈ ℝ, 𝐵 > 0 {𝑛 ∈
ℕ: 𝐺(𝑥𝑛, 𝑥𝑛 , 𝑥) > 𝐵} ∈ 𝐼.  

Theorem 4.5. Every 𝐼 −localized sequence is 𝐼 −bounded. 

Proof. Let (𝑥𝑛) be 𝐼 −localized on 𝑀 ⊂ 𝑋. By the Definition 

4.2.  for all 𝑥 ∈ 𝑀 the number sequence (𝐺( 𝑥𝑛, 𝑥𝑛 , 𝑥))𝑛∈ℕ is 

𝐼 −convergent. Let (𝐺( 𝑥𝑛 , 𝑥𝑛 , 𝑥))𝑛∈ℕ  conveges to 𝛽 = 𝛽(𝑥) ∈
ℝ. And given  𝐾 > 0, such that {𝑛 ∈ ℕ: |𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥) − 𝛽| >
𝐾} ∈ 𝐼. Then  
{𝑛 ∈ ℕ: 𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥) − 𝛽 > 𝐾}

∪ {𝑛 ∈ ℕ: 𝐺(𝑥𝑛, 𝑥𝑛 , 𝑥) − 𝛽 > −𝐾} ∈ 𝐼. 

Therefore {𝑛 ∈ ℕ: 𝐺(𝑥𝑛 , 𝑥𝑛0
, 𝑥𝑛0

) > 𝛽 + 𝐾} ∈ 𝐼 and this 

shows that (𝑥𝑛) is 𝐼 −bounded. 

Theorem 4.6. Let 𝐼 be an admissible ideal with the property 

(AP) and 𝐿 = 𝑙𝑜𝑐𝐼(𝑥𝑛). Let 𝑧 is a point in 𝑋 such that for any 

𝜀 > 0 there exists 𝑥 ∈ 𝐿 satisfying {𝑛 ∈ ℕ: |𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥) −
𝐺(𝑥𝑛 , 𝑥𝑛, 𝑧)| ≥ 𝜀} ∈ 𝐼, then 𝑧 ∈ 𝐿 

Proof. The proof of this theorem follows the same general steps 

as approach as in [16] 

V. CONCLUSION 

In this paper, the notion of  𝐼 and 𝐼∗ −Cauchy sequence, 𝐼 

and 𝐼∗ −localized sequence, and the relation between 

𝐼 −Cauchy and 𝐺 −convergence in 𝐺 −metric space. It is also 

known that 𝐺 −metric space is one of the generalizations of 

metric space. As further work, it is also desirable to study these 

properties and also to study other properties on other 

generalized forms of metric spaces such as 𝑀 −metric spaces, 

cone metric spaces, and so on. 
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