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Abstract— The metric space is typically denoted as (X, G), which is a generalization of metric spaces. One of the extensively studied properties
in G —metric spaces is convergence. In a G —metric space, a sequenc (x;,) is said to G —converge to x if lim G(x, x,,, x;;,) = 0, which means
that for every € € R, € > 0, there exists K € N such that for all m,n € N with m,n > K, we have G(x, x,,, x;;,) < & Many mathematicians have
discussed the concept of convergence, including the notion of statistical convergence first introduced by Fast (1951). This research aims to
investigate the concept of I —convergence, which is a generalization of statistical convergence. Furthermore, the study establishes the connection
between I —Cauchy sequences, an extension of I —convergence, and convergence in G —metric spaces. Additionally, the properties of I —Cauchy
and I* —Cauchy sequences, as well as I —localized sequences in G —metric spaces, are examined. The objective of this research is to enhance
the understanding of the properties of I —Cauchy sequences within the context of G—metric spaces. The new findings from this study can contribute
to the development of the theory of G —metric spaces and expand our understanding of I —convergence in sequences and I —Cauchy sequences.

These results may also have potential applications in various fields involving mathematical analysis and modeling.
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l. INTRODUCTION

In 1951 Fast published the idea of statistical convergence of a

sequence of real numbers [1]. A sequence (x,,) is called to

converge statistically to x € R and denoted by lim stat x,, =
n—-oo

x, if for each € > 0 the set A(e) = {n € N: G(x,, x,,, x) = €}
has §(A(g)). In 2000, Kostyrko et al. [2] introduced a
generalization  of  statistical convergence term as
I —convergence and I — convergence using the ideal notation
of the set of natural numbers N.

Many other researches on the notion of I —convergence
and [I" —convergence of sequence were extensively
investigated by [3] they study some important topological
properties. Another work has also been done by Banerjee &
Rahul in 2016 [4] on double sequences. Nabiev, et al. [5]
showed the decomposition theorem of [* —convergent
sequence and introduced the idea of I —Cauchy and [* —
Cauchy sequence. They also proved that I* —Cauchy sequence
is I —Cauchy and if the ideal I satisfies the condition (AP), they
are equivalent. In 2010, the idea of [ —divergent and
I* —divergent on metric spaces was studied by Das dan Ghosal
[6]. Later Banerjee at al. studied the concept on S-metric spaces
which are generalization of metric spaces [7]. We will use the
following notations.

Definition 1.1. [8] Let X # @ then a family of sets I < 2% is
called an ideal if

a) A B e€limplies AUB €1

by Ael,BcAimplyB el
If I = {@} and X € I then the ideal I is called nontrivial.
Definition 1.2. [9] Let X # @. A non-empty family F c 2% is
called a filter if

a) 0&F

b) A,B € FimpliessANBEF

c) AEF,AcBcXimplyBeF
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Lemma 1.1. [2] Let I be a nontrivial ideal of X. Then the family
F()={McX:3A €: M = X\A} is afilter on X (It is often
referred to as the filter related with the ideal I)
Definition 1.3. [2] A nontrivial ideal I is said to be admissible
ifforeachx € X,{x} €I

In 2006, the G —metric space is a generalization of the
metric space first introduced by Mustafa dan Sims [10]. Many
works on this space have been conducted because there are
many mathematical concepts that can be studied, such as those
conducted by Gaba in 2017 [11] and Jakfar, et al. [12] they
discussed metrics in G —metric space and showed that the
metric can be derived from the G —metric in such a way that the
convergence.
Definition 1.4. [10] Let X be a non-avoid set. A Function
G:X XX XX - R" is called G —metric on X iff for each
x,y,z € X satisfy this following conditions.

L Gx,y,z)=01ifonlyifx =y =2
i. GGx,x,y)>0ifx=yforallx,yeX
il G(x,y,z) =G(x,2,y) =6y,x,2) =Gy, z,x) =
G(z,x,y) =G(z,y,x)
. Gx,x,y) <G(x,y,z)forall x,y,z € X withy # z
v. G(x,y,2) <G(x,a,a)+ G(a,y,z)forall x,y,z,a € X

The pair (X, G) is called a G —metric space.

Proposition 1.1. (in [10]) Let (X, G) a G —metric space, then
for any x,y,z€ X and a € X it follows that G(x,y,z) <
G(x,x,y) + G(x,x,2)

Definition 1.5. [11] Let (X, G) be a G —metric space and (x,,)
be sequence of points of X. The sequence (x;,) is said to be the
G — convergent to ke x if lim G(x, x,,, x,,,) = 0. It’s mean for
any € € R, e > 0 there exists K € N such that G(x, x,,, x,) <
g, forall m,n € Nwith m,n > K.

Definition 1.6. [10] Let (X,G) be a G —metric space and a
sequence (x;,) on X is called G —Cauchy if for any ¢ € R, & >
0 there exists K € N such that G(x,,xn,,x;) <& for all
L m,n € Nwith ,m,n > K.
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In recently, Nabieve, et al. [13] firstly introduced the idea
of I —localized and I —localized sequence on metric spaces
and show some of their properties in relation to I —Cauchy
concept and Granados, et al. [14] studied I —localized doubles
sequence and furthered this idea with the help of triples using
ideal sets on metric spaces [15]. In addition, Banerjee, et al. [16]
also studied I —localized and I* —localized sequence and
investigated some results related to I —Cauchy sequence in
S —metric space.

In this paper, the concept of I and I* — convergence in
G —metric space is defined. In section |1, we have investigated
the relation between [ —Cauchy sequence and G —
convergence in G —metric. In section I1l, we have discussed
some properties of the I and [I*—Cauchy sequence in
G —metric space. In section IV, we have studied properties of [
and I —localized sequence related to the concept of I —Cauchy
sequence.

Il.  PRELIMINARY RESULT

Unless explicitly stated, we assume that I c 2N is a
nontrivial ideal of the set of all positive integers N and that
(X, G) isan G —metric space.

Definition 2.1. A sequence (x,) on X is said to be
I —convergentto x € X ifforevery e > 0,theset A(e) = {n €
N:G(xp, xp,x) = €} € 1.

Definition 2.2. An admissible ideal I is said to satisfy the
property (AP) if for every countable family {A4;, 4,, A5, ....} of
mutually disjoint sets of I, there exists a countable family of sets
{B1, B, B3, .... } such that for each i € N, A;AB; is a finite set
and U2, B; € I.

Definition 2.3. A sequence (x,) on X is said to be I* —
convergent to x € X if there exists a set M e F(I),
M ={my,my, .., my, ... m_; <m}CN

such that lim G (Xmyr Xy X) = 0.

Definition 2.4. Let I < 2N be an admissible ideal. A sequence
(x,) on X is called an I —Cauchy sequence in (X, G) if for
everye > 0 there exists n, = ny(e) such that A(e) ={n €
N: G(xn, xn,xno) >¢clel

Definition 2.5. Let I < 2N be an admissible ideal. A sequence
(x,) on X is called an I* —Cauchy sequence in (X, G) if there
exists a set M eF(U), M={m,m,, ... my, ... Me_; <
m,.} © N such that the subsequence (x.,,) is an ordinary
Cauchy sequence in X i.e.,k%fTw G (%mpr Xy Xm, ) = 0

Theorem 2.1. Let I be an ideal admissible on N. If (x,) in
(X, G) is G —convergent to x then (x,,) is I —convergent.
Proof. Let a sequence (x,,) is G — convergent to x. This means
that for every € > 0, there is a positive integer K such that for
any natural number n = K, G( x,, x,, x) < & holds. Therefore,
for any such number ¢ > 0 there exist a finite set A(¢) = {n €
N: G(xn, xn,xno) > ¢} for n < K. Hence, since A(¢) is a finite
set, A(e) € I isan admissible ideal. It is proved that a sequence
(x,) G —convergent to x. So for such number € > 0, A(¢) =
{n € N: G(xn, xn, X, ) = €} is an admissible ideal. Thus, (x,)
is I — convergent to x.
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Theorem 2.2. Let I be an ideal admissible on N. If (x,,) in
(X, G) is I —Cauchy then (x,,) is G —Cauchy.

Proof. Let (x,) be an I —Cauchy sequence in (X, G). Then by
definition there exists a positive integer n, = ny(¢) for every
€ > 0such that aset A(e) = {n € N: G(xp, xp, X,) = €} € .
It can be shown that (x,,) is I —Cauchy if for any given € > 0,
there exists B = B(e) €l such that m,n ¢ B implies
G (X, Xy, X5) < €. Let us take n,. Then for every € > 0, for all
m,n > ng, We have G(x,,x, x,,) < €. Hence, we get that
(x,) be G —Cauchy in (X, G).

I1l. I —CAUCHY AND I* —CAUCHY CONDITIONS

Theorem 3.1. Let I c 2N be an admissible ideal. If (x,) isan
I* —Cauchy sequence in (X, G) then (x,,) is I —Cauchy.
Proof. Let (x,,) is an I* —Cauchy sequence. Then by definition
there exists M = {m;,m,, ..., My, .. my_ <my}c N, M €
F(I) such that G (X, X, Xm,) < € for all & > 0 there exists
a positive integer ko, = ky(e) for every k,r >k, = kq(€).
Choose ny = ng(e) = my, 11, then for the real number & > 0,
we get G (Xmy, Xy Xn,) < € With k > ko. Let H = N\M and
it is clear that H € I s0 A(e) = {n € N: G(xp, Xy, X, ) = €} C
HU = {my,my,, ...,my, ... my_y <my} €l

Since for every € > 0 there can be found a positive integer
ny = ny(e) such that A(e) € I, then (x,,) is I —Cauchy.
Lemma 3.1. (in [5]) If I be an admissible ideal that satisfies
the property (AP) then for every countable family (B,) € F(I)
for all n € N there exists aset P € F(I) such that P\ P, is finite
foralln € N.
Theorem 3.2. Let I be an admissible ideal that satisfies the
property (AP). If (x,) is I —Cauchy sequence in (X, G) then
(x,) is I* —Cauchy also.
Proof. Let (x,) be I —Cauchy sequence in (X,G). Then by
definition, for every € > 0 there exists an n, = n,y(¢€) such that
A(e)={ne N:G(xn,xn,xno) >¢tel. Let P,={ne€
N: G (X, Xy X, ) < %} for k € N, where my, = n, (%) It is
clear that P, € F(I) for k € N. Since I satisfy the property

(AP), then then by Lemma 3.1 there exists a set P € F(I) such
that P\ P, is finite for all k € N.

Then let e > 0 and j € N dengan j > é Since P\P; is

finite set if m,n € P, so there exists k = k(j) such thatm,n €

P, for all m,n>k(j). Therefore, the result of it

G (%, Xy X)) < G(xn,xn,xmk) + G (%, X, xmk) <e for
m,n € k(j). Thus, for any € > 0 there exists k = k(¢) €N
such that for m,n > k(¢) and m,n € P € F() implies
G (%, Xn, X, ) < & This shows that the sequence is
[* —Cauchy in (X, G).

Theorem 3.3. Let (X,G) be a G —metric space space
containing at least one accumulation point. If for every
sequence (x,) I —Cauchy is I* —Cauchy then I satisfies the
property (AP).

Proof. The approach used in [6] is used in the proof of this
theorem.
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IV. BASIC PROPERTIES I —LOCALIZED AND I" —LOCALIZED

Throughout the previous discussion using the notation I as
the admissible ideal of N and X is G —metric space. We now
give some definitions and properties of the localized sequence
associated with the ideal  in G —metric space.

Definition 4.1. Let (x,,) is a sequence on X. If a positive real
number sequence (a, = G(x,, x,, X)) converges in x € M
and M c X then (x,,) is called sequence in M.
Definition 4.2. (i) A sequence (x,) in X is said to be
I —localized in subset M c X if for each x € M the positive real
sequence a, = (G(x,, X, X))neny 1S I — convergent in X.
(if) The maximal subset on (x,,) is I —localized, is called the
I —locator of (x,) and it’s denoted by loc;(xy,).
(iii) A sequence (x,,) is said to be I —localized everywhere if
the I —locator (x,,) is the whole set X and denote as loc; (x,,) =
X.
Lemma 4.1. The inequality |G (z,z,y) — G(x,x,y)| <
G(z,z, x) holds good for any x,y,z € X.
Proof. Since G(x,y,z) < G(x,x,y) + G(x, x, z), then
Gx,x,y) <G(x,y,2) =G(z,x,y) <G(2,2,x) + G(z,2,y)
by using ii in Definition 1.5. So we have
G(x,x,y) <G(z,z,x) +G(z,2,y)
Again we have
C,y,2)<Gy,zx)=G6Gxy2) <Glx,y) +G(x,x,2)
Then we obtain
—G(z,2,x) <G(z,z,y) — G(x,x,y) < G(z,2,x)
Hence
G(z,2,y) —G(x,x, )| < G(z,z,x) (4.1)
Theorem 4.1. If (x,,) isan I —Cauchy sequence in X then it is
I —localized everywhere.
Proof. Let (x,,) isan I —Cauchy sequence in X, then for every
€ > 0 there exists a ng = ny(€) such that the set A(e) = {n €
N: G (%, X, Xp,) = €} € 1. Using the Lemma 4.1, we have
|G (xn, %0, %) — G(xno,xno,x)| < G(xp, xp, xno) so we obtain
{neN: |G(xn,xn,x) - G(xno,xno,x)l >¢etc{n
eN: G(xn,xn, xno) >¢ctel

This shows that for each x € X the number sequence
(G(xno,xno,x)) is I —convergent. Hence the sequence (x,,) is
I —localized everywhere.
Definition 4.3. A sequence (x,,) is said to be I* —localized in
X, if for each x € X the real sequence (G (xp, xp,x)) is I* —
convergent.
Theorem 4.2. Let I be an admissible ideal. If a sequence (x,)
in X is I" —localized on the subset M c X, then (x,) is
I —localized on the set M and loc;<(x;,) < loc;(x,,).
Proof. Let (x,,) be I —localized on M c X, by Definition 4.2,
then for each x € X the number sequence (G (xp, xp, x)) isI* —
convergent. Therefore, there exista set H € I such that for H¢ =
N\H = {k; < k, < --- < k;} we have }lz_zzo G( xj,xj,x) for all
x € M. By definition then G(x,,x, x) is an I* —Cauchy
sequence which implies the G(x,,x,,x) is an I —Cauchy.
Hence, for each x € M the number sequence (G (x,, x,,x)) I —

convergent, i. e. (x,) is I —localized on M and consequence
locy+(x,) < loc;(x,,).
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Proposition 4.1. Let (X, G) be G —metric space, then
i) If X has no limit point, then I and I* —localized sequences
are the same in X, and loc,(x,) = loc;<(x,,) for any

(x,) € X.

il) If X has a limit point x, then there is an admissible ideal
for which there exists an I —localized (y;,) in X such that

(v,) is not I* —localized.

It can be proved by standard techniques (see [13]).

Theorem 4.3. If I satisfies the property (AP) and (x,,) isan —
localized on M c X, then (x,,) is I" — localized on M.
Proof. Let I satisfies the property (AP) and (x,) is an I —
localized sequence on E < X. Then by Definition 4.2. the
number sequence (G( x,, X, X))neny IS I —CONvergent to p =
p(x) € R*such that for each ¢ >0 the set A(e)={n¢€
N:|G(xy, xp,x) —pl =€} €l. Then given A, ={n¢€
N: |G (x,, xp,x) —p|l = 1} and for k =2 with k €N, A4, =
{ne N:% < |G (xp, x,x) — p| < k—il}. It is clear that for each
i,jeENandi=j A nA; = @. By the definition of property
(AP), there exists a countable family of sets {B,, B, Bs, .... }
such that for i € N, A;AB,; is finite setand U2, B; € I.

Then we shall show that sequence (x,) is I* — localized.
Then it needs to be shown that for each x € E the number
sequence (G( xp, Xp, X))ney 1S 1" —convergent to x. Let
N\B = M = {my,my,, ..., my: my_; < my} F(I) such
thatnqlgﬁeMG(xn' Xnp,x) = p. Let for any & > 0, chosen a

k € N such that ﬁ < 8. Then {n € N: |G (x,, xp, x) — p| =

8} c UKHL A,. Since A;AB; is finite for i = 1,2, ...,k + 1, then
we chose n, € N such that we obtained

k+1

i=1
k+1
i=1

If n >n,and n ¢ B, then n & UX*! B; and consecuence n ¢
k+1 A; and now we have |G (x,, x,, x) — p| < ﬁ < 8. With

that said for x € E, the number sequence (G ( X, Xn, X)) nen IS

I* — convergent. Hence (x,,) is I* — localized.

Theorem 4.4. If X has a limit point and every I —localized

sequence implies I* —localized then I will have the property

(AP).

Proof. Let x is a limit point in X and by definition there exists

a sequence (x,) in X such that x = lim x,, and

Tlll_r)?o G(xy,xp,x) =0fora, = G(xr;, Xp, x) Withn € N. Let
forn € N, (4,,) is a mutually disjoint family and 4,, # 9,

A, €.

Given sequence (y,) = (x;) with n € 4;. For each & >0,
chosen m €N such that a, <§. Then A(§) ={n€
N:G(yp, Y, x) =6} c A, UA, U ..UA,. So, we obtain
A(e) el and I_rllilﬁlo(y") =x. Then we have (y,) is I —

localized sequence in X. Since (y,) is also I* — localized
sequence in X such that I — lim (y,,) =x. Then there exists
n—-oo

B €1 such that for M = N\B = {my, m,, ..., m: my,_; < my}
we have Iéim Ym, =X. Then for each j €N, B; = A; n B and
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B; € 1. And so UL, B; = B n UjL; A; c B. With that said j €
N, U%2, B eI
Since ’Eggoymk =x,then A; has only a finite number of

elements that are same as the set of M. Then there exists k, €
N such that A; c (4;nB)U{my,my,..,my}. Hence,
AjAB; = Aj\B; c {my,m,, ..., my, } and It can be concluded
that for every j € N, A;AB; is a finite set and it is proven that
ideal I satisfies the property (AP).
Definition 4.4. Let a sequence (x,,) on X is called I —bounded
if there exists x € X such that for any BER, B> 0 {n€
N: G(x,, x,,x) > B} €I
Theorem 4.5. Every I —localized sequence is I —bounded.
Proof. Let (x,) be I —localized on M c X. By the Definition
4.2. for all x € M the number sequence (G( xp, Xpn, X))nen IS
I —convergent. Let (G( Xy, Xn, X))nen CONVegesto B = B(x) €
R. And given K > 0, such that {n € N: |G (x,, x,,x) — 8| >
K} €1.Then
{neN:G(x,, x,,x) — B > K}
U{neN:G(x,,x,x)—B>—-K} €L
Therefore {n € N: G(xp, Xy, %y,) > B+ K} €1 and this
shows that (x,,) is I —bounded.
Theorem 4.6. Let I be an admissible ideal with the property
(AP) and L = loc;(x,). Let z is a point in X such that for any
€ >0 there exists x € L satisfying {n € N: |G (x,,, x,,, x) —
G(xp,xp,2)| =€} €l thenz €L
Proof. The proof of this theorem follows the same general steps
as approach as in [16]

V. CONCLUSION

In this paper, the notion of I and I* —Cauchy sequence, I
and [I* —localized sequence, and the relation between
I —Cauchy and G —convergence in G —metric space. It is also
known that G —metric space is one of the generalizations of
metric space. As further work, it is also desirable to study these
properties and also to study other properties on other
generalized forms of metric spaces such as M —metric spaces,
cone metric spaces, and so on.
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