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Abstract— We propose a genetic algorithm for task offloading of meteorological radar data computing with Edge Computing (EC) in this paper. 

The increasing volume of radar data and the complexity of computing tasks make it necessary to offload the computation to remote computing 

resources. The proposed Randomized Greedy Algorithm (RA) and Group Genetic Algorithm are designed to determine the optimal task offloading 

strategy, which considers the trade-off between computation cost and communication overhead. The algorithm uses a fitness function that 

considers the task transmission delay, and data loss rate. The algorithm also employs crossover and mutation operations to generate new 

offloading strategies and improve the system’s overall performance. We evaluate the performance of the proposed algorithm using simulation 

experiments and demonstrate that it can effectively reduce the computation offloading delay and data loss rate, which is compared with the RA 

task distribution. 
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I. INTRODUCTION  

The size and computational requirements of meteorological 

radar data depend on several factors, including the type of radar, 

working frequency, beam width, scanning angle, and scanning 

speed [1-3]. Generally, meteorological radar generates large 

amounts of data, typically ranging from several hundred 

megabytes to several gigabytes per second. Real-time 

processing of radar data requires powerful computational 

capabilities to handle this data. The algorithms used to process 

radar data are often complex, requiring efficient computing 

architectures and algorithm implementations to improve 

processing speed. Therefore, computing tasks for 

meteorological radar data usually require high computational 

power and a large amount of storage space to process and store 

the data [4-6]. Due to security, integrity, and confidentiality 

concerns, meteorological radar data is typically not processed 

using public computing devices but instead uses private 

computing devices owned by meteorological departments to 

meet the computational and processing needs of radar and other 

data. In particular, the use of deep learning for predicting heavy 

rain [7], detecting snowfall [8], and thunderstorm detection [9] 

has become a current hot topic, posing higher challenges to 

computational and network transmission capabilities. 

Therefore, it has become an important solution for 

meteorological departments to migrate computing tasks to 

different computing devices for radar data processing in the 

above-mentioned deep learning applications. 

However, many departments with radar detection 

equipment face the following issues: first, they have limited 

computational resources or virtual machines, which need to 

handle data parsing, meteorological forecasting, and multi-

source data fusion calculations while facing computational 

limitations. Second, a large amount of real-time data is 

transmitted through various data transmission links, and the 

remaining bandwidth often changes over time. Therefore, when 

migrating some computing tasks for radar data, it may result in 

data loss and excessively high processing delays. Therefore, 

this paper proposes a genetic algorithm-based optimization 

method for small-scale computational devices with limited 

bandwidth and remaining computational resources in each 

device, to further improve the system performance of 

computing task offloading. This algorithm will further support 

the application of artificial intelligence algorithms in 

meteorological radar data, fully leveraging the advantages of 

intelligent computing. The main contributions of this paper are 

as follows: 

1) A computing task offloading model was established for the 

application of deep learning in radar data, providing a 

reference for utilizing distributed computing power 

distribution on small clusters. 

2) A genetic algorithm was proposed to optimize multiple 

servers with different computational capabilities and 

multiple residual bandwidths of different links, effectively 

reducing system latency and data loss rates. 

3) A simulation scenario for computing task offloading on 

small-scale clusters was established, and the algorithm was 

compared with a random greedy algorithm in terms of 

convergence, latency, and data loss rates. 

The organizational structure of the paper is as follows: 

Chapter 2 introduces the system model for radar computing task 

offloading; Chapter 3 presents the genetic algorithm and the 

random greedy algorithm; Chapter 4 establishes the 

experimental simulation environment and presents 

experimental results; and Chapter 5 provides a summary. 

II. THE SYSTEM MODEL FOR RADAR COMPUTING TASK 

OFFLOADING 

Meteorological radar data is often continuous time series 

data, and the data generated by the radar and various sensors in 

the meteorological field are transmitted to various computing 

devices for calculation and processing. These devices mainly 
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perform computing tasks including meteorological forecasting 

and warning, meteorological scientific research, meteorological 

data processing, and meteorological disaster emergency 

response. Let 𝜕𝑖 represent the amount of task data required for 

deep learning in the i-th forecast and warning, and the data can 

be divided into sets {𝜕|𝜕1
𝑖 , 𝜕2

𝑖 , . . . , 𝜕𝑛
𝑖 }  according to the 

algorithm model. The computing devices {𝛼|𝛼1
𝑖 , 𝛼2

𝑖 , . . . , 𝛼𝑛
𝑖 } 

that have computing capabilities and can obtain various data 

sub-items can perform distributed computing of the 

corresponding data parts 𝜕𝑥
𝑖 . Here, 𝑥 represents a certain data 

segment that is obtained. Therefore, the calculation task 

offloading can be represented based on the edge computing 

framework as shown in Fig. 1. 
 

Rader

Data distribution device

Task computing deviceα
 

Fig. 1. The model of computing task offloading toward radar data 

 

From the figure, it can be seen that radar data can be 

distributed to various nearby computing devices 𝛼𝑥  for 

computation of the data portion 𝜕𝑖  that applies to the nearby 

device, through the current receiving device (or data 

distribution devices). This is a typical edge computing 

framework. Through the 𝛼 devices, the parallel computing can 

be effectively utilized, and the idle computing power of the 

nearby devices can be fully utilized. This model abandons the 

traditional cloud computing model for two main reasons. First, 

for latency-sensitive algorithms, the cloud computing model 

cannot meet the real-time computing requirements. Second, 

meteorological data cannot be transmitted over public networks 

due to privacy requirements. However, the decomposition 

problem of task data 𝜕𝑖 results in varying sizes of computation 

tasks. Moreover, there exist various exchange devices in 

different paths, as shown in the figure, leading to different 

transmission delays 𝛿 . The transmission delay 𝛿  can be 

calculated by Formula 1: 

𝛿𝑥
𝑖 = 𝑇𝑥

𝑗
+ 𝑓(𝛿)                                 (1) 

Where 𝑇𝑥
𝑗
 represents the transmission delay by device 𝑗. And 

the 𝑓 is the function for the data transmission delay. By splitting 

the computing tasks and assigning them to different edge 

computing devices, the latency can be effectively reduced, and 

it is also beneficial to improve the computing efficiency of each 

server. 

III. GROUP RANDOM GREEDY ALGORITHM AND GENETIC 

ALGORITHM 

In the radar data processing model shown in Figure 1, there 

are two problems to be addressed. Firstly, for each computation 

task fragment 𝜕𝑥
𝑖 , different computing devices 𝛼𝑥  may have 

different transmission delays 𝛿𝑥
𝑖  along their respective paths. 

Secondly, the amount of data that can be processed by each 

computing device 𝛼𝑥 per unit time may be different, which can 

lead to data loss for some unprocessed data. Therefore, a 

reasonable optimization of the selection of different computing 

task segments 𝜕𝑥
𝑖  and computing devices 𝛼𝑥 can to some extent 

reduce the delay and data loss rate in the calculation task 

offloading. 

(a) Randomized Greedy Algorithm (RA): First, randomly 

select the 𝜑 objects reachable by the computing task path, 

denoted as {𝛼𝑖 , 𝛼𝑗 , 𝛼𝑘|𝛼𝑥}. Next, for the computation task 

fragment 𝜕𝑥
𝑖  , choose 𝑚𝑖𝑛(𝛿𝑥

𝑖，𝐷) , where 𝐷  is the data 

loss rate. In algorithm design, considering the real-time 

performance, it is assumed that data does not queue in the 

buffer during the arrival process waiting for computation. 

Therefore, the data loss rate can be mapped to formula 2: 

𝐷 = {
= 0                       𝑓(𝐷𝑐𝑢𝑟𝑒𝑛𝑡) − 𝑓(𝐷𝑝𝑖𝑒𝑐𝑒) ≥ 0

= |𝑓(𝐷𝑐𝑢𝑟𝑒𝑛𝑡) − 𝑓(𝐷𝑝𝑖𝑒𝑐𝑒)|            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (2) 

(b) Genetic Algorithm (GA): Firstly, establish an individual 

with a length of 𝐿𝑛, where n is the number of available 

devices. Establish the initial population A and obtain a 

randomly generated matrix with a length of n through A, 

as shown in formula 3: 

A= (

𝜔00 ⋯ 𝜔0𝑛

⋮ ⋱ ⋮
𝜔𝑚0 ⋯ 𝜔𝑚𝑛

)                          (3) 

Where 𝜔  represents the computing device to which the 

computing task fragment is transmitted. Each row represents 

the computing device assigned to each computing task 

fragment, and it represents a choice for task offloading. 

Therefore, m can represent the number of corresponding 

offloading schemes. After constructing the solution model of 

genetic algorithm, it is necessary to establish the corresponding 

fitness function to evaluate the quality of the current solution. 

𝐹𝑖𝑡𝑉 = 𝜎(𝛿/𝑚𝑎𝑥(𝛿)) + 𝜏(𝐷/𝑚𝑎𝑥(𝐷)) 

𝑚𝑖𝑛(𝐹𝑖𝑡𝑉) 
𝛿 ≤ 𝛿𝑥

𝑖  
𝐷 ≤ 𝑓(𝐷𝑐𝑢𝑟𝑒𝑛𝑡)                                         (4) 

Therefore, based on equation 4, the fitness value of all 

individuals in the matrix A can be calculated. The optimization 

goal is to find the minimum value of 𝐹𝑖𝑡𝑉. After sorting, the 

optimal value of 𝐹𝑖𝑡𝑉𝐶  in the current generation can be 

obtained, and the solution that corresponds to this optimal value 

is the optimal solution of the current generation. Based on the 

current generation, selection, crossover, and mutation 

operations can be performed. In the selection operation, we 

abandon the top-ranked 𝜃 solutions and re-copy the individuals 

that have not been abandoned to construct a complete A matrix. 

In the crossover operation, partial gene exchange is performed 

with a probability of 휀𝑐 to obtain a new individual, as shown in 

Figure 2. 

X1 X2 X3 X4 X5

Xa Xb Xc Xd Xe

Lo

Xa Xb X3 X4 X5

X1 X2 Xc Xd Xe
 

Fig. 2. The new individual solutions by crossover operation 
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In the mutation operation, the mutation is performed at a 

certain position with a probability of 휀𝑚, as shown in Figure 

3. 

 

Lo

X1 X2 X3 X4 X5 X1 X2 Xx X4 X5

 
Fig. 3. A individual solution by mutation operation 

 

After the crossover and mutation operations, a new 

population is obtained. By calculating its fitness value, the latest 

optimal value can be obtained. Through gradual iteration, the 

solution process approaches the local optimal solution required 

in the scheme, and a good decision can be obtained in a short 

time. 

IV. EXPERIMENTS AND RESULT 

For the scenario of radar data sources, we established a radar 

data source and ten computing devices. The calculation size of 

each task is designed to be 10Mbit. The tasks are divided into n 

parts according to a certain algorithm, and the remaining 

computing power of each computing device is considered to be 

in the range of 0-1Mbits. As it is assumed that real-time 

processing is required, data exceeding this range is discarded. 

Other key parameters are shown in Tab. 1. 

 
Tab. 1 the key parameters 

The symbol value 

𝑚 100 

휀𝑐 5% 

휀𝑚 0.5% 

𝐿𝑛 10 

𝜃 50 

𝜑 3 

 

Then we conducted experimental analysis on the 

convergence of the genetic algorithm, as shown in Figure 4. 

 

 
Fig. 4. The schematic diagram of algorithm convergence 

 

As shown in Figure 1, it can be seen that with the increase 

of the number of iterations, the fitness value quickly converges. 

From the perspective of convergence and speed, the GA 

algorithm has good performance in dealing with the current 

radar data computation task offloading. 

For a more intuitive comparison of the advantages of the 

GA algorithm, we simulated the system performance of the 

Group Greedy algorithm and the GA algorithm in the scenario, 

mainly comparing them in terms of cost (fitness), delay, and 

data loss rate under different numbers of computing devices. 

 
Fig. 5. The cost of simulation scenarios 

 

Based on Figure 5, it can be observed that the overall cost 

of the system decreases as more computing devices are added. 

At the same time, the GA algorithm shows a significant 

advantage over the group random greedy algorithm in terms of 

performance. 

 
Fig. 6. The processing latency for RA and GA method 

 

As shown in Figure 6, in the group random greedy 

algorithm, it has an advantage when there are few available 

computing devices. However, as the number of available 

computing devices increases, the algorithm itself exhibits some 

randomness. Therefore, the group random greedy algorithm can 

be chosen when there are fewer participating computing 

devices, while the GA algorithm can be chosen when there are 

more. 

 
Fig. 7. The data lose rate for RA and GA 
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As shown in Figure 7, with the increase of the number of 

computing devices, the average data loss rate under the GA 

algorithm is lower than that under the group random greedy 

algorithm. The curve of the group random greedy algorithm 

shows significant fluctuations with the increase of the number 

of computing devices, which also reflects some randomness. 

V. RELATED WORK 

In recent years, research on the optimization of resource 

allocation in edge computing has attracted much attention both 

domestically and internationally. In terms of the application of 

genetic algorithm (GA), there have been some studies that have 

explored its effectiveness in resource allocation optimization. 

For example, in [10], the authors proposed a GA-based 

approach for optimizing the energy consumption of a cloud-

edge system in the context of mobile edge computing. In [11], 

the authors used GA to optimize the placement of virtual 

machines in a cloud-edge environment. 

In terms of the application of greedy algorithms in edge 

computing, there have also been some studies. For example, in 

[12], the authors proposed a greedy algorithm for dynamic 

resource allocation in a cloud-edge environment. In [13], the 

authors proposed a greedy algorithm for load balancing in edge 

computing. 

Overall, the effectiveness of GA and greedy algorithms in 

resource allocation optimization in edge computing has been 

demonstrated in various studies. However, there is still room 

for further research, particularly in the optimization of task 

partitioning and allocation. From the perspective of computing 

task offloading, on the one hand, they did not focus on radar 

data, so the proposed algorithm model is not suitable for the 

practical scenario of offloading radar data computing tasks. On 

the other hand, the modeled data flow and device quantity do 

not match the situation of a large number of small and medium-

sized radar stations, thus lacking reference value. Therefore, the 

method proposed in this paper solves the algorithm operability 

of the scenario to some extent from the perspective of practical 

needs. 

VI.  CONCLUSIONS 

In the context of radar devices, the use of cloud-based 

intelligent computing has certain limitations. Therefore, in this 

context, we propose the group random greedy algorithm and 

genetic algorithm based on the edge computing framework to 

solve the selection problem of radar data when multiple 

computing devices are available, in order to reduce system 

latency and data loss rate. In the simulation after modeling, it 

was found that the GA algorithm has an advantage in solving 

the problem in this scenario. When there are fewer computing 

devices, the group random greedy algorithm can achieve good 

performance with lower algorithm complexity. The next step of 

research work will focus on the division of radar computing 

tasks. 
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