
 International Journal of Scientific Engineering and Science
Volume 6, Issue 11, pp. 24-29, 2022. ISSN (Online): 2456-7361

24
http://ijses.com/

All rights reserved

Integration of Performance Isolation, Bandwidth

Management and Burst Handling for QOS

Management in IP SANs

1Joseph Kithinji, 2Makau S. Mutua, 3Gitonga D. Mwathi
1Department of Computer Science, Meru University of Science and Technology, Meru, Kenya

E-mail: joskithinji2014@gmail.com
2Department of Computer Science, Meru University of Science and Technology, Meru, Kenya

E-mail:smutua@must.ac.ke
3Department of Computer Science, Chuka University, Chuka Kenya

E-mail: dgmwathi@chuka.ac.ke

Abstract— The increasing number of Information technology Users around the world has led to tremendous increase in the amount of data that

requires storage. In response to this challenge, new storage area network architectures based on Ethernet (IP) have evolved. With the coexistence

of storage traffic with other types of traffic in the same IP network, it is important to offer storage traffic QOS guarantees to prevent performance

degradation for storage users. Regrettably, the storage device itself does not provide any capability of guaranteeing storage QOS.Commercially

available storage arrays offer only limited support providing performance isolation bandwidth management and burst handling. To address this

issue this paper introduces an integrated solution that enforces performance isolation, bandwidth management and burst handling among IP

SANs.Through experiments it was established that the proposed solution is able to take advantage of its knowledge of traffic patterns to adjusts

priorities to provide QOS(Quality of service) close to the service level objective(SLO) of storage users.

Keywords— Service level objective,Quality of Service,IP SANs,performance isolation,bandwidth management,traffic shaping.

I. RELATED WORKS

With the advent of ISCSI the IP network is able to

accommodate the transmission for storage data. This means that

storage traffic and other types of traffic will mix. This brings

about a challenge of providing QOS to the vast variety of traffic

flow requirements. TCP provides best effort which is

unsatisfactory for providing QOS to storage traffic. Providing

QOS guarantee require a number of functions to be performed

such as performance isolation, bandwidth management and

traffic shaping. There has been many proposed solutions for

providing QOS in IP SANs.

Jaiman et al.2019) developed Heron which is an algorithm

that is aimed at reducing tail latency when dealing with

heterogeneous workloads. However this technique relies on

predictions. If the predictions are wrong then resources may be

wasted.

Peng et al., (2019) Developed fair-EDF to provide latency

guarantees for storage servers. Results obtained showed that

fair-EDF is able to provide fairness for heterogeneous

workloads. However this mechanism was found not to be

scalable. In addition fair-EDF lacks the mechanism to separate

workloads with large execution time from those with small

execution time.

Peng et al., (2019) also developed pShift which is a token

allocation algorithm for balancing resources between storage

servers. However it was found to have scalability problems.

Peng & Varman, (2018) came up with Bqueue which is a

scheduling system that provides QOS reservations and limits.

To handle dynamic workloads bandwidth is computed at

regular intervals. The problem with Bqueue was found to be

that it uses tokens allocation as the only control measure for

QOS.

Cui et al.,(2019) developed tail cutter as a mechanism for

reducing latency in cloud storage systems. Tailcutter uses

parallel request to cloud datacenters to reduce latency. However

it only uses latency as a QOS control measure for storage.

Peng & Varman(2020) Developed pTrans which is a

framework for reservation allocation based on direct graph

model. However pTrans is not able to give accurate estimates

for resources available at run time which leads to inaccurate

allocation of resources and wastage. In addition pTrans was

found to increase with workload.

Techniques like PARDA(Gulati & Waldspurger, 2009.),

Argon(Wachs et al., 2007) use queue length management and

disk time reservation for implementing proportional throughput

fairness as a means for implementing QOS in storage area

networks. Other techniques like

Technique such as Priority Meister (Zhu, Tumanov,

Kozuch, & Ganger, 2017) and Triage(Karlsson, Karamanolis,

& Zhu, 2005) use throughput performance isolation among

competing workloads by use I/O throttling techniques such as

Leakey bucket algorithim, deficiet round robin and start-time

fair queuing(SFQ) to manage how much throughput competing

workloads receive. Other techniques like mClock(Gulati &

Varman, 2007) and Pisces(Shue, Freedman, & Shaikh, 2012)

support throughput QOS using maximum minimum fairness.

Other studies like those done in cosTLO(Wu, Yu, &

Madhyastha, 2015) and C3 (Suresh et al., 2015), use

redundancy to reduce coverage and tail latencies.C3(Suresh et

al., 2015) reduces tail latency through dynamic redundancy and

distributed rate control.

 International Journal of Scientific Engineering and Science
Volume 6, Issue 11, pp. 24-29, 2022. ISSN (Online): 2456-7361

25
http://ijses.com/

All rights reserved

Fig. 1. Integrated QOS Management Technique Architecture.

Previous works reviewed in this research includes

techniques only either for latency support and only those for

throughput support. In contract this research implements an

integration of three techniques in an attempt to support

throughput, latency, and jitter for users in IP SANs.

To improve on the previous work this study integrates the

three functions of performance isolation, bandwidth

management and burst handling otherwise used separately in

the previous studies. These integration is aimed at increasing

throughput, reducing latency and reducing jitter

In addition most of the techniques reviewed in chapter one

are either predictive, static or do not take into consideration the

network statistics. To further improve on the previous work this

paper incorporates the features of dynamism, use of network

statistics to prioritize traffic and finally the use of a centralized

mechanism to reduce the overhead experienced when multiple

copies of the same algorithm are run. To measure the

performance of the proposed system in providing QOS the

metrics of throughput, latency, and jitter are used.Fig.1.

Illustrates the proposed system architecture.

Priority Estimation Module

The priority estimation module is designed to capture the

current network statistics and calculate the priority of each

flows i .The priority is meant to be used to forecast on the

amount of resources a certain class of users requires. For each

flow i the priority estimation module calculates its priority

using equation 𝑝
𝑖=

ℎ𝑖
𝐻

.

Performance Isolation Module

A packet di is classified based on the header information that

is source IP, destination IP, Source port, destination port and

protocol. The same fields are components of rule ri. A packet di

is said to match rule ri if and only if di.fi==ri.fi..Based on the

rule that match the associated action is performed. After

classification packets are forwarded to the shaper

Burst Handling Module

The burst handling module is meant to delay packets so that

they form a constant flow. Burst handling is implemented using

traffic shaping. The proposed traffic shaping algorithm takes in

various QOS classes i (i=1...n) and uses a dynamic time interval

ts to send traffic in burst .Each session consist of n queues qi

each containing flows belonging to the same class and priority.

High priority queue are placed at the top .At any time if the

queue is not full and the time ts has not elapsed the incoming

flows are not delayed. Otherwise the packets are sent and the ts

is reset to zero. The two events that trigger the sending of

packets is when 𝑋𝑖
∗ ≤ 𝐵𝑇𝑅

𝑖 and ts has expired.

Bandwidth Manager

The bandwidth management algorithm begins by

establishing the quantum 𝑄𝑖 which is the amount bits that can

be transmitted in each round from queue 𝑖 based on

priority 𝑝𝑖 =
ℎ𝑖

𝐻
.𝑄𝑖 Represents the value𝑃𝑖 𝑋𝑄𝑀𝑎𝑥. Where 𝑄𝑀𝑎𝑥

is the maximum possible size of any packet that can exist in the

network. To ensure service differentiation queues are arranged

hierarchically in one level instead of one FIFO queue found in

best effort.

II. VALIDATION OF TECHNIQUE

Validation Metrics

Experiments were set up to establish the performance of the

proposed system based on the QOS metrics of throughput, jitter

and latency. Reads were simulated to mimic the real IP SAN

environment.

(1) and (2) were used calculate the percentage throughput

deviation and latency deviation respectively

%𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
𝑎𝑡𝑡𝑎𝑖𝑛𝑒𝑑 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡−𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
𝑋100 (1)

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 (2)

 International Journal of Scientific Engineering and Science
Volume 6, Issue 11, pp. 24-29, 2022. ISSN (Online): 2456-7361

26
http://ijses.com/

All rights reserved

The following sections presents the results throughput,

latency and jitter obtained by using I/O sizes of 4KB, 64KB and

1MB for a period of 200 seconds. For all the experiments three

scenarios were considered corresponding to IO sizes of 4KB,

64KB and 1MB.

TABLE 1: SLO for Classes of Storage Users

Class of user IOPS
Throughput for Block

size 4KB

Throughput Block size

64KB

Throughput Block size

1MB

Response time for

QD32

Task user 5 IOPS 20kb/s 320kb/s 5000kb/s 6.4 ms

Knowledge user 10-20 IOPS 40-80kbs 640-1280kbs 10240-20480kb/s 2.4 ms

Power user 25 IOPS 100kb/s 1600kb/s 25000kb/s 1.3 ms

User QOS Mapping

Different users have varied QOS requirements which should

be matched to corresponding QOS requirements. Users flows

mapped to the same SLO are put on the same queue. Through

this mapping the router can be able to provide differentiated

treatment of flows. The IT world classifies storage users into

three main classes that is the power user, knowledge users and

task users. Based on the user’s requirements in delay and

throughput we map users to three QOS levels. The mapping

relations are shown in Table 1. Power users and knowledge

users are sensitive to delay as illustrated by the low

latency/response time. The task users are less sensitive to delay

however they require bandwidth guarantee.

Therefore from Table 1 the SLO for users based on the IOPs

and block size was derived. The values for the SLO are

throughput in kb/s followed by IOPS and latency. For a block

size of 4KB the SLO for task, knowledge and power users is as

follows; task users(20kb/s,5IOPS,6.4MS), Knowledge users

(60kb/s,15IOPS,1.6-3.2ms) and power users

(100kb/s,25IOPS,1.3ms). The same case applies for 64kb and 1

Mb block sizes.

Fig. 2. Experimental Setup for the proposed system

Validation Setup

The validation experiment is as illustrated in Figure 2. Park

dale disk benchmarking tool was used to simulate the reads and

writes. The initiators were setup with initiator mode ISCSI

driver while the target storage were configured target mode.

Experiments were used to validate the proposed systems based

on latency, throughput and jitter. In all the experiments a File

size of 50MB was used unless otherwise stated. All experiments

were run three times for a period 200 seconds and averages

recorded.Fig.2 illustrates the experimental setup.

III. VALIDATION RESULTS

Throughput versus IO Size

Fig.3 shows the throughput of task users, knowledge users

and power in the best effort case and using the proposed

solution scenarios. In best effort scenario in as illustrated in

Fig.3(a), the lack of QOS management scheme causes hosts to

have unstable throughput and a lot of unfairness. Ideally power

users would perform better than other users. In the proposed

solution scenario as illustrated by Fig.3(b), the unfairness is

corrected by isolating users by decoupling the throughput of the

three classes of users and lets them process packets at their own

rates. Generally from Fig.3(b) it is observed that at t=0 there is

the lowest throughput which increase up to t=20 where it

stabilizes. The stability is brought about by the proposed

solution being able to optimize bandwidth usage as well as

isolate performance of one flow from the other. Table 2 further

illustrates the results of scenario 1.

Fig. 3. Throughput for 200 seconds ;(a) Best effort (b)Proposed Solution.

 International Journal of Scientific Engineering and Science
Volume 6, Issue 11, pp. 24-29, 2022. ISSN (Online): 2456-7361

27
http://ijses.com/

All rights reserved

Scenario1 represents the situation when using an IO size of

4KB for both using the proposed solution and best effort. From

Table 2 it is evident that all users receive a throughput close to

the SLO with a negative percentage deviation from the SLO of

3%, 0.8% and 0.2 Kb/s for task users, knowledge users and

power users respectively when using the proposed solution. The

same is observed when using the best effort. That is the task

users, knowledge users, and power users attained a negative

percentage deviation of 5%, 1.6% and 1%. This can be

explained since with 4KB IO size

TABLE 2: Scenario 1 with IO size of 4KB

Class of User Expected SLO Throughput Proposed Solution Throughput Existing solution Deviation 1 Deviation 2

Task users 20 19.4 19 0.6 1

Knowledge users 60 59.5 59 0.5 1

Power Users 100 99.8 99 0.2 1

TABLE 3: Scenario 2 with IO size of 64KB

Class of user Expected SLO Throughput Proposed Solution Throughput Best Effort Deviation 1 Deviation 2

Task users 320 300.16 263.13 19.84 56.87

Knowledge users 960 919.55 858.09 40.45 101.91

Power Users 1600 1540.03 1282.22 59.97 317.78

TABLE 4: Scenario 3 with IO size of 1MB

Class of user Expected SLO Throughput Proposed Solution Throughput Best Effort Deviation 1 Deviation 2

Task users 5000 4012.3 3543.30 987.7 1456.7

Knowledge users 15000 12750 11762 2250 3238

Power Users 25000 22890 20896 2110 4104

Generally from Fig.3(b) it is observed that at t=0 there is the

lowest throughput which increase up to t=20 where it stabilizes.

The stability is brought about by the proposed solution being

able to optimize bandwidth usage as well as isolate performance

of one flow from the other. Table 2 further illustrates the results

of scenario 1.

In scenario 2 when using an IO size of 64KB the following

observation were made. With the proposed solution there is a

negative percentage deviation from the SLO of 6.2%, 4.2% and

3.7% for task users, knowledge users and power users

respectively .On the other hand when using best effort a

negative percentage deviation from the SLO of 17%, 10.6% and

19.86% for task users, knowledge users and power users

respectively .Table 3 illustrates scenario 2.

This can be explained by the fact that an increase in IO size

results in a corresponding increase in traffic which causes

congestion(Jaiman et al., 2018). However for the proposed

solution since it implements performance isolation, bandwidth

management and traffic shaping the deviation is minimal

compared to that of best effort. Table 4 represents the results of

scenario 3.

In scenario 3 when using an IO size of 1MB the following

observation were made. With the proposed solution there is a

negative percentage deviation from the SLO of 19.8%, 15% and

8% for task users, knowledge users and power users

respectively .On the other hand when using best effort a

negative percentage deviation from the SLO of 29.1%, 22% and

16% for task users, knowledge users and power users

respectively .

This can be explained by the fact that an increase in IO size

results in a corresponding increase in traffic which causes

congestion(Jaiman et al., 2018). However for the proposed

solution since it implements performance isolation, bandwidth

management and traffic shaping the deviation is minimal

compared to that of best effort.

It is further observed that when using best effort the task

user’s experiences the greatest deviation for scenario 2 and

scenario 3 and the lowest is experienced by knowledge users.

This is contrary to what is expected given that power users have

got higher priority and therefore should have a smaller

percentage deviation. This can be explained by the fact that best

effort technique lacks the mechanism of prioritization present

in the proposed solution. This is consistent with results obtained

in (Gulati & Varman, 2010) where it was found that resource

reservations and controls are able to provide predictable

performance. In the results obtained the expectations were that

high priority users should be provided with predictable service.

The results obtained were consistent with the expectations and

those obtained by Billaud and Gulati(2013),Gulati and

Waldspurger(2009) and Peng(2019) proving that the proposed

algorithm is work conserving

Latency and IO size

Latency is the time it takes for a packet to reach its

destination. Latency has a lot of effect on network performance

degradation and effects the user QOS. High latency is caused

congestion which results in poor QOS. In this case the study

considered end to end delay that is the time taken from source

to destination(Jaiman et al., 2019). Fig.4 analyzes the latency

experienced by the three classes of users against time for best

effort and proposed solution. Latency was measured for three

scenarios for IO sizes of 4KB, 64KB and 1MB.

For scenario 1 where there is an IO size of 4KB it was

observed a lower that all users experienced a latency lower than

that expected for both the proposed solution and the best effort.

Even though the best effort has no QOS mechanisms

implemented here in the proposed solution, all the users still

meet their deadlines. This can be explained by the fact that

when a small IO size is small there is low congestion since they

occupy the network for a short time(Jaiman et al., 2019) which

does not lead to resource competition and therefore does not

require any management.

 International Journal of Scientific Engineering and Science
Volume 6, Issue 11, pp. 24-29, 2022. ISSN (Online): 2456-7361

28
http://ijses.com/

All rights reserved

TABLE 5: Scenario 1 with IO size of 4KB

Class of User Expected SLO Latency Proposed Solution Latency
Best Effort

Latency
Deviation 1 Deviation 2

Task users 6.4 5.6 6.0 -0.8 -0.4

Knowledge users 3.2 2.4 2.9 -0.8 -0.3

Power Users 1.3 0.6 1 -0.7 -0.3

TABLE 6: Scenario 2 with IO size of 64KB

Class of user
Expected SLO

Latency

Proposed Solution

Throughput

Best Effort

Latency
Deviation 1 Deviation 2

Task users 6.4 5.8 7.7 -0.6 +1.3

Knowledge users 3.2 2.8 5.4 -0.4 +2.2

Power Users 1.3 1.1 2.6 -0.2 +1.3

TABLE 7: Scenario 3 with IO size of 1MB

Class of user
Expected SLO

Latency

Proposed Solution

Throughput

Best Effort

Latency
Deviation 1 Deviation 2

Task users 6.4 6.0 10.79 -0.4 +4.39

Knowledge users 3.2 2.8 10.47 -0.4 +7.27

Power Users 1.3 1.1 5.52 -0.2 +4.22

Fig. 4. Latency for 200 seconds (a) Best effort, (b) Proposed solution

In scenario two and three an IO size of 64KB and 1MB are

used respectively. An increase in IO size resulted in an increase

in the traffic which lead to competition of bandwidth(Jaiman et

al., 2019). As a result as depicted in Table 5 ,6 and 7 where it

shows that for the proposed solution a negative deviation was

achieved for all users .A negative deviation means that users

were able to achieve a latency lower than expected which means

they were able to meet their deadlines. Conversely with best

effort, it was observed that all users attained a positive deviation

which means that user surpassed the latency threshold that was

expected and none met their deadlines. This phenomena can be

explained by the fact that best effort lacks the QOS techniques

of performance isolation, bandwidth management and burst

handling implemented in the proposed solution.

Absence of these mentioned techniques results in free for

all competition for bandwidth due to lack of prioritization

mechanisms users are able to interfere with each other resulting

in ununiformed latency(Gulati & Varman, 2007). In addition

FIFO queues used in best effort do not provide a way for

isolating traffic. An increase in latency also can be attributed to

the use of DRR in best effort. When using DRR for scheduling,

big packets lead to an increase in head of line latency which

delays smaller maybe more important packets. Results obtained

by Wang et al., (2012) also showed similar pattern where it was

found that achieving low latency requires smaller queues. Lack

of optimized scheduling algorithm results in larger queues

which results in increased latency as witnessed in best effort.

Similarly mixing of big and small packets results in headline

delay causing more latency for smaller packets as witnessed

when best effort is used. It is further noted that for all the

scenarios all users experience a low latency between time t=0

and time t=20. This is because before the 20 seconds traffic has

not reached saturation therefore there is less latency. In

conclusion it is important to note that when using the proposed

solution for each class of user the latency goals are satisfied

contrary to when using best effort. When using best effort

latency increases by a factor of 2X.This demonstrates the

inability of conventional scheduling techniques in providing

acceptable latencies in presence of huge traffic loads.

Jitter and IO size

Jitter is the variation in delay experienced by packets

reaching a destination thus its presence is unwanted but

unavoidable. Therefore there is always a small amount of jitter.

From the experiments jitter observed under the proposed

solution and best effort was recorded as shown in Table 7 and

Fig.5.

Fig.5 analyzes the jitter experienced for 200 seconds for IO

sizes of 4kb, 64KB and 1MB. At t=0 a jitter of 0 was observed

and therefore the system experiences the best performance at

t=0.

 International Journal of Scientific Engineering and Science
Volume 6, Issue 11, pp. 24-29, 2022. ISSN (Online): 2456-7361

29
http://ijses.com/

All rights reserved

From Fig.5 it is observed that when an IO size of 4kbyte is

used that there is no congestion and therefore jitter of the three

classes of users is small.

This is consistent with results obtained by Peng and Varman

(2020) and Jaiman et al., (2019) that the larger the IO size the

more time the traffic occupies the network and therefore the

more the jitter.

Fig. 5. Jitter for 200 seconds (a) Existing (b) Proposed Solution

For an IO size of 64KB the best effort technique a jitter of

6.5 for task users, 4.7 for knowledge users and 2.3 for power

users was observed. While for the proposed system jitter of 5.2,

3.5 and 1.1 were observed for task users, knowledge users and

power users respectively. A reduction of 20%, 25% and 52%

on average. This clearly shows that the proposed system

outperforms the best effort. The same trend of an increase in

jitter is observed for 1MB. The reason why the proposed

technique outperforms the best effort is that the proposed

technique uses a hierarchy of levels for flows which isolates

traffic and avoids interference between flows as opposed at the

best effort where all flows are using single FIFO queues.

Minimum jitter was observed for 4kbyte, while maximum jitter

was observed for 1MB IO size. From the results it is also

observed that task users have the highest jitter for the given

configuration. This can be attributed to their low priority.

TABLE 8: Average Jitter in Milliseconds

 Proposed Solution Existing

Storage user Time 4KB 64KB 1MB 4KB 64KB 1MB

Task users 200s 4.2 5.2 5.6 6.0 6.5 9.9

Knowledge

users
200s 3.2 3.5 3.8 4.0 4.7 7.6

Power users 200s 1.0 1.1 1.2 1.3 2.3 4.4

IV. SUMMARY

In this paper the integrated approach has been implemented

that includes the QOS techniques of performance isolation

bandwidth management and traffic shaping. The performance

isolation module ensures that flows don’t interfere with each

other performance. The bandwidth management module

ensures that each flow/class of user gets a share proportion to

its current need. This is achieved through regular computation

of priority. The proposed algorithm is implemented in Linux

router and causes little delay. Through experimentation it has

been verified that the proposed solution works as intended.

REFERENCES

1. Cui, Y., Dai, N., Lai, Z., Li, M., Li, Z., Hu, Y., … Chen, Y. (2019).

TailCutter: Wisely cutting tail latency in cloud CDNs under cost

constraints. IEEE/ACM Transactions on Networking, 27(4), 1612–1628.
https://doi.org/10.1109/TNET.2019.2926142

2. Gulati, A., Ahmad, I., & Waldspurger, C. A. (2009, February). PARDA:

Proportional Allocation of Resources for Distributed Storage Access.
In FAST (Vol. 9, pp. 85-98).

3. Gulati, A., Merchant, A., & Varman, P. J. (2007). pClock: an arrival curve

based approach for QoS guarantees in shared storage systems. ACM
SIGMETRICS Performance Evaluation Review, 35(1), 13-24.

4. Gulati, A., Shanmuganathan, G., Zhang, X., & Varman, P. (2019).

Demand based hierarchical QoS using storage resource pools.
Proceedings of the 2012 USENIX Annual Technical Conference, USENIX

ATC 2012, 1–13

5. Karlsson, M., Karamanolis, C., & Zhu, X. (2005). Triage: Performance
Differentiation for Storage Systems Using Adaptive Control. ACM

Transactions on Storage, 1(4), 457–480.

https://doi.org/10.1145/1111609.1111612
6. Peng, Y. (2019). Latency Fairness Scheduling for Shared Storage

Systems. 2019 IEEE International Conference on Networking,

Architecture and Storage (NAS), 1–8.
7. Peng, Y., Liu, Q., & Varman, P. (2019). Scalable QoS for Distributed

Storage Clusters using Dynamic Token Allocation. IEEE Symposium on
Mass Storage Systems and Technologies, 2019-May, 14–27.

https://doi.org/10.1109/MSST.2019.00-19

8. Peng, Y., & Varman, P. (2018). BQueue: A coarse-grained bucket QoS

scheduler. Proceedings - 18th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing, CCGRID 2018, 93–102.

https://doi.org/10.1109/CCGRID.2018.00024
9. Peng, Y., & Varman, P. (2020). PTrans: A Scalable Algorithm for

Reservation Guarantees in Distributed Systems. Annual ACM Symposium

on Parallelism in Algorithms and Architectures, 441–452.
https://doi.org/10.1145/3350755.3400273

10. Wachs, M., Abd-El-Malek, M., Thereska, E., & Ganger, G. R. (2007,

February). Argon: Performance Insulation for Shared Storage Servers.
In FAST (Vol. 7, pp. 5-5).

