
 International Journal of Scientific Engineering and Science
Volume 6, Issue 7, pp. 1-5, 2022. ISSN (Online): 2456-7361

1

http://ijses.com/

All rights reserved

Research on Task Offloading Strategy Based on

Genetic Algorithm

Xiulan Sun1, Yue Wang2, Wenzao Li1,3

 1College of Communication Engineering, Chengdu University and Information Technology, Chengdu, Sichuan, China
2Educational Informationization and Big Data center, Education Department of Sichuan Province, Chengdu, Sichuan, China
3Network and Data Security Key Lab. of Sichuan Pro.University of Electronic Science and Technology of China, Chengdu,

Sichuan, China

Abstract— Existing mobile edge computing research focuses on optimizing latency and energy consumption while ignoring the impact of server

load imbalance. In this paper, we consider the terminal device uploads the computing task to the nearest AP, and the AP offloads the task to the

MEC server through multi-hop communication. Aiming at the edge server load problem of the system and the extra delay that may be caused by

multi-hop communication, we established a multi-objective optimization problem with edge server load balancing and average offloading delay

as the optimization goals. We propose an offloading decision based on a genetic algorithm, effectively optimizes the load balancing of task

offloading. The effectiveness of the proposed algorithm is verified by a large number of simulations.

Keywords— Mobile edge computing, multi-hop communication, edge server load balancing, average offloading delay.

I. INTRODUCTION

With the rise of computing-intensive applications and delay-

sensitive applications, in order to overcome the problems of

large delay and network congestion that may be caused by

mobile cloud computing (MCC), researchers have proposed

mobile edge computing (MEC). By studying the offloading

strategy of MEC, the offloading delay, system energy

consumption, etc. can be reduced, but there are inevitably some

problems that need to be resolved. First, due to the uneven

distribution of tasks in time and space, it may cause unbalanced

load among MEC servers, which may lead to a sharp drop in

Quality of Service and Quality of Experience [1,2]. Therefore,

it is necessary to solve the problem of load balancing among

MEC servers. Thus, it is vital to resolve the problem of load

balancing among edge servers. Secondly, in a multi-hop MEC

system, during the offloading process, when wireless access

point offloads large-scale tasks to the neighboring MEC server,

it is necessary to utilize the wireless link between APs for task

offloading. But multi-hop communication may bring additional

transmission delays [3].

In multi-server and multi-task scenarios, H. Zhang et al.

designed an optimization problem with the goal of minimizing

the completion time of all tasks [4]. J. Xue et al. established an

integrated computing and transmission system with MEC

visible light communication (VLC) as the main body, and

formulated the overlapping-based low-latency flexible system

design as an optimization problem [5]. These efforts in the

literature focus on addressing system energy consumption and

offload latency, while ignoring the impact and consequences of

unbalanced MEC server load.

Intensive user tasks can lead to an unbalanced load among

servers, resulting in unreasonable resource utilization, which

requires appropriate algorithms to solve this problem. Yu M. et

al. [6] and Lu H et al. [7] proposed task offloading strategies

based on reinforcement learning and deep reinforcement

learning, respectively, to achieve the purpose of optimizing

load balancing. In [8] study, Li S. L. et al. achieved the purpose

of optimizing the weighted sum of total delay and energy

consumption of mobile devices and load balancing among

MEC servers through the study of offloading strategies. Above

literature consider optimizing load balancing, they do not

consider task offloading in an environment where edge server

deployment is restricted.

The main contributions of this paper are summarized as

follows:

• We consider task offloading in scenarios with limited

deployment of edge servers in wireless metropolitan area

networks, a multi-objective optimization problem is

constructed to optimize the load balancing of edge

servers and the average delay of task transmission.

• Transform the scenario of deploying edge servers on

some APs in the wireless metropolitan area network into

an undirected and unweighted graph, an offloading

strategy based on genetic algorithm is proposed.

• The algorithm is simulated using the real base station

geographic location data set. The experimental results

show that the proposed offloading strategy based on the

genetic algorithm has a good effect on the optimization

problems.

The rest of this article is organized as follows. The second

part elaborates on the system model and problem construction.

Detailed solutions are provided in Section 3. Section 4

evaluates the performance of the proposed algorithm based on

the simulation results. Section 5 concludes this paper and future

work.

II. SYSTEM MODEL

In this section, we propose some formal concepts to derive

optimization models for offload time and load balancing in edge

computing scenarios.

A. Network Model

As shown in figure 1, we consider a multi-hop mobile edge

computing scenario consisting of multiple APs and multiple

servers. This paper uses a connected undirected graph 𝐺 =

 International Journal of Scientific Engineering and Science
Volume 6, Issue 7, pp. 1-5, 2022. ISSN (Online): 2456-7361

2

http://ijses.com/

All rights reserved

{𝐴 ∪ 𝑆, 𝐸} to represent the network, 𝐴 represents the set of

wireless APs, 𝐴 = {𝑎1, 𝑎2, , , 𝑎𝑛}, 𝐸 represents the set of links

between base stations; when APs When 𝑎𝑖(𝑖 ∈ 𝐴) and 𝑎𝑗(𝑗 ∈

𝐴) links are connected, there is an edge (𝑖, 𝑗) ∈ 𝐸; 𝑆 represents

the set of edge servers, 𝑆 = {𝑠1, 𝑠2, , , 𝑠𝑚} . where 𝑛 = |𝐴| and

𝑚 = |𝑆| respectively represent the number of APs and edge

servers, and the value of m must be much smaller than the value

of n. Some APs in the network are deployed with edge servers

with the same capacity. If an AP is deployed with an edge

server, the AP and the server are collectively referred to as edge

computing nodes. Each AP receives a certain number of task

requests at the same time, where the task request set on AP ai is

represented as 𝑇(𝑖) = {𝑡1, 𝑡2, , , 𝑡𝑣}, each task is indivisible, and

𝑑𝑣 represents the data size of task 𝑡𝑣, 𝑣𝑖 represents the number

of all tasks of AP 𝑎𝑖. ℎ𝑖𝑗 represents the number of tasks that AP

ai offloads to the server 𝑠𝑗 . In this paper, each AP is linked

through wireless links with geographically adjacent APs, and

the number of links of each AP does not exceed 3. In intelligent

edge computing, after a large number of computing tasks are

offloaded from mobile devices to nearby base stations, edge

computing nodes need to determine how to allocate computing

resources for execution[9]. The network's intelligent manager

receives the servers' load information from the edge computing

nodes and formulates the offloading strategy. Based on the

reference information obtained, the intelligent manager designs

the most appropriate offloading scheme for each APs task and

sends the information back.

Fig. 1. This is system model.

B. Load Balance Analysis

Due to the uneven distribution of intensive tasks and edge

servers, some edge servers may be overloaded, causing network

congestion. An important purpose of researching load

balancing is to help improve resource usage, to assure that no

single node is overloaded, to decrease mobile users' waiting

time, and to improve mobile users' experience [9]. By referring

to the research literature [10-12], this paper mainly studies the

computing load balancing of edge servers in mobile edge

computing, mainly balancing the task load that has reached the

AP but has not started to execute, and does not consider the

communication model of task uploading.

This research uses standard deviation to evaluate the

workload balancing of edge servers. We know that 𝑚 edge

servers are located among APs, then we calculate the workload

of each edge server 𝑗 as 𝑤𝑗 and the load of server 𝑠𝑗 as:

𝑤𝑗 = ∑ 𝑑𝑖

𝑘𝑗

𝑖=1
(1)

where 𝑘𝑗 = |𝐾𝑗| represents the number of tasks calculated

by server 𝑠𝑗, 𝐾𝑗 represents the task set calculated by server 𝑠𝑗,

𝐾𝑗 = {𝑡1, 𝑡2, , , 𝑡𝑘}. The average workload of all edge servers is

expressed as follows:

𝑤𝑎𝑣𝑒 =
1

𝑚
∑ 𝑤𝑗

𝑚

𝑗=1
(2)

The standard deviation of the workload can be calculated as

follows:

𝑤𝐵 = √
∑ (𝑤𝑗 − 𝑤𝑎𝑣𝑒)

2𝑚
𝑗=1

𝑚
(3)

It is straightforward to know that the smaller the value of

the standard deviation, the more balanced the workload of each

edge server.

C. Offloading Time Mode

Offloading time is one of the basic elements of the

offloading strategy, and a shorter offloading time can enable

users to achieve better service quality. Since the task upload

process is not considered in the model in this paper, when the

task is offloaded to the edge server for processing, we mainly

consider the time when the task is transmitted to the target

server through the AP.

The tasks on each AP are offloaded to the edge server for

calculation through a wireless link. If the AP is deployed with

an edge server, we believe that the received tasks on the AP will

have the smallest transmission delay, which is regarded as 0. If

the AP is not deployed with an edge server, then the received

task of the AP needs to be forwarded to the nearby edge server

through the linked adjacent base station for calculation, and the

cumulative delay of the multi-hop transmission of each task

constitutes the task transmission delay.

The offloading time of the task 𝑡𝑣 on the wireless AP 𝑎𝑖 is

the cumulative delay of the transmission path of the task,

namely:

𝑡𝑣
𝑡𝑟𝑎𝑛 =

𝑑𝑣

𝛼
× ℎ𝑐 (4)

In the formula, 𝑑𝑣 is the data size of the task 𝑡𝑣, 𝛼 is the rate

of data transmission between APs, and ℎ𝑐 is the number of links

passed in the process of the task being offloaded to the target

server through the initial AP. The average transmission delay

of all tasks in the mobile edge computing network can be

expressed as:

𝑡𝑎𝑣𝑒 =
∑ ∑ 𝑡𝑗

𝑡𝑟𝑎𝑛𝑣𝑖
𝑗=1

𝑛
𝑖=1

∑ 𝑣𝑖
𝑛
𝑖=1

(5)

Here 𝑡𝑗
𝑡𝑟𝑎𝑛 represents the transmission delay of task 𝑡𝑗, and

𝑣𝑖 represents the number of task requests received by AP 𝑎𝑖.

D. Problem Formulation

In the research, our focus is to ensure the load balance of

edge servers; at the same time, minimize the average offloading

delay of all tasks. Then our objective function is articulated as

follows.

𝑀𝑖𝑛𝑚𝑖𝑧𝑒 [𝑤𝐵 , 𝑡𝑎𝑣𝑒] (7)

𝑠. 𝑡. ∑ ℎ𝑖𝑗

𝑚

𝑗=1
= 𝑣𝑖 𝑖 ∈ 𝐴, 𝑗 ∈ 𝑆 (8)

∑ 𝑘𝑗

𝑚

𝑗=1
= ∑ 𝑣𝑖

𝑛

𝑖=1
 𝑖 ∈ 𝐴, 𝑗 ∈ 𝑆 (9)

 International Journal of Scientific Engineering and Science
Volume 6, Issue 7, pp. 1-5, 2022. ISSN (Online): 2456-7361

3

http://ijses.com/

All rights reserved

Constraint (7) guarantees that all task requests from AP 𝑎𝑖

will be allocated to the server for processing, and no tasks

remain unprocessed. Constraint (8) guarantees that all AP tasks

are offloaded to the server for calculation.

III. SOLVING METHOD

In response to the problems raised in the second part, we

propose a task offloading strategy based on genetic algorithm.

In order to solve the problem in the edge computing network

with restricted server deployment in the paper, the genetic

algorithm needs to make some adjustments to the algorithm

model, including genes, chromosomes, selection operators and

fitness functions.

Chromosome: In this paper, the length of the chromosome

is set as the number of APs, and the chromosome code is

encoded by an integer. Each gene in the chromosome can be

any integer in the server serial number. A chromosome 𝑋 =
{𝑥1, 𝑥2, , , 𝑥𝑀} means that all tasks are offloaded to the

corresponding edge server and its values are randomly

initialized. Here is an example: There are 8 APs in the current

network, 3 APs are deployed with servers, and the AP numbers

where the servers are deployed are one of 1,3, and 7, thus the

chromosome length is 8, and each gene in the chromosome is

one of 1,3, and 7. Suppose there is a chromosome

[1,1,1,7,1,3,3,7] , the first, second, third, and fifth execute

calculations in the server. At the same time, the transmission

path of the task is retrieved by the Dijkstra algorithm. The input

of the algorithm is the initial node, the target node and the

adjacency matrix of the graph, and the output is the shortest path

between the two nodes.

Three operators: (1) Selection operator: we sort all

chromosomes according to the fitness value in ascending order,

and then select the half population with the smaller fitness

value, and add it twice to the parent population to eliminate the

other half of the population with a large fitness value. This

selection operator can make the algorithm converge quickly and

significantly reduce the number of iterations of the population.

(2) Crossover operator: The two-point crossover operator is

used here, that is, two points are randomly selected in a single

chromosome, and then gene exchange is executed. The

crossover probability is denoted as 𝐶𝑝 , and after extensive

preliminary testing and convergence analysis, 𝐶𝑝 is set to 0.6.

(3) Mutation operator: Uniform mutation is used here, that is,

each gene in the chromosome is mutated according to a certain

probability. The mutation probability is denoted as 𝑀𝑝 .

According to preliminary test results, 𝑀𝑝 is set to 0.0001.

Fitness function: For a certain chromosome, the fitness

value portrays the quality of the task offloading decision

expressed by the chromosome, and formula (9) is used as the

fitness function 𝑓. The smaller the fitness value, the better the

fitness of the chromosome. Consequently, our goal is to identify

the chromosome with the smallest fitness value during the GA

iteration.

𝑓 = 𝛽 ×
𝑤𝐵

𝑤𝐵(𝑚𝑎𝑥)

+ (1 − 𝛽) ×
𝑡𝑎𝑣𝑒

𝑡𝑎𝑣𝑒(𝑚𝑎𝑥)

(9)

In the formula, 𝛽 and (1 − 𝛽) represent the weights of

standard deviation of workload and average offloading delay,

respectively. In this paper, let 𝑤𝐵(𝑚𝑎𝑥) and 𝑡𝑎𝑣𝑒(𝑚𝑎𝑥) be the

𝑤𝐵 maximum and 𝑡𝑎𝑣𝑒 maximum obtained at the first iteration

of the algorithm.

At the same time, we added an elite retention strategy to the

genetic algorithm to escape the algorithm falling into the local

optimum.

IV. SIMULATION ANALYSIS

This section illustrates how to conduct simulation

experiments to determine the effectiveness of our solution,

which is simulated using python.

In the simulation of this paper, we randomly selected the

actual coordinates of 20 base stations and set the number of

servers to 5. We conduct experiments with different total tasks,

and the total tasks received by all APs are 3000, 4000, 5000,

6000, 7000 and 8000. The data size of each task is [7,40] Mbit

[13], and the data transfer rate between APs is 20MB/s [14].

In the network scenario, the K-means bisection algorithm is

used to divide multiple AP points into m clusters, and the value

of m is equal to the number of servers. After clustering, we find

the AP closest to the cluster center in each cluster and set this

AP as the AP where the server is deployed. After the location

of the server is determined, according to the principle of

proximity, each AP node is limited to be connected to three AP

nodes at most, and the topology map is randomly generated.

Fig. 2. The real location map of some base stations randomly selected in

Jinniu District, Chengdu.

Fig. 3. This is the AP node clustering result

Figure 3 shows the result of the AP location after the bipartite

K-means clustering algorithm. Points with the same mark

belong to the same cluster, and the greater mark in the cluster

 International Journal of Scientific Engineering and Science
Volume 6, Issue 7, pp. 1-5, 2022. ISSN (Online): 2456-7361

4

http://ijses.com/

All rights reserved

represents the cluster center. Figure 4 is a corresponding

network topology diagram generated randomly after selecting

an AP node to deploy a server according to the clustering result.

The small dots in the picture represent APs, the numbers on

them represent the serial numbers of APs, and the triangle-

shaped dots represent APs with deployed servers.

Fig. 4. This is the network topology map corresponding to the clustering

result.

In the simulation experiments, we primarily compared the

results of the following algorithms. Selecting the nearest server

algorithm (SNSA): Each AP finds the server with the least

number of hops in the task offloading process according to the

Dijkstra algorithm, and all tasks received by each AP are

offloaded to this server. (2) Genetic-based optimization

algorithm (GA): The details of the algorithm have been outlined

in the previous section. In this section, we mainly observe the

situation where the workload standard deviation is more

important, and the workload standard deviation and the average

transmission delay are equally important. Therefore, we select

the cases where the weight 𝛽 of the standard deviation of the

workload is 0.7 and 0.5, respectively, and observe the results of

the algorithm.

Fig. 5. This is the workload standard deviations value of various algorithm

offloading strategies.

Fig. 6. This is the average offloading delay value of various algorithm

offloading strategies.

We draw a comparison of the results of offloading strategies

obtained by various algorithms under different total number of

tasks. Figures 5 and 6 are comparison graphs of workload

standard deviation values and average offload delay values,

respectively.

Looking at Figure 5, we notice that the genetic algorithm can

get the offloading strategy with the lowest standard deviation of

the workload. When the total number of tasks is less than 5000,

the genetic algorithm with 𝛽 of 0.5 obtains the lowest standard

deviation of the workload; when the total number of tasks is

more than 5,000, the genetic algorithm with 𝛽 of 0.7 obtains the

lowest standard deviation of the workload. We infer that this is

related to the larger number of tasks and data volumes on the

AP. Under different total number of tasks, the standard

deviation of the workload obtained by the genetic algorithm

with 𝛽 of 0.5 is 52%-76% lower than that of selecting the

nearest server algorithm; the standard deviation of the workload

obtained by the genetic algorithm with 𝛽 of 0.7 is 61%-80%

lower than that of selecting the nearest server algorithm.

Looking at Figure 6, the average offloading delay values

obtained by each algorithm are relatively small: the values

obtained by these algorithms are around 300ms-500ms. We

infer that it has a lot to do with the task offloading path in the

algorithm that selects the shortest path. In most cases, selecting

the nearest server algorithm obtains the lowest average

offloading delay, and the average offloading delay values

obtained by the genetic algorithm with B of 0.5 and B of 0.7 are

4%-20% and 26%-40% higher than those obtained by the

selecting the nearest server algorithm, respectively. But this

strategy resulted in the highest number of workload standard

deviations, with a very imbalance workload per edge server.

Consequently, we can conclude that the genetic algorithm

has a good effect in optimizing the workload standard

deviation.

V. CONCLUSION

In this paper, we in a network with limited deployment of

edge servers, utilize multi-hop communication to offload tasks

to edge servers, while optimizing server workload and

offloading latency. After constructing the multi-objective

optimization problem, an offloading strategy based on genetic

algorithm is proposed to solve the problem. Simulation results

show that the proposed algorithm can adjust the weight of

workload and offload delay according to the experimental

needs. Subsequent work will conduct a more careful study of

server location determination and offloading strategies.

ACKNOWLEDGMENT

We thank all the reviewers and editors who have contributed

to the quality of this paper. At the same time, we also appreciate

the support by the fund from the Network and Data Security

Key Laboratory of Sichuan Province, UESTC (NO. NDS2021-

7), Sichuan Province General Education Scientific Research

(NO.2019514).

REFERENCES

[1] Guo, H., Liu, J., & Zhang, J. Computation offloading for multi-access
mobile edge computing in ultra-dense networks. IEEE Communications

Magazine, vol. 56, issue 8, pp. 14–19, 2018.

 International Journal of Scientific Engineering and Science
Volume 6, Issue 7, pp. 1-5, 2022. ISSN (Online): 2456-7361

5

http://ijses.com/

All rights reserved

[2] Fan, Q., & Ansari, N. Towards workload balancing in fog computing

empowered IoT. IEEE Transactions on Network Science and

Engineering, vol. 7, issue 1, pp. 253–262, 2018.
[3] Al-Abiad, M. S., Hassan, Z., & Hossain, J.Task Offloading Optimization

in NOMA-Enabled Multi-hop Mobile Edge Computing System Using

Conflict Graph. arXiv e-prints, vol. arXiv-2104, 2021.

[4] Zhang, H., Yang, Y., Huang, X., Fang, C., & Zhang, P. Ultra -
low latency multi-task offloading in mobile edge

computing. IEEE Access, vol. 9, pp. 32569-32581,2021.

[5] Xue, J., Ye, Z., Zhang, H., & Zhu, Y. Flexible Design of Low-Delay
MEC-VLC Integrating Network Based on Attocell Overlap for

IIoT. Electronics, vol. 11, issue 6, pp. 924,2022.

[6] Li, S. L., Du, J. B., Zhai, D. S., Chu, X. L., & Yu, F. R. Task offloading,
load balancing, and resource allocation in MEC networks. IET

Communications, vol. 14, issue 9, pp. 1451-1458, 2020.

[7] Yu M., Tang J., & Li J. A Multi-node MEC Computing Resource

Allocation Scheme Based on Reinforcement Learning [J].

Communication Technology, vol. 12, 2019.

[8] Lu, H., Gu, C., Luo, F., Ding, W., & Liu, X. Optimization of lightweight
task offloading strategy for mobile edge computing based on deep

reinforcement learning. Future Generation Computer Systems, vol. 102,

pp. 847-861, 2020.
[9] Xu, X., Li, Y., Huang, T., Xue, Y., Peng, K., Qi, L., & Dou, W. An

energy-aware computation offloading method for smart edge computing

in wireless metropolitan area networks. Journal of Network and

Computer Applications, vol. 133, pp. 75-85, 2019.

[10] Mondal, S., Das, G., & Wong, E. A game-theoretic approach for non-
cooperative load balancing among competing cloudlets. IEEE Open

Journal of the Communications Society, vol. 1, pp. 226-241, 2020.

[11] He, J., Zhang, D., Zhou, Y., & Zhang, Y. (2019, August). An Online
Computation Offloading Mechanism for Mobile Edge Computing in

Ultra-Dense Small Cell Networks. In 2019 IEEE SmartWorld, Ubiquitous

Intelligence & Computing, Advanced & Trusted Computing, Scalable
Computing & Communications, Cloud & Big Data Computing, Internet

of People and Smart City Innovation

(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, pp. 826-
833, 2020.

[12] Dong, Y., Xu, G., Ding, Y., Meng, X., & Zhao, J. (2019). A ‘joint-me’

task deployment strategy for load balancing in edge computing. IEEE
Access, vol. 7, pp. 99658-99669, 2019.

[13] You, Q., & Tang, B. Efficient task offloading using particle swarm

optimization algorithm in edge computing for industrial internet of
things. Journal of Cloud Computing, vol. 10, issue 1, pp. 1-11, 2021.

[14] Fan, W., Liu, Y. A., Tang, B., Wu, F., & Wang, Z. Computation

offloading based on cooperations of mobile edge computing-enabled base
stations. IEEE Access, vol. 6, pp. 22622-22633, 2017.

