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Abstract— Existing mobile edge computing research focuses on optimizing latency and energy consumption while ignoring the impact of server 

load imbalance. In this paper, we consider the terminal device uploads the computing task to the nearest AP, and the AP offloads the task to the 

MEC server through multi-hop communication. Aiming at the edge server load problem of the system and the extra delay that may be caused by 

multi-hop communication, we established a multi-objective optimization problem with edge server load balancing and average offloading delay 

as the optimization goals. We propose an offloading decision based on a genetic algorithm, effectively optimizes the load balancing of task 

offloading. The effectiveness of the proposed algorithm is verified by a large number of simulations. 
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I. INTRODUCTION  

With the rise of computing-intensive applications and delay-

sensitive applications, in order to overcome the problems of 

large delay and network congestion that may be caused by 

mobile cloud computing (MCC), researchers have proposed 

mobile edge computing (MEC). By studying the offloading 

strategy of MEC, the offloading delay, system energy 

consumption, etc. can be reduced, but there are inevitably some 

problems that need to be resolved. First, due to the uneven 

distribution of tasks in time and space, it may cause unbalanced 

load among MEC servers, which may lead to a sharp drop in 

Quality of Service and Quality of Experience [1,2]. Therefore, 

it is necessary to solve the problem of load balancing among 

MEC servers. Thus, it is vital to resolve the problem of load 

balancing among edge servers.  Secondly, in a multi-hop MEC 

system, during the offloading process, when wireless access 

point offloads large-scale tasks to the neighboring MEC server, 

it is necessary to utilize the wireless link between APs for task 

offloading. But multi-hop communication may bring additional 

transmission delays [3]. 

In multi-server and multi-task scenarios, H. Zhang et al. 

designed an optimization problem with the goal of minimizing 

the completion time of all tasks [4]. J. Xue et al. established an 

integrated computing and transmission system with MEC 

visible light communication (VLC) as the main body, and 

formulated the overlapping-based low-latency flexible system 

design as an optimization problem [5]. These efforts in the 

literature focus on addressing system energy consumption and 

offload latency, while ignoring the impact and consequences of 

unbalanced MEC server load. 

Intensive user tasks can lead to an unbalanced load among 

servers, resulting in unreasonable resource utilization, which 

requires appropriate algorithms to solve this problem. Yu M. et 

al. [6] and Lu H et al. [7] proposed task offloading strategies 

based on reinforcement learning and deep reinforcement 

learning, respectively, to achieve the purpose of optimizing 

load balancing. In [8] study, Li S. L. et al. achieved the purpose 

of optimizing the weighted sum of total delay and energy 

consumption of mobile devices and load balancing among 

MEC servers through the study of offloading strategies. Above 

literature consider optimizing load balancing, they do not 

consider task offloading in an environment where edge server 

deployment is restricted. 

The main contributions of this paper are summarized as 

follows: 

• We consider task offloading in scenarios with limited 

deployment of edge servers in wireless metropolitan area 

networks, a multi-objective optimization problem is 

constructed to optimize the load balancing of edge 

servers and the average delay of task transmission. 

• Transform the scenario of deploying edge servers on 

some APs in the wireless metropolitan area network into 

an undirected and unweighted graph, an offloading 

strategy based on genetic algorithm is proposed. 

• The algorithm is simulated using the real base station 

geographic location data set. The experimental results 

show that the proposed offloading strategy based on the 

genetic algorithm has a good effect on the optimization 

problems.  

The rest of this article is organized as follows. The second 

part elaborates on the system model and problem construction. 

Detailed solutions are provided in Section 3. Section 4 

evaluates the performance of the proposed algorithm based on 

the simulation results. Section 5 concludes this paper and future 

work. 

II. SYSTEM MODEL 

In this section, we propose some formal concepts to derive 

optimization models for offload time and load balancing in edge 

computing scenarios. 

A. Network Model 

As shown in figure 1, we consider a multi-hop mobile edge 

computing scenario consisting of multiple APs and multiple 

servers. This paper uses a connected undirected graph 𝐺 =
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{𝐴 ∪ 𝑆, 𝐸}  to represent the network, 𝐴  represents the set of 

wireless APs, 𝐴 = {𝑎1, 𝑎2, , , 𝑎𝑛}, 𝐸 represents the set of links 

between base stations; when APs When 𝑎𝑖(𝑖 ∈ 𝐴) and 𝑎𝑗(𝑗 ∈

𝐴) links are connected, there is an edge (𝑖, 𝑗) ∈  𝐸; 𝑆 represents 

the set of edge servers, 𝑆 = {𝑠1, 𝑠2, , , 𝑠𝑚} . where 𝑛 = |𝐴| and 

𝑚 = |𝑆| respectively represent the number of APs and edge 

servers, and the value of m must be much smaller than the value 

of n. Some APs in the network are deployed with edge servers 

with the same capacity. If an AP is deployed with an edge 

server, the AP and the server are collectively referred to as edge 

computing nodes. Each AP receives a certain number of task 

requests at the same time, where the task request set on AP ai is 

represented as 𝑇(𝑖) = {𝑡1, 𝑡2, , , 𝑡𝑣}, each task is indivisible, and 

𝑑𝑣 represents the data size of task 𝑡𝑣, 𝑣𝑖 represents the number 

of all tasks of AP 𝑎𝑖. ℎ𝑖𝑗 represents the number of tasks that AP 

ai offloads to the server 𝑠𝑗 . In this paper, each AP is linked 

through wireless links with geographically adjacent APs, and 

the number of links of each AP does not exceed 3. In intelligent 

edge computing, after a large number of computing tasks are 

offloaded from mobile devices to nearby base stations, edge 

computing nodes need to determine how to allocate computing 

resources for execution[9]. The network's intelligent manager 

receives the servers' load information from the edge computing 

nodes and formulates the offloading strategy. Based on the 

reference information obtained, the intelligent manager designs 

the most appropriate offloading scheme for each APs task and 

sends the information back. 

 
Fig. 1. This is system model. 

B. Load Balance Analysis 

Due to the uneven distribution of intensive tasks and edge 

servers, some edge servers may be overloaded, causing network 

congestion. An important purpose of researching load 

balancing is to help improve resource usage, to assure that no 

single node is overloaded, to decrease mobile users' waiting 

time, and to improve mobile users' experience [9]. By referring 

to the research literature [10-12], this paper mainly studies the 

computing load balancing of edge servers in mobile edge 

computing, mainly balancing the task load that has reached the 

AP but has not started to execute, and does not consider the 

communication model of task uploading. 

This research uses standard deviation to evaluate the 

workload balancing of edge servers. We know that 𝑚  edge 

servers are located among APs, then we calculate the workload 

of each edge server 𝑗 as 𝑤𝑗  and the load of server 𝑠𝑗 as:  

𝑤𝑗 = ∑ 𝑑𝑖

𝑘𝑗

𝑖=1
(1) 

where 𝑘𝑗 = |𝐾𝑗| represents the number of tasks calculated 

by server 𝑠𝑗, 𝐾𝑗 represents the task set calculated by server 𝑠𝑗, 

𝐾𝑗 = {𝑡1, 𝑡2, , , 𝑡𝑘}. The average workload of all edge servers is 

expressed as follows: 

𝑤𝑎𝑣𝑒 =
1

𝑚
∑ 𝑤𝑗

𝑚

𝑗=1
(2) 

The standard deviation of the workload can be calculated as 

follows: 

𝑤𝐵 = √
∑ (𝑤𝑗 − 𝑤𝑎𝑣𝑒)

2𝑚
𝑗=1

𝑚
(3) 

It is straightforward to know that the smaller the value of 

the standard deviation, the more balanced the workload of each 

edge server. 

C. Offloading Time Mode 

Offloading time is one of the basic elements of the 

offloading strategy, and a shorter offloading time can enable 

users to achieve better service quality. Since the task upload 

process is not considered in the model in this paper, when the 

task is offloaded to the edge server for processing, we mainly 

consider the time when the task is transmitted to the target 

server through the AP. 

The tasks on each AP are offloaded to the edge server for 

calculation through a wireless link. If the AP is deployed with 

an edge server, we believe that the received tasks on the AP will 

have the smallest transmission delay, which is regarded as 0. If 

the AP is not deployed with an edge server, then the received 

task of the AP needs to be forwarded to the nearby edge server 

through the linked adjacent base station for calculation, and the 

cumulative delay of the multi-hop transmission of each task 

constitutes the task transmission delay.  

The offloading time of the task 𝑡𝑣 on the wireless AP 𝑎𝑖 is 

the cumulative delay of the transmission path of the task, 

namely:  

𝑡𝑣
𝑡𝑟𝑎𝑛 =

𝑑𝑣

𝛼
× ℎ𝑐 (4) 

In the formula, 𝑑𝑣 is the data size of the task 𝑡𝑣, 𝛼 is the rate 

of data transmission between APs, and ℎ𝑐 is the number of links 

passed in the process of the task being offloaded to the target 

server through the initial AP. The average transmission delay 

of all tasks in the mobile edge computing network can be 

expressed as:  

𝑡𝑎𝑣𝑒 =
∑ ∑ 𝑡𝑗

𝑡𝑟𝑎𝑛𝑣𝑖
𝑗=1

𝑛
𝑖=1

∑ 𝑣𝑖
𝑛
𝑖=1

(5) 

Here 𝑡𝑗
𝑡𝑟𝑎𝑛 represents the transmission delay of task 𝑡𝑗, and 

𝑣𝑖  represents the number of task requests received by AP 𝑎𝑖. 

D. Problem Formulation 

In the research, our focus is to ensure the load balance of 

edge servers; at the same time, minimize the average offloading 

delay of all tasks. Then our objective function is articulated as 

follows. 

𝑀𝑖𝑛𝑚𝑖𝑧𝑒 [𝑤𝐵 , 𝑡𝑎𝑣𝑒] (7) 

𝑠. 𝑡.    ∑ ℎ𝑖𝑗

𝑚

𝑗=1
= 𝑣𝑖    𝑖 ∈ 𝐴, 𝑗 ∈ 𝑆 (8) 

∑ 𝑘𝑗

𝑚

𝑗=1
= ∑ 𝑣𝑖

𝑛

𝑖=1
   𝑖 ∈ 𝐴, 𝑗 ∈ 𝑆 (9) 
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Constraint (7) guarantees that all task requests from AP 𝑎𝑖 

will be allocated to the server for processing, and no tasks 

remain unprocessed. Constraint (8) guarantees that all AP tasks 

are offloaded to the server for calculation. 

III. SOLVING METHOD 

In response to the problems raised in the second part, we 

propose a task offloading strategy based on genetic algorithm. 

In order to solve the problem in the edge computing network 

with restricted server deployment in the paper, the genetic 

algorithm needs to make some adjustments to the algorithm 

model, including genes, chromosomes, selection operators and 

fitness functions. 

Chromosome: In this paper, the length of the chromosome 

is set as the number of APs, and the chromosome code is 

encoded by an integer. Each gene in the chromosome can be 

any integer in the server serial number. A chromosome 𝑋 =
{𝑥1, 𝑥2, , , 𝑥𝑀}  means that all tasks are offloaded to the 

corresponding edge server and its values are randomly 

initialized. Here is an example: There are 8 APs in the current 

network, 3 APs are deployed with servers, and the AP numbers 

where the servers are deployed are one of 1,3, and 7, thus the 

chromosome length is 8, and each gene in the chromosome is 

one of 1,3, and 7. Suppose there is a chromosome 

[1,1,1,7,1,3,3,7] , the first, second, third, and fifth execute 

calculations in the server. At the same time, the transmission 

path of the task is retrieved by the Dijkstra algorithm. The input 

of the algorithm is the initial node, the target node and the 

adjacency matrix of the graph, and the output is the shortest path 

between the two nodes.  

Three operators: (1) Selection operator: we sort all 

chromosomes according to the fitness value in ascending order, 

and then select the half population with the smaller fitness 

value, and add it twice to the parent population to eliminate the 

other half of the population with a large fitness value. This 

selection operator can make the algorithm converge quickly and 

significantly reduce the number of iterations of the population. 

(2) Crossover operator: The two-point crossover operator is 

used here, that is, two points are randomly selected in a single 

chromosome, and then gene exchange is executed. The 

crossover probability is denoted as 𝐶𝑝 , and after extensive 

preliminary testing and convergence analysis, 𝐶𝑝 is set to 0.6. 

(3) Mutation operator: Uniform mutation is used here, that is, 

each gene in the chromosome is mutated according to a certain 

probability. The mutation probability is denoted as 𝑀𝑝 . 

According to preliminary test results, 𝑀𝑝 is set to 0.0001. 

Fitness function: For a certain chromosome, the fitness 

value portrays the quality of the task offloading decision 

expressed by the chromosome, and formula (9) is used as the 

fitness function 𝑓. The smaller the fitness value, the better the 

fitness of the chromosome. Consequently, our goal is to identify 

the chromosome with the smallest fitness value during the GA 

iteration. 

𝑓 = 𝛽 ×
𝑤𝐵

𝑤𝐵(𝑚𝑎𝑥)

+ (1 − 𝛽) ×
𝑡𝑎𝑣𝑒

𝑡𝑎𝑣𝑒(𝑚𝑎𝑥)

(9) 

In the formula, 𝛽  and (1 − 𝛽)  represent the weights of 

standard deviation of workload and average offloading delay, 

respectively. In this paper, let 𝑤𝐵(𝑚𝑎𝑥)  and 𝑡𝑎𝑣𝑒(𝑚𝑎𝑥)  be the 

𝑤𝐵  maximum and 𝑡𝑎𝑣𝑒 maximum obtained at the first iteration 

of the algorithm. 

At the same time, we added an elite retention strategy to the 

genetic algorithm to escape the algorithm falling into the local 

optimum. 

IV. SIMULATION ANALYSIS 

This section illustrates how to conduct simulation 

experiments to determine the effectiveness of our solution, 

which is simulated using python. 

In the simulation of this paper, we randomly selected the 

actual coordinates of 20 base stations and set the number of 

servers to 5. We conduct experiments with different total tasks, 

and the total tasks received by all APs are 3000, 4000, 5000, 

6000, 7000 and 8000. The data size of each task is [7,40] Mbit 

[13], and the data transfer rate between APs is 20MB/s [14]. 

In the network scenario, the K-means bisection algorithm is 

used to divide multiple AP points into m clusters, and the value 

of m is equal to the number of servers. After clustering, we find 

the AP closest to the cluster center in each cluster and set this 

AP as the AP where the server is deployed. After the location 

of the server is determined, according to the principle of 

proximity, each AP node is limited to be connected to three AP 

nodes at most, and the topology map is randomly generated. 

 

 
Fig. 2. The real location map of some base stations randomly selected in 

Jinniu District, Chengdu. 

 

 
Fig. 3. This is the AP node clustering result 

 

Figure 3 shows the result of the AP location after the bipartite 

K-means clustering algorithm. Points with the same mark 

belong to the same cluster, and the greater mark in the cluster 
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represents the cluster center. Figure 4 is a corresponding 

network topology diagram generated randomly after selecting 

an AP node to deploy a server according to the clustering result. 

The small dots in the picture represent APs, the numbers on 

them represent the serial numbers of APs, and the triangle-

shaped dots represent APs with deployed servers. 
 

 
Fig. 4. This is the network topology map corresponding to the clustering 

result. 

 

In the simulation experiments, we primarily compared the 

results of the following algorithms. Selecting the nearest server 

algorithm (SNSA): Each AP finds the server with the least 

number of hops in the task offloading process according to the 

Dijkstra algorithm, and all tasks received by each AP are 

offloaded to this server. (2) Genetic-based optimization 

algorithm (GA): The details of the algorithm have been outlined 

in the previous section. In this section, we mainly observe the 

situation where the workload standard deviation is more 

important, and the workload standard deviation and the average 

transmission delay are equally important. Therefore, we select 

the cases where the weight 𝛽 of the standard deviation of the 

workload is 0.7 and 0.5, respectively, and observe the results of 

the algorithm.  
 

 
Fig. 5. This is the workload standard deviations value of various algorithm 

offloading strategies. 

 
Fig. 6. This is the average offloading delay value of various algorithm 

offloading strategies. 
 

We draw a comparison of the results of offloading strategies 

obtained by various algorithms under different total number of 

tasks. Figures 5 and 6 are comparison graphs of workload 

standard deviation values and average offload delay values, 

respectively. 

Looking at Figure 5, we notice that the genetic algorithm can 

get the offloading strategy with the lowest standard deviation of 

the workload. When the total number of tasks is less than 5000, 

the genetic algorithm with 𝛽 of 0.5 obtains the lowest standard 

deviation of the workload; when the total number of tasks is 

more than 5,000, the genetic algorithm with 𝛽 of 0.7 obtains the 

lowest standard deviation of the workload. We infer that this is 

related to the larger number of tasks and data volumes on the 

AP. Under different total number of tasks, the standard 

deviation of the workload obtained by the genetic algorithm 

with 𝛽  of 0.5 is 52%-76% lower than that of selecting the 

nearest server algorithm; the standard deviation of the workload 

obtained by the genetic algorithm with 𝛽 of 0.7 is 61%-80% 

lower than that of selecting the nearest server algorithm. 

Looking at Figure 6, the average offloading delay values 

obtained by each algorithm are relatively small: the values 

obtained by these algorithms are around 300ms-500ms. We 

infer that it has a lot to do with the task offloading path in the 

algorithm that selects the shortest path. In most cases, selecting 

the nearest server algorithm obtains the lowest average 

offloading delay, and the average offloading delay values 

obtained by the genetic algorithm with B of 0.5 and B of 0.7 are 

4%-20% and 26%-40% higher than those obtained by the 

selecting the nearest server algorithm, respectively. But this 

strategy resulted in the highest number of workload standard 

deviations, with a very imbalance workload per edge server. 

Consequently, we can conclude that the genetic algorithm 

has a good effect in optimizing the workload standard 

deviation. 

V. CONCLUSION  

In this paper, we in a network with limited deployment of 

edge servers, utilize multi-hop communication to offload tasks 

to edge servers, while optimizing server workload and 

offloading latency. After constructing the multi-objective 

optimization problem, an offloading strategy based on genetic 

algorithm is proposed to solve the problem. Simulation results 

show that the proposed algorithm can adjust the weight of 

workload and offload delay according to the experimental 

needs. Subsequent work will conduct a more careful study of 

server location determination and offloading strategies.  
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