
 International Journal of Scientific Engineering and Science
Volume 6, Issue 1, pp. 121-126, 2022. ISSN (Online): 2456-7361

121

http://ijses.com/

All rights reserved

A Word Search Puzzle Construction Algorithm

Lefteris Moussiades1

 1Department of Computer Science, IHU, Kavala, Eastern Macedonia & Thrace, +30

Abstract— This paper presents a novel word-search puzzle construction algorithm. The proposed algorithm guarantees that it will place all the

words of a set of words in the game board with the sole condition that there is at least one correct placement. Furthermore, it dramatically

improves the construction average time compared to an exhaustive search algorithm. The algorithm may be used in various educational

applications. Finally, it helps retain student interest in repetitive training with the same set of words by placing them in random positions.

I. INTRODUCTION

Recently, game-based learning and relevant research have

become increasingly popular. A valuable overview is given by

[1], which ascertains a substantial potential for learning with

games and simulations. Computer games for learning

computer memory concepts in secondary education is more

effective in promoting students' knowledge of computer

memory concepts and more motivational than the non-gaming

approach [2]. Also, [3] shows that students in secondary

education who played a mobile history game gained

significantly more knowledge than those who received regular

project‐based instruction on the historical topic of the Middle

Ages. Furthermore, a collaborative game-based learning

approach is shown by [4] to improve students' learning

performance in science courses. Moreover, an empirical study

on engagement, flow, and immersion in game-based learning

shows that meeting with the game positively affects learning

outcomes [5]. Robots are also widely used and interact with

students while helping them learn various cognitive subjects

[6, 7, and 8].

In this context, we have proposed a robot capable of

helping foreign language learners to acquire the vocabulary

they have to learn as part of their current study in the foreign

language [9]. Among other functions, VT automatically adapts

a set of suitable games to the content of the required

vocabulary and suggests them to students according to their

individual needs. Word search puzzles help learn vocabulary

[10]. Therefore, one of the games that the proposed robot

suggests to students is a word search puzzle.

The most critical challenge in developing a word search

puzzle application is the puzzle construction itself. A

construction algorithm should place the words of a given set

randomly on the board so that no word exceeds the board

limits and all word intersections occur on common letters.

Note that the requirement for random word distribution is

essential to ensure that words are hidden in different positions

in repeating executions, so the student's interest is attracted to

all executions with the same vocabulary. A straightforward

solution to the abovementioned problem is to calculate all

possible placements of the words in the board, form a list of

the valid ones, and finally choose an arrangement randomly

from the set of valid placements. However, the space of

possible solutions is vast, resulting in a time-consuming

algorithm that is practically unacceptable. In this paper, we

propose a word-search puzzle construction algorithm, which

we call WoSeCon (Word Search Construction), and it has the

following characteristics:

• Generates a puzzle distributing the words randomly on

the board

• If there is a solution, the algorithm guarantees that it

will be found.

• It reduces the average time complexity by returning the

first (randomly generated) valid placement that it finds;

therefore, it does not need to calculate all possible

placements.

The rest of the paper is structured as follows: Chapter 2

discusses existing word-search puzzle construction algorithms.

In section 3, we discuss the construction complexity. Next, in

section 4, we introduce concepts essential for the description

of the construction algorithm. In part 5, we present the

construction algorithm in detail, and in section 6, we discuss

its performance. Finally, in section 7, conclusions and further

development are discussed.

II. EXISTING CONSTRUCTION ALGORITHMS

The word search puzzle and the crossword have several

similarities. The construction of a crossword may be more

complicated than the construction of a word search puzzle as

the former requires all adjacent characters to belong to a word,

while the latter does not. However, it is easier to find literature

related to crossword construction [11, 12, 13, and 14] than to

word search puzzle construction.

A patent paper [15] presents an interactive word search

puzzle and a construction algorithm. However, this algorithm

does not produce random puzzles but instead aims to create

the same puzzle after a certain time if the player has not

performed a specific action required by the game. Moreover,

the construction algorithm does not guarantee that if a solution

exists, it will find it with time efficiency, or it will find it at all.

More precisely, the algorithm selects the first word randomly

from a list of words and locates it in the puzzle grid. Any

subsequent word is selected in order and is placed if it

overlaps with a previously located one. Words that do not

overlap are skipped. After the list of words has reached the

end, a second pass tries to locate the previously skipped

words. If the second pass completes and there are still words

that have not been located, the algorithm clears the puzzle grid

and starts from the beginning by selecting a word randomly

from the list of words. This algorithm identifies some

"random" placements that meet the overlap conditions in the

puzzle board. However, it does not systematically investigate

 International Journal of Scientific Engineering and Science
Volume 6, Issue 1, pp. 121-126, 2022. ISSN (Online): 2456-7361

122

http://ijses.com/

All rights reserved

the available "random" arrangements, so it does not guarantee

finding a solution, if possible. Besides, since "random"

placements are not investigated systematically, it is expected

that indifferent attempts to place the words, placements that

have already been tested and have been failed, will be

repeated. In our view, this algorithm is sufficient for doing

puzzles when the board space is enough for the number of

words to place. In denser puzzles, it will cause delay problems

such that often, they can be considered equivalent to failure to

find a solution, although a solution exists.

Paper [16] is also a patent paper that includes constructing

a 3-dimensional word search puzzle and a way of using it. The

puzzle is built from a predefined set of phrases, including

words, sentences, numbers, and thoughts expressed as rebuses.

The construction of the three-dimensional word-search puzzle

is based on creating two-dimensional sheets for each surface

of a three-dimensional figure. However, although it is reported

that the predefined phrases are placed on two-dimensional

sheets, no additional information on the placement algorithm

is given. Also, two-dimensional sheets do not define a strict

area, as happens with the puzzle grid in our case. Οn the

contrary, each two-dimensional sheet overlaps the surface of a

three-dimensional object in such a way that a continuous space

is created between the sheets covering adjacent surfaces. More

generally, the placement of predefined phrases is ensured only

by their predefined small number to the available space.

Another approach simply leaves out words that cannot be

located with the first try [17].

Besides, Terzopoulos in [18] places some words firstly

horizontally and the remaining ones vertically. Within a row

or a column of the puzzle, only one word can be placed. It

tries a limited number of times, specified by a parameter, to

place a word randomly. If a suitable placement for the word

would not be found, then the word is skipped, and the

construction process continues with the next word

The better construction algorithm, to our knowledge, tries

to place words in the puzzle grid, and when a word cannot be

placed, it backtracks to the previously placed word and tries to

relocate it [19]. However, when it backtracks, it chooses a

random location from the space of available positions without

taking into account locations that, although they are available,

they have already been tried while trying to place the current

word after backtracking. Thus, the space of available

placements is not investigated systematically. As a result, the

algorithm examines placements that have already been

considered and found unsuitable.

Interestingly, two websites [20, 21] offer a web-based

service for word search puzzle construction without, however,

giving any further information about the construction

algorithm.

III. THE CONSTRUCTION COMPLEXITY

Let us start by clarifying the construction problem. Given a

set of words and a two-dimensional puzzle-grid, the problem

is to find a random but valid placement of the words in the

grid. A valid arrangement is a placement of the words in the

grid where no word exceeds the grid limits, and all word

intersections occur on common letters.

An obvious solution to this problem is calculating all

possible placements, finding the valid ones, and selecting one

randomly. Assume that the set of words has size k, and the

grid size is r x c, where r represents the number of rows, and c

represents the number of columns. Furthermore, assume that d

represents the number of all possible directions in which

words can be placed in the grid, e.g., vertical or horizontal.

Considering that no word consists of only one letter, it

becomes obvious that no word can start on the grid limits, i.e.,

in a grid entry on row r or in a grid entry on column c.

Therefore, there are n = (r-1) x (c-1) x d entries where a word

could be started in the grid. The k-combinations of n are the

different arrangements of k-positions of the total n-positions

and are given by n! / (n-k)! x k!. Furthermore, considering that

in each of these k-tuples, the k words can be placed in k!

different arrangements, we end up that the total solution space

is n! / (n-k)!. This is a huge number. For example, for k = 15, r

= c = 20, and d = 2, the possible placements are 6,52E+42.

Such a solution is computationally prohibited. Therefore,

instead of calculating all possible placements, our approach

tries to find the first valid but random placement, and it returns

it as soon as it finds it. Thus, the average construction time is

reduced dramatically, and the problem becomes

computationally efficient.

IV. CONCEPTS AND NOTATIONS

A Directed-Location is a triad consisting of a row

identification number, a column identification number, and a

direction identification number, which identifies the location

as vertically or horizontally oriented. The placement of a word

in the game board is represented by a Directed-Location,

which identifies the row and column of the word's first letter

and the word direction.

A Random-Locator keeps a list of available Directed-

Locations and can select randomly one of them. Note that a

Random-Locator shuffles the list of Directed-Locations

immediately after the list creation. Therefore, the random

selection is achieved by selecting sequentially the Directed-

Locations kept in the list of the Random-Locator.

Furthermore, a Random-Locator supports the following

operations:

• add(Directed-Location). It adds a Directed-Location to the

list of available Directed-Locations.

• remove(Directed-Location). It removes its argument from

the list of Directed-Locations and returns it to the caller.

• get(Integer). It returns the Directed-Location at the index

position represented by its integer argument. Note, when

accessing Directed-Locations sequentially using the get

function, we get the available locations in the game board

in random order as a Random-Locator shuffles the list of

Directed-Locations at its construction.

• minus(list of Directed-Locations). It returns a Random-

Locator that considers as available Directed-Locations

those that are available at the time the operation is

executed, minus the Directed-Locations contained in the

list that is given as argument.

A Word-Info keeps three types of information: First is the

content, a string representing the word itself. Next is the

 International Journal of Scientific Engineering and Science
Volume 6, Issue 1, pp. 121-126, 2022. ISSN (Online): 2456-7361

123

http://ijses.com/

All rights reserved

placement, a Directed-Location that keeps the position of the

first letter of this word in the game board and the direction of

the content layout. If this word has not been placed, then

placement is null. Note that the content, together with the

placement, is sufficient to represent the content placement in

the game board. Finally, a Word-Info keeps a list of Directed-

Locations called tested locations, which we explain later in

this chapter.

V. THE WOSECON ALGORITHM

U Given a list of Word-Info Objects and a game board, the

basic idea is to position the words of the list in random

locations of the game board, one by one. If, however, one

word cannot be placed, then the algorithm steps backwards

and repositions a previously positioned word. Therefore,

WoSeCon operates in two modes: Backward and forward

modes.

Initially, the algorithm operates in the forward mode. If the

placement of the current word is successful, the operation

mode remains forward. If the placement of the current word

fails, then WoSeCon enters the backward mode. In the

backward mode, the algorithm tries to reposition a previously

positioned word. In the case of success, the operation mode

changes again to the forward mode. Therefore, in an extreme

case, all but one word may have been placed, and the

algorithm may step backwards continuously until the first

word in the list would be repositioned. If the first word in the

list cannot be placed, then there is no way to place the words,

and WoSeCon terminates with failure.

When the algorithm operates in the forward mode,

Directed-Locations for the placement of the current word are

given from a global Random-Locator, which we call global

locator. The global locator keeps a list of unoccupied

positions, initially consisting of the total Directed-Locations

produced based on the game board. This list is initially

shuffled, and the sequential selection gives the locations in

random order.

However, when the algorithm operates in the backward

mode, the global locator does not serve the purpose of a

systematic search of suitable positions. Assume that the

algorithm tries to place the word found at index i in the list of

words and fails. Then, it backtracks to reposition word at

index i-1. However, the word at index i-1 has already been

positioned. Therefore, its current position should be marked as

unoccupied and given back to the global locator that keeps the

list of empty positions. Now, the word at index i-1 should take

a position from the list of unoccupied ones minus the position

that has been already tested and proved unsuitable as it does

not leave space for placement of word i.

Moreover, after successful repositioning of word i-1, it is

possible that the placement of word at i will fail again. In this

case, the word at index i-1 should take a position from the list

of unoccupied ones minus the two positions that have been

already tested. The algorithm may backtrack several times

from word at i to word at i-1. Therefore, each time when the

algorithm backtracks from word i to word i-1, word i-1 should

be placed in a position from the space of unoccupied positions

minus the positions that have already been tested and have

been proved unsuitable. These positions are kept in a list

called the tested locations and kept in the corresponding

Word-Info object. Note that when the algorithm steps

backwards from the word at index i to the word at index i-1,

the list of tested locations (of the word i) does not apply, as

any of these positions may be appropriate for placement of the

word i after the word i-1 has been repositioned. Therefore, the

list of tested locations of the word i must be deleted when the

algorithm steps backwards to reposition word i-1. In

conclusion, when the algorithm operates in the backward

mode to reposition word at index i-1, the tested locations of

the word i should be deleted, and the tested locations of word

i-1 should be updated. WoSeCon is given in algorithm 1.

Algorithm 1: The WoSeCon Algorithm

Input: list of words is the list of words to place on the game

board, board represents the game board

Output: It updates the board

1 construct() {

2 int current word index = 0;

3 Word-Info current word = list of words.get(current word

index);

4 operation mode = FORWARD;

5 while (true) {

6

7 if (locateOne(current word)) {

8 if (current word index == list of words.size()-1)

break;

9 current word = list of words.get(++current word

index);

10 operation mode = FORWARD;

11 } else {

12 if (current word index == 0) fail();

13 current word.deleteTested();

14 current word = list of words.get(--current word

index);

15 operation mode = BACKWARD;

16 }

17 }

18

19 return Board (list of words);

20 }

In line 2, the variable current word index is initialized to 0.

Variable current word index represents the index position in

the list of words of the current word, i.e., the word that the

algorithm is currently placing on the game board. In line 3, the

current word, a Word-Info object, gets its value from the list

of words.

The while-loop from line 5 to line 18 performs the actual

placement of the words. In line 7, the algorithm tries to place

the current word. We detail explain the placement of a word in

the game board later in this section. In case of successful

placement of the current word, the algorithm proceeds and

checks if the current word that has just been placed, is the last

one (line 8). If it is, all words have been placed successfully;

therefore, we break the loop. If the current word is not the last

 International Journal of Scientific Engineering and Science
Volume 6, Issue 1, pp. 121-126, 2022. ISSN (Online): 2456-7361

124

http://ijses.com/

All rights reserved

one, then the next word in the list becomes the current one,

and the operation mode is set to forward. Therefore, the

construction will proceed to place the next word. If the

placement of the current word fails (line 7), the control is

transferred in line 12, where we check if the word that cannot

be placed in is the first one in the list of words, in which case,

the algorithm terminates with failure. If the first word cannot

be placed, then it either does not fit the dimensions of the

game board, or no suitable placement provides sufficient space

for the placement of the next words. If the current word is not

the first word in the list of words, then the algorithm deletes

(line 13) the tested locations of the current word as we have

already explained that this deletion is necessary. Next, the

previous word in the list becomes the current word (line 14),

and the operation sets to the backward mode (line 15).

Therefore, the algorithm will proceed to reposition the

previously positioned word. When the algorithm exits the

while-loop, it updates the game board (line 19) and returns it.

Recall that the list of words is a list containing Word-Info

objects, each keeping the information related to the placement

of the word on the board. Thus, the "return Board" function in

line 19 only needs the list of words to update the placement of

the words in the game board.

Now we explain function locateOne, which is presented as

algorithm 2. As its name indicates, it tries to place one word,

i.e., the current one, in the game board. It receives the current

word as parameter and updates it with the information relevant

to its placement in the game board. It also accesses the list of

words and the global locator.

Algorithm 2: Function locateOne

Input: The list of words, the current word and the global

locator

Output: true for successful placement of the current word and

false otherwise. It also updates the current word with the

information that is relevant to its placement in the game board

 1 locateOne(current word) {

 2

 3 Random-Locator local locator;

 4 if (operation mode==BACKWARD) {

 5 Directed-Location dL = current

word.getPlacement();

 6 global locator.add(dL);

 7 current word.moveLocationToTested();

 8 local locator = global locator.minus(current

word.getTested());

 9 } else {

10 local locator = global locator;

11 }

12

13 int location index = 0;

14 while (location index < local locator.size()) {

15 Directed-Location suitable location = local

locator.get(location index);

16 if (validPlacement(list of words, current word,

suitable location)) {

17 global locator.remove(suitable location);

18 return true;

19 }

20 location index++;

21 }

22 return false;

23 }

In line 3, a Random-Locator named local locator is

declared to be used later in the scope of the locateOne. In line

4, the operation mode is checked. If it is backward, in line 5,

we assign to the variable dL the Directed-Location where the

current word was placed. Next, in line 6, we give back to the

space of unoccupied positions the dL. In line 7, function

moveLocationToTested performs two tasks: First, it deletes

the placement of the current word such that the current word is

not considered that has been placed anymore; second, it

updates the tested locations of the current word. Finally, in

line 8, the local locator is prepared to give a Directed-Location

from the space of unoccupied ones minus the tested locations

of the current word. If the operation mode is forward (line 4),

then the local locator becomes equal to the global locator,

which means that all unoccupied locations are available. Next,

locateOne searches the space of suitable positions to find one

for the placement of the current word. In the while loop (lines

14 to 21), the appropriate Locator, which the local locator

holds, returns the suitable positions (line 15) sequentially. The

first suitable valid position is removed from the space of

unoccupied positions (line 17), and locateOne returns true.

Function validPlacement (line 16) checks whether or not the

position returned by the local locator is valid. It considers as

valid a placement if the content is placed such that it does not

exceed the limits of the game board and does not overlap with

any other word or it overlaps on a joint letter. Besides, the

validPlacement updates the placement information of the

current word. Suppose the while loop will terminate without a

position to be found, which means that a valid placement for

the current word has not been found, although all suitable

placements have been tried. In that case, locateOne returns

false to indicate failure of current word placement.

C++ code sources of the WoSeCon Algorithm can be found

in github [22].

Fig. 1. A dense puzzle constructed in milliseconds

VI. PERFORMANCE

The worst-case complexity of our approach is equivalent

to the exhaustive search complexity. When there is only one

 International Journal of Scientific Engineering and Science
Volume 6, Issue 1, pp. 121-126, 2022. ISSN (Online): 2456-7361

125

http://ijses.com/

All rights reserved

valid placement of the words in the game board, then

WoSeCon may try all possible placements until it ends up

with the valid one. However, there is rarely one solution;

therefore, WoSeCon will run faster as it needs to find only one

valid placement. In practice, our algorithm constructs a puzzle

in fractions of a second, even in the case of dense puzzles.

Next, we present three puzzles, each constructed by a

WoSeCon implementation in C++11, which has run on an i7

Intel with 16 GB RAM and 64-bit Windows 10 operating

system. All three puzzles use English words. However, the

current implementation of WOSeCon supports all languages

that are written left-to-right, whereas it can be easily extended

to support languages that are written right-to-left.

Figure 1 shows a dense puzzle. Cells containing a letter

represent positions where a word letter has been placed. Cells

indicated by the character '-' may contain any random

character. This puzzle consists of 14 words placed on an

11x11 board and occupy about 58% of the total board space.

The average construction time for 100 executions is about

0.004 seconds; the minimum time is about 0.001 seconds, and

the maximum one is 0.03 seconds.

However, if we reduce the board dimensions to 10x11, the

average time becomes 0.36 seconds, the minimum time is

0.005 seconds, and the maximum time is 31 seconds.

Depending on the application, the construction time of 31

seconds may not be suitable. Therefore, for this set of words,

boards smaller than 11x11 push the WoSeCon performance to

its limits.

Figure 2 presents a larger puzzle. It consists of 23 lines and

23 columns, and 34 words have been placed. This set of words

includes longer words in comparison with the puzzle of figure

1. The words here occupy about 54% of the entire puzzle

board. The average construction time for 100 executions is

about 0.093 centiseconds. The minimum construction time is

0.023 seconds, and the maximum construction time is about

3.7 seconds. These times are also considered acceptable.

However, if we reduce the size of the board, then similarly to

the first case, the maximum construction time becomes of the

order of tens of seconds, which may render the algorithm

performance unacceptable.

Fig. 2. A 23x23 puzzle containing 34 long words

Figure 3 shows a dense puzzle consisting of 8 lines and 9

columns. In this puzzle, 12 words have been placed. This

puzzle is relatively small, but it is quite dense as the words

occupy about 80% of the total board space. The average

construction time for 100 executions of WoSeCon was 0.10

seconds. The minimum construction time was 0.0012 seconds,

and the maximum one was 4.9 seconds. In this case, the

minimum, the maximum, and the average construction time

are considered acceptable. The puzzle cannot be constructed in

smaller boards; therefore, WoSeCon fails in smaller boards.

Fig. 3. A very dense puzzle occupying 80% of the board space

According to the analysis of the three cases above, we see

that WoSeCon constructs dense puzzles in which words

occupy more than 50% of the board at acceptable time rates.

Performance issues are observed for denser puzzles, but this

cannot be considered a problem as the typical puzzles we

encounter in educational or other material are not so dense.

VII. CONCLUSIONS AND FURTHER DEVELOPMENT

The word-search puzzle can be used as an educational

game that allows students learning a foreign language to

practice their vocabulary. This paper presents a novel and

efficient word-search puzzle construction algorithm. Given

that our algorithm constructs even dense word searches at

acceptable time duration, it is understood that typical puzzles

commonly used for entertainment or training are also

constructed at acceptable times. Also, note that we present a

solution where words are placed vertical or horizontal on the

game board. However, other directions, e.g., the diagonal, can

be easily added without affecting the algorithm. Next, we will

deal with completing a word puzzle search application based

on WoSeCon. In particular, we will design the user interface

considering the appropriate pedagogical and learning

principles. Also, we will add a variety of features that will

facilitate vocabulary learning, e.g., the pronunciation of the

word revealed by the student. Another line of research

inspired by WoSeCon is the development of a general

repositioning algorithm with constraints that may seem useful

in a variety of problems, such as the automatic time table

generation.

REFERENCES

[1] S. de Freitas, "Learning in immersive worlds: a review of game-based

learning," Bristol: Joint Information Systems Committee, 2006,
Accessed: Sep. 29, 2019. [Online]. Available:

http://www.jisc.ac.uk/media/documents/programmes/elearninginnovatio

n/gamingr eport_v3.pdf

[2] M. Papastergiou, "Digital Game-Based Learning in high school

Computer Science education: Impact on educational effectiveness and

student motivation," Computers & Education, vol. 52, no. 1, pp. 1–12,
Jan. 2009, doi: 10.1016/j.compedu.2008.06.004.

[3] J. Huizenga, W. Admiraal, S. Akkerman, and G. ten Dam, "Mobile

game-based learning in secondary education: engagement, motivation

 International Journal of Scientific Engineering and Science
Volume 6, Issue 1, pp. 121-126, 2022. ISSN (Online): 2456-7361

126

http://ijses.com/

All rights reserved

and learning in a mobile city game," Journal of Computer Assisted

Learning, vol. 25, no. 4, pp. 332–344, 2009, doi: 10.1111/j.1365-

2729.2009.00316.x.
[4] H.-Y. Sung and G.-J. Hwang, "A collaborative game-based learning

approach to improving students' learning performance in science

courses," Computers & Education, vol. 63, pp. 43–51, Apr. 2013, doi:
10.1016/j.compedu.2012.11.019.

[5] J. Hamari, D. Shernoff, E. Rowe, B. Coller, J. Asbell-Clarke, and T.

Edwards, "Challenging games help students learn: An empirical study
on engagement, flow and immersion in game-based learning,"

Computers in Human Behavior, Aug. 2016, doi:

10.1016/j.chb.2015.07.045.
[6] F. Mondada et al., "Bringing Robotics to Formal Education: The

Thymio Open-Source Hardware Robot," IEEE Robotics Automation

Magazine, vol. 24, no. 1, pp. 77–85, Mar. 2017, doi:
10.1109/MRA.2016.2636372.

[7] S. H. Ivanov, "Will Robots Substitute Teachers?," Social Science

Research Network, Rochester, NY, SSRN Scholarly Paper, Jun. 2016.
Accessed: Jun. 15, 2018. [Online]. Available:

https://papers.ssrn.com/abstract=2801065

[8] E. Park and S. J. Kwon, "The adoption of teaching assistant robots: a
technology acceptance model approach," Program, vol. 50, no. 4, pp.

354–366, Sep. 2016, doi: 10.1108/PROG-02-2016-0017.

[9] V. Hossein and Z. Marzieh, "Using word-search-puzzle games for
improving vocabulary knowledge of Iranian EFL learners," vol. 1, no. 1,

pp. 79–85, Jan. 2009.

[10] D. Cheng and N. Dhulekar, "Crossword Puzzle Generator," 2009.
[11] J. Engel, M. Holzer, O. Ruepp, and F. Sehnke, "On Computer Integrated

Rationalized Crossword Puzzle Manufacturing," in Fun with

Algorithms, 2012, pp. 131–141.
[12] J. Esteche, R. Romero, L. Chiruzzo, and A. Rosá, "Automatic Definition

Extraction and Crossword Generation From Spanish News Text," CLEI

Electronic Journal, vol. 20, no. 2, p. 6, Aug. 2017, doi:

10.19153/cleiej.20.2.6.

[13] L. J. Mazlack, "The use of applied probability in the computer
construction of crossword puzzles," in 1973 IEEE Conference on

Decision and Control including the 12th Symposium on Adaptive

Processes, Dec. 1973, pp. 497–506. doi: 10.1109/CDC.1973.269214.
[14] M. G. Chan, "Interactive electronic puzzle game and a method for

providing the same," Aug. 05, 2003 Accessed: Dec. 13, 2018. [Online].

Available: https://patents.google.com/patent/US6602133B2/en
[15] C. Ditter, "Three-dimensional word-search puzzle and methods for

making and playing the three-dimensional word-search puzzle," Nov.

17, 2005 Accessed: Dec. 13, 2018. [Online]. Available:
https://patents.google.com/patent/US20050253335A1/en

[16] "algorithm - Simple Word Search Game," Code Review Stack

Exchange, Dec. 13, 2018.
https://codereview.stackexchange.com/questions/88733/simple-word-

search-game (accessed Dec. 13, 2018).

[17] S. Goumas, G. Terzopoulos, D. Tsompanoudi, and A. Iliopoulou,
"Wordsearch, an Educational Game in Language Learning," Journal of

Engineering Science and Technology Review, vol. 13, pp. 50–56, Feb.

2020, doi: 10.25103/jestr.131.07.
[18] J. Buck, "Buckblog: Generating Word Search Puzzles," The Buckblog,

Dec. 13, 2018. https://weblog.jamisbuck.org/2015/9/26/generating-

word-search-puzzles.html (accessed Dec. 13, 2018).
[19] "Make your own cipher puzzle," Cipher, Dec. 13, 2018.

https://www.armoredpenguin.com/cipher/ (accessed Dec. 13, 2018).

[20] "Word Search Maker," The Word Search, Dec. 13, 2018.
https://thewordsearch.com/maker/ (accessed Dec. 13, 2018).

[21] L. Moussiades, lmous/WoSeCon. 2020. Accessed: Dec. 19, 2020.

[Online]. Available: https://github.com/lmous/WoSeCon

