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Abstract— Tankers carrying large amounts of explosive fuels are involved in transportation accidents; these incidents can cause catastrophic 

consequences. In the present, we specifically develop the governing equations to the mathematical model for the drainage of liquid in a thin film 

spread over a fuel spillage surface. Discretize the governing equations' numerical solution with the accompanying initial/boundary conditions on 

a staggered grid. We determine the rate of thinning and lifetime of films by tracking the velocity, drainage, and flux change of each connected 

region. In this research, the depletion of surfactant-fuel thin-film foam was attained by varying Reynolds number, Re to show that given different 

interface inertial forces to viscous forces, the surfactant-fuel thin-film foam shows different velocity, drainage, and flux profiles. The study 

simulation shows that for Re=0.01, 0.1, and 1 the velocity profile stabilizes after approximately 0.5m, and the flow continues. Surfactant-fuel thin-

film foam with Re=1 has the maximum and minimum velocities are less than that of Re=0.01 and Re=0.1. Re=10, the velocity profile stabilizes 

after approximately 0.8. Re greater than 1 shows the surfactant-fuel thin-film is depleted compared to when Re is less than 1. We conclude that to 

suppress the gas vapors and control the fire incidences, Re≠ ≫ 1. We recommended that there is a need to consider the effect of variation in 

temperature, velocity, besides Reynolds number, in determining the lifetime of a surfactant-fuel thin foam. There is a need to have an experimental 

analysis of the effect of varying other parameters such as the shear rate on the stability of the equilibrium interface or boundary between the fuel 

and soluble surfactant. 
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I. INTRODUCTION  

Suppression of evaporation of hydrocarbons liquids and fuels 

by aqueous films is of practical importance in firefighting. It 

may even be of potential value in preventing pollution in the 

event of large-scale spills involving the liquids. Developed in 

the 1960s, aqueous film-forming foam (AFFF) relies on a 

mixture of surfactant and solvents to rapidly suppress fuel spill 

vapors and fires [34, 21]. AFFF formulations have been highly 

effective and have achieved worldwide use [30]. Low 

concentrations of fluorosurfactant additives have found 

numerous usage in modern high-performance as fire-fighting 

foams against the traditional fire extinguishers. Fluoro-

surfactants gave these foams the ability to form a thin film, 

spreading films on the surface of burning liquids. The films 

provided significant resistance to diffusion of flammable vapors 

[27]. Synthetic surfactants are widely used in household 

cleaning products (detergents), cosmetics, and personal care 

products (shampoo and toothpaste). Foam presence is not 

guaranteed beneficial. For instance, in the brewing industry, 

foam reduces vessel capacity hence lessening finished product 

foaming potential [3]. The application of foam on fuel can be 

used to prevent various accidents and incidents caused by 

petroleum fuel leakage, accidental burning and explosions. 

These are common in transportation and public safety, and have 

brought a bit of tremendous loss of life and property. 

The surfactant can rapidly suppress surface tension, which 

is essential for thin-film spreading and necessary for vapor 

suppression [14]. Additionally, a quick reduction of the surface 

tension can generate high-quality foams. Foam drainage is an 

essential element in the formation and early development of 

 
1 The research in this work was supported by the Technical University of Kenya (TU-K) 

thin-film [36]. It is also essential given the widespread 

assumption that the aqueous film forms the main barrier of fuel 

spill vapor suppression of AFFF observed in numerous large 

scale tests [36, 13]. 

Thin liquid films play a central role in many real-life 

applications. The interface between the liquid and the 

surrounding fluid (usually a gaseous phase) is a free and 

deformable boundary. Thin liquid films can display a variety of 

dynamics and interfacial instabilities. A clear understanding of 

the film drainage phenomena in fuel spill vapor suppression is 

still lacking. Models for thin liquid film drainage have been 

proposed by numerous researchers dating back to 1886, when 

Reynolds [28] solved for the drainage velocity of the fluid 

between two plane parallel disks. Flow in thin liquid films is 

critically dependent on the tangential extensible of the two 

interfaces in intimate contact with the thinning film. If neither 

of the interfaces will support tangential stress, thinning is 

generally very rapid such as we have mobile film surfaces in 

comparison to the situation where either one or both the 

surfaces is tangentially in-extensible or immobile [11]. The 

hydrodynamics of thin films with rigid interfaces was addressed 

by Reynolds [28]. 

Exerowa [10] extensively discusses the rate of thining of 

thin-film. Exerowa and Sheludko and develops the most 

common method for studying the drainage of individual foam 

films [10, 31]. Previously, thinning rates of thin-film have been 

calculated in foams with Newtonian liquid phases. In the case 

of plane-parallel film, with tangentially immobile surfaces, one 

obtains the well-known Reynolds equation for the velocity of 

thinning [28]. For two identical surfaces, the equation was first 

derived by Radoev et al. [26]. An important practical parameter 
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is the film lifetime 𝑇, defined as when the film will thin from 

the initial thickness to the critical thickness of rupture. At very 

low surfactant concentrations, the film drains more quickly 

because of the high mobility of the interface. In aqueous-like 

liquids, surfactants can be added to lower the gas-liquid surface 

tension and decrease the thinning rates by orders of 

magnitude[37, 7]. 

In this work, we try to estimate the distance before depletion 

of surfactant-fuel thin-film foam. We varied 𝑅𝑒 to show that 

given different interface Reynolds numbers (inertial forces to 

viscous forces), the surfactant-fuel thin-film foam will show 

different velocity profiles. We show through simulations that 

varying 𝑅𝑒 leads to stabilization of velocity profile of thin-film 

due to surfactant fuel foam as the flow continues. We establish 

that to suppress the gas vapors and control the fire incidences, 

the velocity of the thin-film due to surfactant fuel foam must be 

stabilized. 

The differences in thin film thinning dynamics remain 

unexplored among firefighting foams. Measurements of 

aqueous film under vapor conditions are needed to quantify its 

contribution to vapor suppression. The proposed study focuses 

on;   

i.To develop the governing equations to the mathematical 

model for the drainage of liquid in a thin film spread over 

a fuel spill surface.  

ii.To discretize and numerically solve the governing 

equations with the accompanying initial/boundary 

conditions on a staggered grid.  

iii.To determine velocity profile of thin-film under varied 

Reynolds number.  

II. FLUID DYNAMICS AND THIN FILM EQUATIONS  

The set-up of the foam-fuel system is shown in the sketch 

in Figure 1. We assume that the two fluids are immiscible and 

that the density 𝜌 and the velocity 𝑢 are constant in each fluid; 

we do not allow for the possibility of a jump across the 

interface. We suppose that the flow in both phases (foam and 

fuel) is incompressible, governed by the incompressible 

Navier-stokes [24]. 

A. Problem Formulation 

1) Governing equations 

Foam spread can be modeled as a shallow free-surface flow. 

Consider the free surface foam over fuel in figure 1. We need 

the governing equations for the dynamics of the field and 

suitable boundary conditions to derive the thin film evolution 

equations.  

We consider an idealized system consisting of foam and 

fuel, both with uniform initial thickness, and are brought into 

direct contact at 𝑡 = 0. The fuel layer corresponds toℎ1, and the 

foam layer corresponds to ℎ2. We use subscripts 1 and 2 to 

denote the properties of the fuel and foam layers, respectively. 

The two-phase flows can be treated quite similarly to single-

phase flows. The fact that the two unique fluids are present can 

be handled either by using two separate sets of Navier-Stokes, 

one for each fluid or more conveniently using the same set of 

equations for fluids but with variable density and viscosity 

fields, that is 

𝜕𝑥𝑢𝑘 + 𝜕𝑦𝑣𝑘 = 0 (1) 

𝜌𝑘 (
𝜕𝑢𝑘

𝜕𝑡
+ 𝑢𝑘

𝜕𝑢𝑘

𝜕𝑥
+ 𝑣𝑘

𝜕𝑢𝑘

𝜕𝑦
) =

−𝜕𝑝𝑘

𝜕𝑥
+ 𝜇𝑘(𝑢𝑘,𝑥𝑥 + 𝑢𝑘,𝑦𝑦) +

𝜌𝑘𝑔 (2) 

𝜌𝑘 (
𝜕𝑣𝑘

𝜕𝑡
+ 𝑣𝑘

𝜕𝑣𝑘

𝜕𝑥
+ 𝑣𝑘

𝜕𝑣𝑘

𝜕𝑦
) =

−𝜕𝑝𝑘

𝜕𝑦
+ 𝜇𝑘(𝑣𝑘,𝑥𝑥 + 𝑣𝑘,𝑦𝑦) + 𝜌𝑘𝑔

 (3) 

The subscript 𝑘 takes the values 1 and 2 representing the 

fuel and foam layers, respectively. 

 
Fig. 1. Free surface foam flow over fuel surface showing thin-film interface which is the region of interest. 

Example of a figure caption 

 

2) Thin film equations 

In the following, we consider a thin parametrizable film 

with a centerline 𝐻(𝑥, 𝑡) and thickness ℎ(𝑥, 𝑡). The interfaces 

are situated at 𝐻(𝑥, 𝑡) ±
1

2
ℎ(𝑥, 𝑡). We will present the basic 

equations describing the behavior of a Newtonian liquid and a 

surfactant. 

3) Newtonian fluid 

We are investigating the ability of foam to arrest explosions 

due to fuel spill vapor; hence the liquid under consideration is 
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a thin film that drains from foam once it is applied to a fuel spill 

surface. We consider incompressible Newtonian fluids. We 

employ a lubrication approximation of the governing Navier-

Stokes equations since the height of a thin film is small 

compared to its width [1, 22, 15]. This leads to a system of 

coupled nonlinear partial differential equations, which can also 

be modeled as a shallow free-surface flow. The Navier-Stokes 

equations in 2 − 𝐷 have the form; 

𝑢𝑥 + 𝑣𝑦 = 0      (4) 

𝜌(𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦) = −𝑃𝑥 + 𝜇(𝑢𝑥𝑥 + 𝑢𝑦𝑦) + 𝜌𝑔1 (5) 

 𝜌(𝑣𝑡 + 𝑢𝑣𝑥 + 𝑣𝑣𝑦) = −𝑃𝑦 + 𝜇(𝑣𝑥𝑥 + 𝑣𝑦𝑦) + 𝜌𝑔2(6) 

The indices denote the derivatives. (4) represents 

conservation of mass and (5)-(6) represent conservation of 

momentum in 𝑥 − and 𝑦 − direction, respectively. With liquid 

velocity given by 𝑢 = (𝑢, 𝑣), the liquid density, viscosity and 

pressure given by 𝜌, 𝜇, and 𝑃. The left-hand sides of the 

momentum equations denote the inertial forces balanced on the 

right-hand side by the pressure gradient and viscous forces. We 

consider the gravitational force 𝜌𝑔, which is a body force and 

acts on the whole fluids. 

4) Definition of interface parameters 

We define conditions at the free interfaces ℎ±(𝑥, 𝑡) =

𝐻(𝑥, 𝑡) ±
1

2
ℎ(𝑥, 𝑡), however the boundary conditions are more 

complicated than the no slip conditions and involves force 

balance and kinematics. We utilize the unit tangent and unit 

normal to the surfaces defined by: 

𝑛̂± =
(−𝜕𝑥ℎ

±,1)

(1+(𝜕𝑥ℎ
±)2)

1
2

,        𝑡̂ =
(1,𝜕𝑥ℎ

±)

(1+(𝜕𝑥ℎ
±)2)

1
2

 (7) 

Finally, the mean curvature of the interface is given by  

±𝜅± = −∇̅1. 𝑛̂ =
𝜕𝑥𝑥
2 ℎ±

(1+(𝜕𝑥ℎ)
2)
3
2

 (8) 

In all of the above expressions, "+" belongs to the film foam 

interface, ℎ+ and "-" to the fuel film interface ℎ−. 

5) Interface conditions 

We have the following conditions for the evolution of the 

interfaces;  

𝑣1 = ℎ1,𝑡 + 𝑢1ℎ,1𝑥    𝑎𝑡    𝑦 = 𝐻(𝑥, 𝑡) −
1

2
ℎ(𝑥, 𝑡)  (9) 

𝑣2 = ℎ2,𝑡 + 𝑢2ℎ2,𝑥     𝑎𝑡    𝑦 = 𝐻(𝑥, 𝑡) +
1

2
ℎ(𝑥, 𝑡) (10) 

Equations (9)-(10) are the kinematic boundary conditions 

(in the absence of interfacial mass transfer) that balances the 

normal component of the liquid velocity at the interface with 

the speed of the interface. Additionally, there are conditions for 

the equilibrium of the normal and tangential forces:  

𝜎𝑘± = 𝑛̂±. 𝜏. 𝑛̂± (11) 

𝑡̂±. ∇𝜎 = 𝑡̂±. 𝜏. 𝑛̂±, (12) 

where 𝜏 is the stress tensor of the liquid, 𝑛̂ is the unit outward 

vector normal to the surface, 𝑡̂ is the unit vector tangential to 

the interface, 𝜅 is the mean curvature of the interface. We 

denote the liquid stress tensor by 𝜏, so for a Newtonian liquid 

we have 

𝜏 = [
−𝑃 + 2𝜇𝑢𝑥 𝜇(𝑢𝑦 + 𝑣𝑥)

𝜇(𝑢𝑦 + 𝑣𝑥) −𝑃 + 2𝜇𝑣𝑦
] (13) 

If 𝜎± is the surface tension of the fuel-film and film-foam 

interfaces, then substituting the stress tensors in (11) and (12) 

we find 

±𝜎±𝜅± = −𝑃 + 𝜇
(𝑢𝑥(𝐻𝑥±

1

2
ℎ𝑥)

2−(𝐻𝑥±
1

2
ℎ𝑥)𝑣𝑥−2𝑢𝑦(𝐻𝑥±

1

2
ℎ𝑥)+2𝑣𝑦)

1+(𝐻𝑥±
1

2
ℎ𝑥)

2

 (14) 

±𝜎𝑥
± = 𝜇

((𝑢𝑦+𝑣𝑥)(1−(𝐻𝑥±
1

2
ℎ𝑥)

2+2(𝐻𝑥±
1

2
ℎ𝑥)(𝑣𝑦−𝑢𝑥))

√1+(𝐻𝑥±
1

2
ℎ𝑥)

2
 (15) 

We shall refer to (14) as "normal force balance" and (15) as 

the "tangential force balance" at each surface. We must also 

specify the boundary conditions at the ends of the film. This 

depends on the situation under considerations. The gradient of 

surface tension in the tangential force balance is commonly 

known as Marangoni stress. We also require a third condition 

to locate the interface. Assuming that there is no evaporation, 

we employ the kinematic condition, and the motion of the 

interface (9) and (10) becomes 

𝑢 = 𝐻𝑡 ±
1

2
ℎ𝑡 + 𝑢(𝐻𝑥 ±

1

2
ℎ𝑥) (16) 

We have an additional unknown quantity here, the surface 

tension 𝜎, which is related to the surfactant concentration  

B. Non-dimensionalization  

We assume that the dimension of this film under 

consideration in 𝑥 − direction is of the magnitude 𝐿 and that its 

typical thickness is ℎ = 𝜖𝐿 ≪ 𝐿, where 𝜖 ≪ 1 is a small 

parameter. Furthermore, we assume that the curvature of the 

centerline of the film is small such that 𝐻 ≪ 𝐿. Finally, we 

expect that the surface tension varies around a constant value 𝛾 

in the magnitude ∇𝛾 ≪ 𝛾. Based on these assumptions, we 

introduce the following dimensionless variables. 

𝑥 = 𝐿𝑥′,        𝑦 = 𝜖𝐿𝑦′,        𝑡 =
𝐿

𝑈
𝑡′        𝑢 = 𝑈𝑢′,        𝑣

= 𝜖𝑈𝑣′,        𝑝 =
𝜖𝑈

𝐿
𝑝′ 

ℎ = 𝜖𝐿ℎ′,        𝐻 ±
1

2
ℎ = 𝜖𝐿(𝐻′ ±

1

2
ℎ′),        𝜎± =

𝛾 + Δ𝛾𝜎′± (17) 

Moreover, we introduce the following similarity 

parameters; 

i.The capillary number 𝐶𝑎 =
𝜇𝑈

𝛾
 which is the ratio of 

viscous and capillary forces. 

ii.The Marangoni number 𝑀𝑎 =
Δ𝛾

𝜇𝑈
, which describes the 

relation between Marangoni and viscous forces.  

iii.The Froud number 𝐹𝑟 =
𝑈2

𝐿
, which has the dimension of 

an acceleration.  

iv.The dimensionless ratio 
𝑔

𝐹𝑟
 characterizes the relation 

between gravitational and inertial forces, where 𝑔 is 

the absolute value of the gravitational acceleration. 

v.The dimensionless Reynolds number 𝑅𝑒 =
𝜌𝑈𝐿

𝜇
, which 

characterizes the relation between inertial and viscous 

forces. We decompose the surface tension into a 

constant component 𝛾 and a variable 𝜎±Δ𝛾,where Δ𝛾 

is the material property.  
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We substitute these into (4)-(6), to obtain (dropping 

primes); 

𝑢𝑥 + 𝑣𝑦 = 0, 

𝜖2𝑅𝑒(𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦) = 𝑢𝑦𝑦 + 𝜖
2 (−𝑃𝑥 + 𝑢𝑥𝑥 +

𝑔. 𝑅𝑒

𝐹𝑟
𝑒𝑔𝑥). 

𝜖2𝑅𝑒(𝑣𝑡 + 𝑢𝑣𝑥 + 𝑣𝑣𝑦) = 𝑣𝑦𝑦 − 𝑃𝑦 + 𝜖
2 (𝑣𝑥𝑥 +

𝑔. 𝑅𝑒

𝐹𝑟
𝑒𝑔𝑦). 

The values 𝑒𝑔𝑥 and 𝑒𝑔𝑦 are the coefficients of the unit vector 

in the direction of the gravity, that is, 𝑔 = 𝑔𝑒𝑔 

The motion of the interfaces (9)-(10) becomes  

𝑢 = 𝐻𝑡 ±
1

2
ℎ𝑡 + 𝑢 (𝐻𝑥 ±

1

2
ℎ𝑥) (18) 

We assumed the foam layer is stationary meaning fuel spill 

on a plateau. The force balances in normal and tangential 

directions (11)-(12) are;  

±(
𝜖

𝐶𝑎
+ 𝜖𝑀𝑎𝜎±)

(𝐻𝑥𝑥 ±
1
2
ℎ𝑥𝑥)

1 + 𝜖2(𝐻𝑥 +
1
2
ℎ𝑥)

3
2

= 

−𝑃 +
2𝜖2𝑢𝑥(𝐻𝑥±

1

2
ℎ𝑥)

2−2𝜖2𝑣𝑥(𝐻𝑥±
1

2
ℎ𝑥)−2𝑢𝑦(𝐻𝑥±

1

2
ℎ𝑥)+2𝑣𝑦

1+𝜖2(𝐻𝑥±
1

2
ℎ𝑥)

2
 (19) 

In the normal direction and, 

±𝜖𝑀𝑎𝜎𝑥
± =

(𝑢𝑦+𝜖
2𝑣𝑥)(1−𝜖

2(𝐻𝑥±
1

2
ℎ𝑥)

2+2𝜖2(𝐻𝑥±
1

2
ℎ𝑥)(𝑣𝑦−𝑢𝑥))

√1+𝜖2(𝐻𝑥±
1

2
ℎ𝑥)

2
, (20) 

tangential direction. The fluid mechanics problem is closed by 

imposing a kinematic condition on the interfaces. 

𝑢 = 𝐻𝑡 ±
1

2
ℎ𝑡 + 𝑢 (𝐻𝑥 ±

1

2
ℎ𝑥) (21) 

A simplified one-dimensional model for the evolution of the 

film can be derived by expanding the dependent variables as 

asymptotic series in powers of the small parameter 𝜖. Finally, 

we need the solution of the governing equations (4)-(6) as 

perturbation series in powers of the small parameter 𝜖. 

C. Reduction of Thin-Film Equations 

We expand the dimensionless equations in terms of the 

small parameter 𝜖. At the moment, we make the following 

assumptions.   

    1.  
𝜖2𝑔.𝑅𝑒

𝐹𝑟
≪ 1  

    2.  𝜖𝑀𝑎 ≪ 1  

    3.  𝜖2𝑅𝑒 ≪ 1  

In the proceeding section, we considered the changes we 

have to make if the above assumptions do not hold. We make 

ansatz23 𝜙 = 𝜙0 + 𝜖
2𝜙1+. .. where 𝜙 stands for any of the 

unknowns. Then the leading-order problem reduces to: 

𝑢0𝑥 + 𝑣0𝑦 = 0 (22) 

𝑢0𝑦𝑦 = 0 (23) 

𝑣0𝑦𝑦 = 𝑃𝑜𝑦 (24) 

With boundary conditions on 𝑦 = 𝐻0 +
1

2
ℎ0; we have  

𝑣0 = 𝐻𝑜𝑡 + 𝑢0𝐻𝑜𝑥 ±
1

2
ℎ0𝑡 ±

1

2
𝑢𝑜ℎ0𝑥 (25) 

±
𝜖

𝐶𝑎
(𝐻0𝑥𝑥 +

1

2
ℎ0𝑥𝑥) = −𝑃0 + 2𝑣𝑜𝑦 (26) 

𝑢0𝑦 = 0 (27) 

 
2  

These equations can be simplified further. Integrating (23) 

and applying (27) gives 

𝑢0 = 𝑢0(𝑥, 𝑡), (28) 

that is, the longitudinal velocity, which is constant across the 

film. Thus, such flows are often termed "extensional". Next we 

integrate (22) over [𝐻0 −
1

2
ℎ0, 𝑦] and [𝑦, 𝐻0 +

1

2
ℎ0], 

respectively. This yields with (25) the following equations: 

0 = 𝑢𝑜𝑥 (𝑦 − 𝐻0 +
1

2
ℎ0) + 𝑣𝑜(𝑦) +

ℎ0𝑡
2
+ 𝑢0

ℎ0𝑥
2
− 𝐻0𝑡

− 𝑢0𝐻0𝑥  

0 = 𝑢0𝑥 (𝐻0 +
1

2
ℎ0 − 𝑦) − 𝑣0(𝑦) +

ℎ0𝑡
2
+ 𝑢𝑜

ℎ0𝑥
2
+ 𝐻0𝑡

+ 𝑢0𝐻0𝑥 

Adding these gives mass conservation: 

0 = ℎ0𝑡 + (𝑢0ℎ0)𝑥 (29) 

Subtracting leads to an expression for 𝑣𝑜:  

𝑣𝑜 = 𝑦𝑢0𝑥 +𝐻0𝑡 + (𝑢0𝐻0)𝑥 (30) 

From (24) and (25), the equation of the center line is found to 

be  

𝐻0𝑥𝑥 = 0 (31) 

This relationship forces the center line to be straight and 

hence, without loss of generality, 𝐻0 = 0. We include inertial 

effect across the film will result in an equation for 𝐻0 which 

must be solved alongside those for 𝑢 and ℎ. 

We now also obtain the leading order pressure, 𝑃0. 
Substituting for 𝑣0 into (24), integrating and applying (26) gives 

[37]  

𝑃0 = −2𝑢0𝑥 −
𝜖

2𝐶𝑎
ℎ0𝑥𝑥 (32) 

The pressure is therefore generated by a combination of 

external (viscous) and capillary effects. If 𝐶𝑎 ≪ 𝜖, the scaling 

for 𝑃0 is no longer valid. In this case, the pressure gradient may 

enter into the Navier-Stoke equations in leading order and we 

obtain a lubrication-type equation. We now have (29), (30) and 

(32) for the four unknowns ℎ0, 𝑢0, 𝑣0, 𝑃0. We need one more 

equation in order to close the system. This will be taken from 

the next order 𝜖2; the relevant parts of the 𝜙(𝜖2) problem is 

[37], 

𝑢1𝑥 + 𝑣1𝑦 = 0 (33) 

𝑅𝑒(𝑢0𝑡 + 𝑢0𝑢0𝑥 + 𝑣0𝑢0𝑦) = −𝑃0𝑥 + 𝑢0𝑥𝑥 + 𝑢1𝑦𝑦 +
𝑔𝑅𝑠

𝐹𝑟
𝑒𝑔𝑥 .

 (34) 

The related boundary condition on 𝑦 = ±
1

2
ℎ0,  

±
𝑀𝑎

𝜖
𝜎𝑥
± = 𝑢1𝑦 + 𝑣0𝑥 ± 2ℎ0𝑥(𝑣0𝑦 − 𝑢0𝑥). 

Integrating (34) across the film together with this boundary 

condition leads to  

ℎ0 [𝑃0𝑥 − 𝑢0𝑥𝑥 −
𝑔𝑅𝑒

𝐹𝑟
𝑒𝑔𝑥 + 𝑅𝑒(𝑢0𝑡 + 𝑢0𝑢0𝑥 + 𝑣0𝑢0𝑦)] 

=
𝑀𝑎

𝜖
(𝜎+ + 𝜎−)𝑥 − 𝑣0𝑥|ℎ0

2

+ 𝑣0𝑥|−ℎ0
2

+ 2ℎ0𝑥(2𝑢0𝑥 + 𝑣0𝑦)

 (35) 

Under the assumption of symmetry, that is, 𝜎𝑥
+ = 𝜎𝑥

−, 
together with (30) and (32), we obtain from (29) and (35) a 

3 an assumption about the form of an unknown function which is made in 

order to facilitate solution of an equation or other problem. 
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system of two ODE’s for the two unknowns in ℎ and 𝑢 

(dropping the subscripts) 

0 = ℎ𝑡 + (𝑢ℎ)𝑥 (36) 

0 =
𝑀𝑎

𝜖
(2𝜎𝑥) +

𝜖

2𝐶𝑎
ℎℎ𝑥𝑥𝑥 − 𝑅𝑒ℎ(𝑢𝑡 + 𝑢𝑢𝑥) + ℎ

𝑔.𝑅𝑠

𝐹𝑟
𝑒𝑔𝑥 +

4(ℎ𝑢𝑥)𝑥 (37) 

We note that the surface tension 𝜎 still appears in these 

equations. We will relate this quantity to the surfactant 

concentration in the following sections. If the surfactant is not 

present, the surface tension is constant, and the corresponding 

terms drop out. 

D. Special Case 

We have assumed that 𝜖2𝑅𝑒 ≪ 1, 
𝜖2𝑔.𝑅𝑒

𝐹𝑟
≪ 1 and 𝜖𝑀𝑎 ≪

1. In this section, we consider some special cases in which these 

conditions do not hold. 

1) Dominant boundary forces 

We consider the case when 𝜖𝑀𝑎 is of order one or higher. 

Since we assume Δ𝑦 ≪ 𝑦 this means 𝐶𝑎 ≪ 𝜖 As we can see 

from (32), we have to rescale the pressure and will use the 

scaling 𝑃 =
𝜇𝑈

(𝜖2𝐿)
𝑝′. In this case, the dimensionless Navier-

Stoke equations in leading order becomes; 

𝑢0𝑥 + 𝑢0𝑦 = 0 (38) 

𝑃0𝑥 = 𝑢0𝑦𝑦 (39) 

𝑃0𝑦 = 0. (40) 

The boundary conditions change accordingly (we assume 𝜎𝑦
± =

0).  

2𝑣0 = ±ℎ0𝑡 ± 𝑢0ℎ0𝑥 (41) 
𝜖3

2𝐶𝑎
ℎ0𝑥𝑥 = −𝑃0 (42) 

±𝜖𝑀𝑎𝜎𝑥
± = 𝑢0𝑦. (43) 

 (40) yields constant pressure across the film, hence (42) gives  

𝑃0 =
𝜖3

2𝐶𝑎
ℎ0𝑥𝑥 . 

Integrating (39) across the film using (43) gives, together with 

the expression for the pressure:  

𝜖3

2𝐶𝑎
ℎ0𝑥𝑥𝑥 +𝑀𝑎(𝜎0

+ + 𝜎0
−)𝑥 = 0 

Then integrating (39) twice with (43) yields  

𝑢0 = 𝑢̅ +
𝜖𝑀𝑎

2
(𝜎0

+ − 𝜎0
−)𝑥𝑦 +

𝜖3

4𝐶𝑎
ℎ0𝑥𝑥𝑥 (

ℎ0
2

12
− 𝑦2), 

where  

𝑢̅ =
𝑢0 (

ℎ0
2
) + 𝑢0 (

−ℎ0
2
)

2
+
𝜖3

4𝐶𝑎
ℎ0𝑥𝑥𝑥 (

ℎ0
2

6
) 

Note that the Marangoni term cancels due to symmetry. We 

observe that we no longer have constant velocity 𝑢0 across the 

films; but that we obtain a parabolic velocity profile as in 

lubrication theory. Finally, integrating (38) across the film 

together with (41), we obtain mass conservation:  

ℎ0𝑡 + (ℎ0𝑢̅)𝑥 = 0. 
The final system for ℎ and 𝑢̅ is then given by (using 

symmetry and leaving the subscripts):  

0 = ℎ𝑡 + (𝑢̅ℎ)𝑥 

0 =
2𝑀𝑎

𝜖
𝜎𝑥 +

𝜖

2𝐶𝑎
ℎℎ𝑥𝑥𝑥 , 

Apart from the fact that the tangential velocity is no longer 

constant, across the film, this is exactly the same model as we 

obtained before in (36)-(37) for the case that inertial and 

viscosity can be neglected; that is, the film is dominated by 

surface forces. 

2) Model of a fast film 

We will now consider the case in which the liquid drains out 

of the film very fast; that is, the velocity scaling is so large that 

the condition 𝜖2𝑅𝑒 ≪ 1 from the previous section no longer 

holds. Assuming that inertia forces enter in leading order, we 

obtain the following system. 

𝑢0𝑥 + 𝑣0𝑦 = 0 

𝜖2𝑅𝑒(𝑢0𝑡 + 𝑢0𝑢0𝑥 + 𝑣0𝑢0𝑦) = 𝑢0𝑦𝑦 

𝜖2𝑅𝑒(𝑣0𝑡 + 𝑢0𝑣0𝑥 + 𝑣0𝑣0𝑦) = 𝑣0𝑦𝑦 − 𝑃0𝑦 

With boundary conditions:  

𝑣0 = ±
1

2
ℎ0𝑡 ±

1

2
𝑢0ℎ0𝑥 

𝜖

2𝐶𝑎
ℎ0𝑥𝑥 = −𝑃0 ± 𝑢0𝑥ℎ0𝑥 + 2𝑣0𝑦 

±𝜖𝑀𝑎𝜎0𝑥
± = 𝑢0𝑦 

There are two possible scenarios;   

• Capillary and Marangoni forces are negligible, and the 

tangential velocity 𝑢 is constant across the film. Then we obtain 

the following hyperbolic system:ℎ𝑡 + (𝑢ℎ)𝑥 = 0, 𝑢𝑡 + 𝑢𝑢𝑥 =
0. That is, the flow is completely inertia-dominated. 

• Capillary and Marangoni forces enter at leading order; the 𝑢 

is not constant across the film. In this case, we are not able to 

simplify the system further. If the velocity scaling is very fast, 

capillary and Marangoni forces only appear in leading order if 

𝜖 is large. Hence, the model describes a relatively thick film for 

which the flow film approximation does not hold and the full 

problem has to be solved. 

E. Effects of pressure Drop Across the Film  

This section shall show how the thin film equations of 

Section D(1) may be modified to take account of pressure drop 

across the film. We shall set 𝑀𝑎 ∼ 𝒪(𝜖), 𝐶𝑎 ∼ 𝒪(𝜖) in all the 

calculations that follows, that is, we work in the distinguished 

limit viscous, capillary, and Marangoni forces already balance. 

If we wish to incorporate a difference in pressure across the 

film, as in the case of a film between two bubbles of different 

sizes, or in a glass bottle manufacture, we must rewrite 

boundary conditions as  

 ±
𝜖

𝐶𝑎
(𝐻𝑥𝑥 ±

1

2
ℎ𝑥𝑥) = 𝑃± − 𝑃 +

2𝜖2𝑢𝑥(ℎ𝑥±
1

2
ℎ𝑥)

2

1+𝜖2(ℎ𝑥±
1

2
ℎ𝑥)

2
− 

2𝜖2𝑣𝑥(𝐻𝑥±
1

2
ℎ𝑥)−2𝑢𝑦(𝐻𝑥±

1

2
ℎ𝑥)+2𝑣𝑦

1+𝜖2(𝐻𝑥±
1

2
ℎ𝑥)

2
, (44) 

where 𝑃± represents the nondimensional pressure above and 

below the film. If we allow the pressure difference, Δ𝑃 = 𝑃+ −
𝑃−, to enter the problem at leading order, we modify (26) to read  

±
𝜖

𝐶𝑎
(𝐻0𝑥𝑥 ±

1

2
ℎ0𝑥𝑥) = 𝑃± − 𝑃0 + 2𝑣0𝑦    𝑜𝑛    𝑦 = 𝐻0 ±

1

2
ℎ𝑜

 (45) 

Integrating the normal momentum balance and applying the 

above boundary conditions results in the following equation for 

the center line 

−△ 𝑃 +
2𝜖

𝐶𝑎
𝐻0𝑥𝑥 = 0 (46) 
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That is, the center line is a parabola. The leading order pressure 

is modified to read 

𝑃0 =
(𝑃++𝑃−)

2
−

𝜖

2𝐶𝑎
𝐻0𝑥𝑥 − 2𝑢0𝑥 (47) 

The equation for conservation of mass and the longitudinal 

force balance remains the same. Therefore, the effect of 

including a pressure drop across the film is to force the 

centerline to have non-zero curvature. 

F. Surfactant  

1) Physical model 

As discussed in the previous sections, the presence of a 

surfactant reduces the surface tension of an interface, and the 

surface tension becomes a function of the interfacial 

concentration, 𝐶, that is, 𝜎 = 𝜎(𝐶). All surfactants tend to be 

partially soluble in the bulk liquid. In general, there will be a 

relationship between the surfactant adsorbed at the surface and 

the concentration in bulk [32, 20]. There is a need to model a 

foam stabilized by the effect of a surfactant on the surface 

tension. We denote its bulk concentration by 𝐶(𝑥, 𝑦, 𝑡) and 

surface surfactant concentration on the top and bottom surfaces 

by 𝛤±(𝑥, 𝑡) respectively. We assume that the bulk 

concentration is governed by convection and diffusion. Thus, 

we obtain the following equation for 𝐶(𝑥, 𝑦, 𝑡):([37])  

𝐶𝑡 + 𝑢𝐶𝑥 + 𝑣𝐶𝑦 = 𝐷𝑠(𝐶𝑥𝑥 + 𝐶𝑦𝑦) (48) 

The diffusivity 𝐷𝑠 is a material parameter that we assume to 

be independent of space and time. 

2) Conditions at the free interfaces 

Surfactants tend to assemble at the surface of the liquid. 

Therefore, it is not sufficient to consider the concentration at 

the surface as the trace of the bulk concentration, but a new 

quantity is introduced, the surface concentration 𝛤. We assume 

that 𝛤 is governed by convection, diffusion and a flux of 

surfactant from the bulk onto the surface, [4] thus it is described 

by  

𝛤𝑡 + ∇𝛤. (𝑢𝛤𝛤) = ∇𝛤 . (𝐷𝛤∇𝛤)𝛤 + 𝑗 

𝛤𝑡 +
𝜕(𝑢𝑠𝛤)

𝜕𝑆
− 𝐷𝑠

(𝜕2𝛤)

(𝜕𝑆2)
= 𝑗 (49) 

The index 𝛤 stands for the surface, that is, the directions 

spanned by the tangential vector. The material parameter 𝐷𝛤 is 

the surface diffusivity assumed to be constant, and 𝑗 is the flux 

of surfactant from the bulk. We have to close the system by 

adding some more equations for the newly introduced 

unknowns 𝛤 and 𝑗 as well as for the surface tension 𝜎. We need 

a relation between 𝛤 and 𝐶 which is introduced by a constitutive 

equation for the flux 𝑗,  
𝑗 = 𝑗(𝐶, 𝛤). 

There are several such models in chemical literature, and we 

apply one of the most common ones, the Langmuir-

Hinshelwood equation [4, 2]. 

𝑗 = 𝑘1(𝐶(𝛤∞ − 𝛤) − 𝑘2𝛤) (50) 

In (49), sets the rate of adsorption of surfactant at the surface 

to be proportional to the subsurface concentration, 𝐶(𝑥, 𝐻, 𝑡) 
and to the amount of space available at the surface. The material 

parameter 𝑘1 and 𝑘2 also determine the relative magnitudes of 

adsorption and desorption. It is often assumed [2] that the 

adsorption process happens on a much faster time scale than the 

other effects. In this case, (50) reduces to a relation for the 

thermodynamic equilibrium called the Langmuir isotherm. 

𝛤 =
(𝛤∞𝐶)

(𝑘2+𝐶)
 (51) 

A relation between the flux 𝑗 and the bulk concentration C 

can be divided under the assumption that the flux onto the 

surface in the bulk is controlled by diffusion and therefore. This 

is given by 

𝑗 = −𝐷𝑠
𝜕𝐶
𝜕𝑛
, 

so that,  

𝑗 =
𝐷𝑠

√1+(𝐻𝑥+
1

2
ℎ𝑥
±)2
(𝐶𝑦 − (𝐻𝑥 ±

1

2
ℎ𝑥
±) 𝐶𝑥) (52) 

∓
𝐷𝑠

√1 + (𝐻𝑥 ±
1
2
ℎ𝑥)

2

(𝐶𝑦 − (𝐻𝑥 ±
1

2
ℎ𝑥) 𝐶𝑥) 

In contrast to equation (50), describes the behavior in bulk 

and not at the interface. However, due to continuity reasons, the 

two expressions are equal at the interface. Therefore, we can 

eliminate 𝑗 and obtain two equations by equation (52) and (49) 

on the other hand and (52) and (50) on the other hand. Using 

(7) we get 

𝑘1 = (𝐶(𝛤∞ − 𝛤) − 𝑘2𝛤) =
𝐷𝑠

√1+(𝐻𝑥±
1

2
ℎ𝑥)

2
(𝐶𝑦 − (𝐻𝑥 ±

1

2
ℎ𝑥) 𝐶𝑥) (53) 

3) Effect of surfactant on the surface tension 

At free surface, a surfactant is able to expel its hydrophobic 

tail from the solution and this reduces the surface energy of the 

system. For this purpose, it is necessary to impose the resulting 

constitutive relation between the surface tension and the surface 

concentration. Therefore, we apply Frumkin equation [2].  

𝜎∗ − 𝜎 = −𝑅𝜃𝛤∞ln (1 −
𝛤

𝛤∞
), (54) 

(54) models relation for a wide range of surfactants. The term 

𝜎∗ − 𝜎 is sometimes called the "surface pressure". If the 

surfactant concentration is above the critical micelle 

concentration (see section 1.1.3), we must include diffusion of 

micelles and interplay between the bulk and the micellar 

concentrations; we shall not model such since it is beyond the 

remit of this work. 𝑅 denotes the gas constant, 𝜃 the 

temperature, and 𝜎∗ the surface tension of the pure liquid 

without surfactant. Note that this equation has a singularity for 

𝛤 = 𝛤∞ and therefore becomes invalid in this limit. However, 

we will only consider relatively small concentrations in which 

the model is a good approximation of the real behavior. In 

thermodynamic equilibrium, we can plug (51) into (54), and we 

obtain after differentiation. 

𝜎𝑥 = −𝑅𝜃𝛤∞
𝐶𝑥

(𝑘2+𝐶)
 (55) 

𝜎𝑦 = −𝑅𝜃𝛤∞
𝐶𝑦

(𝑘2+𝐶)
 (56) 

For the thin-film model (36)-(37), only the partial 

derivatives of the surface tension are needed. For small 

concentrations 𝐶 ≪ 𝑘2, we can simplify (51) and (55)-(56) even 

further to obtain a linear relation. 

𝛤 =
(𝛤∞𝐶)

𝑘2
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𝜎𝑥 = −
(𝑅𝜃𝛤∞)

𝑘2
𝐶𝑥 

𝜎𝑦 = −
(𝑅𝜃𝛤∞)

𝑘2
𝐶𝑦 

4) Non-dimensionalization 

Additionally, to the dimensionless variables introduced 

earlier, we non-dimensionalize 𝐶 and 𝛤 by  

𝐶 = 𝐶∗𝐶′ 
𝛤± = 𝛤∗𝛤± 

We also introduce some similarity parameters   

i.The p𝑒′clet number 𝑃𝑒 =
𝑈𝐿

𝐷𝑠
 which characterizes the 

relation of convection and diffusion in the bulk.  

ii.The replenishment number 𝑆 =
(𝐷𝑠𝐶

∗)

(𝑈𝛤∗)
, which is the 

relation of diffusion from the bulk unto the surface and 

convection at the surface. 

iii.Moreover, we introduce ∧=
𝛤∗

𝛤∞
 and Π =

𝐶∗

𝑘2
 which 

describe the order of magnitude of the concentrations 

compared to the saturation concentrations  

With these, the convection-diffusion (48) for the bulk 

concentration of the surfactant becomes (dropping primes):  

𝜖2𝑃𝑒(𝐶𝑡 + 𝑢𝐶𝑥 + 𝑣𝐶𝑦) = 𝜖
2𝐶𝑥𝑥 + 𝐶𝑦𝑦 (57) 

 At the interfaces 𝑦 = 𝐻 ±
1

2
ℎ  

𝛤𝑡
±√1 + 𝜖2((𝐻𝑥 ±

1

2
ℎ𝑥)

2) + (𝑈𝛤𝛤
±)𝑥 = ±

𝑆

𝜖
(𝐶𝑦 +

𝜖2 (𝐻𝑥 ±
1

2
ℎ𝑥)𝐶𝑥) (58) 

Equation (53) becomes  
𝐷𝑠

𝜖𝑘1𝐿Γ
⋆√1+𝜖2((𝐻𝑥±

1

2
ℎ𝑥)

2)

(𝐶𝑦 + 𝜖
21 + 𝜖2 ((𝐻𝑥 ±

1

2
ℎ𝑥)

2) 𝐶𝑥) =

𝐶

∧
− 𝐶Γ −

Γ

Π
 (59) 

Finally, we have the Frumkin (54) for the relation of surface 

tension and surfactant concentration;  
(𝜎∗−𝛾)

(𝑅𝜃𝛤∞)
−

∇𝛾

(𝑅𝜃𝛤∞)
𝜎± = −ln (1 −

(𝛤∗𝛤±)

𝛤∞
) (60) 

𝛤± =
(𝛤∞Π)

𝛤
𝐶

1+Π𝐶
 (61) 

𝛤± =
(
Π𝑐
∧
)

(1 + Π𝑐)
. 

In the presence of a surfactant,  

𝜎 =
𝑅Γ∞
∇𝛾

 

We obtain  

0 = ℎ𝑡 + (𝑢ℎ)𝑥 (62) 

0 =
𝜖

2𝐶𝑎
ℎℎ𝑥𝑥𝑥 +

2𝑀𝑎

𝜖
𝜎𝑥 − 𝑅𝑒ℎ(𝑢𝑡 + 𝑢𝑢𝑥) + ℎ

𝑔.𝑅𝜖

𝐹𝑟
𝑒𝑔𝑥 +

4(ℎ𝑢𝑥)𝑥 (63) 

(ℎ𝐶𝑥)𝑥 − 𝑃𝑒ℎ(𝐶𝑡 + 𝑢𝐶𝑥) −
2

𝜖𝑆
(𝐶𝑡 + (𝑢𝑠𝐶)𝑥) = 0 (64) 

 Where  

𝜎𝑥 = −𝛤𝑥 = 𝐶𝑥 (65) 

III. MODELLING VELOCITY, DRAINAGE AND VOLUMETRIC FLUX 

PROFILE OF THIN-FILM 

We have derived a system of equations for the description 

of a thin film between two free surfaces in the previous chapter. 

We have considered all the phenomena that we assume to play 

an important role in the thinning process. In particular, these are 

gravity, inertia, viscosity, capillarity and marangoni forces due 

to the presence of surfactants. Moreover, we have derived 

equations modeling pure liquids and surfactant. The approach 

to drainage in foam lamellae and isolated films are central to 

the process of the thinning rate and lifetime of aqueous thin film 

spread over a fuel spill on a plateau to mitigate fuel vapors. We 

deal with the aqueous film arising in application of aqueous 

film forming foam, AFFF, which contains small amounts of 

fluorocarbon that enable a higher-density aqueous film to form 

on top of the lower-density hydrocarbon fuel-spill surface by 

lowering the surface tension of the film. It is the film that 

suppresses the transport of the fuel vapor from the pool surface 

to the surroundings [33]. In order to gain knowledge about its 

decay rate, we study the thinning of a single foam film. 

Therefore, we have to study the environment of the given 

process and the general behavior of foam in the process. In the 

following, we assume on this basis that we can consider a thin 

film starting as a horizontal uniformly spread liquid on the 

surface of fuel and thinning due to drainage. The computation 

starts at the time when the film is thin enough such that the thin 

film approximation can be applied. 

A. Assumptions 

The following assumptions are made about the model:   

i.The film is long and thin so that a typical length scale, L is 

much larger than a typical thickness. 

ii. The liquid density 𝜌 is constant. 

iii. The shear viscosity 𝜇 is constant.  

iv. The surface tension 𝛾 to be equal on the two interfaces.  

v. The liquid velocity is characterized by a typical value 𝑈.  

vi. Exterior forces acting on the thin film due to the fuel and 

foam flow are negligible  

vii. The geometry of the computational domain is considered 

to be constant in time  

B. Initial and Boundary Conditions 

As we have already mentioned in the previous section, no 

boundary conditions at the ends of the thin film have been 

considered. We are dealing with surfactant stabilized thin film. 

Therefore, we discuss conditions at the boundaries of the 

computational domain. Moreover, the challenge of finding 

initial values for the thin film problem is addressed.  

1) 6.2.1  One-Dimensional Problem 

 We consider a case of a two-dimensional foam. Apart 

from the initial condition, we need conditions at the boundary 

𝑥 = 𝑥𝐿 = 0 and 𝑥 = 𝑥𝑅 = 1. 

Conditions at 𝒙 = 𝒙𝑳 = 𝟎 The film thickness, ℎ, the velocity 

𝑢 and the concentration 𝐶, respectively, we have  

ℎ𝑥 = 0 (66) 

𝑢 = 0 (67) 

𝐶𝑥 = 0 (68) 

Conditions at the interface 𝒙 = 𝒙𝑹 = 𝟏 

Recall that in the thin film approximation, for a viscous 

dominated film, the momentum equation reduces to 4(ℎ𝑢𝑥)𝑥 =
0 in 1𝐷. The first boundary condition for the film thickness ℎ, 

at the right boundary is therefore 
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ℎ𝑥 = 0 (69) 

 A possibility to define the condition for ℎ: 

Use the reduced momentum equation and set  

4(ℎ𝑢𝑥)𝑥 = 0 (70) 

If ℎ𝑠 can be obtained, the first approach is to be preferred. 

However, in general we do not have this information such that 

we will use the second alternative, although it is a less exact 

approximation. We consider the velocity 𝑢, for which one more 

condition at 𝑥 = 𝑥𝑅 = 1 is needed. There are several 

possibilities for this and in the following, we will discuss their 

advantages and disadvantages 

i. Another possible condition is to set 𝑢(1) =
𝑄

ℎ
 but as in 

the first case, this is only a good approximation close to 

the interface 𝑥 = 𝑥𝑅 = 1.  

ii. A second approach is to set constant flux at 𝑥 = 𝑥𝑅 = 1, 

that is  

(𝑢ℎ)𝑥 = 0 (71) 

Plugging this into the mass equation, we observe that this 

results in ℎ𝑡(1) = 0, such that the thickness of the thin film at 

the boundary remains constant. If the behavior of the thickness 

of the interface is known this condition can be improved to  

(𝑢ℎ)𝑥 = −ℎ𝑡(1) (72) 

at the boundary 𝑥𝑅 = 1. In what follows, we will use the second 

approach. 

Finally, the concentration 𝐶, is considered. Then we 

prescribe a homogeneous Neumann condition,  

𝐶𝑥 = 0. (73) 

C. Parameter Settings 

In order to solve the film-thinning problem for surfactant-

stabilized film, we need to have some information about the 

physical parameters appearing in our model. These are 

approximated and outlined in Table I. 

 
TABLE I. Parameter for the aqueous Surfactant 

Parameter Name Value range Unit 

𝐷𝑠 Diffusivity 10−10 − 10−5 𝑚2/𝑠 

𝐷Γ Surface diffusivity 10−10 − 10−5 𝑚2/𝑠 

𝐶∗ 
Typical bulk 

concentration 
≈ 10−4 𝑚𝑜𝑙/𝑚3 

Γ∞ 
Surface saturation 

concentration 
≤ 10−6−≤ 10−5 𝑚𝑜𝑙/𝑚3 

Γ∗ 
Typical surface 

concentration 
≤ 10−6−≤ 10−5 𝑚𝑜𝑙/𝑚3 

𝜒2 Langmuir parameter 10−2 − 1 𝑚𝑜𝑙/𝑚3 

𝑅 Universal gas constant ≈ 8.3 𝐽/𝑚𝑜𝑙𝑘 

𝜃 Temperature ≈ 300 𝐾 

D. Existence and Uniqueness of the Linearized Problem  

We consider a one-dimension problem in the presence of a 

surface active agent, in which the constant parameters are set to 

one and make the assumption that capillary effect can be 

neglected. Moreover, we do not regard any boundary conditions 

but assume a Riemann problem on ℝ. 

Riemann problem: Find ℎ, 𝑢, 𝐶: [0, 𝑇] × ℝ → ℝ, such that  

0 = ℎ𝑡 + (𝑢ℎ)𝑥 , 

0 = 𝑢𝑡 + 𝑢𝑢𝑥 − 𝑢𝑥𝑥 −
ℎ𝑥
ℎ
𝑢𝑥 +

𝑐𝑥
ℎ
− 1, 

0 = 𝐶𝑡 + 𝑢𝐶𝑥 +
𝑢𝑥𝐶

1 + ℎ
−
ℎ𝐶𝑥𝑥
1 + ℎ

−
ℎ𝑥𝐶𝑥
1 + ℎ

 

𝑐𝑥 = −𝜎𝑥  

On [0, 𝑇] × ℝ and  

ℎ = ℎ0, 
𝑢 = 𝑢0, 
𝐶 = 𝐶0 

On {0} × ℝ. 

Equivalently, we can write the system in conservative form 

as  

𝑈𝑡 + 𝐹(𝑈)𝑥 = 𝐺(𝑈) (74) 

 With  

𝑈 = [
ℎ
𝑢
𝐶
] ,    𝐹 =

[
 
 
 
 
𝑢ℎ
𝑢2

2
+
𝑐

ℎ
𝑢𝐶

1 + ℎ
+ 𝑢𝐶]

 
 
 
 

 

denoting the derivatives with subscripts Eq.(74) can be written 

in the form  

𝑈𝑡 +𝐻(𝑈)(𝑈)𝑥 = 𝐺(𝑈) (75) 

We linearize this problem with respect to the initial values 

ℎ0, 𝑢0 and 𝐶0, yielding the Linearized problem: Find 

ℎ, 𝑢, 𝐶; [0, 𝑇] × ℝ → ℝ such that  

0 = ℎ𝑡 + (ℎ𝑢0)𝑥 + (ℎ0𝑢)𝑥 − (ℎ0𝑢0)𝑥, (76) 

0 = 𝑢𝑡 + (𝑢0𝑢)𝑥 − 𝑢𝑥𝑥 −
ℎ0𝑥

ℎ0
𝑢𝑥 −

𝑢0𝑥

ℎ0
ℎ𝑥 +

𝑢0𝑥ℎ0𝑥

ℎ0
2 ℎ +

𝑐𝑥

ℎ0
−

𝑐0𝑥

ℎ0
2 − 1 − 𝑢0𝑢0𝑥 +

𝑐0𝑥

ℎ0
 (77) 

0 = 𝐶𝑡 + 𝑢0𝐶𝑥 + 𝐶𝑜𝑥𝑢 +
𝐶0

1 + ℎ0
𝑢𝑥 +

𝑢0𝑥
1 + ℎ0

𝐶 −
𝑢0𝑥𝐶0

(1 + ℎ0)
2
ℎ

−
ℎ0

1 + ℎ0
𝐶𝑥𝑥 −

𝐶0𝑥𝑥
1 + ℎ0

+
ℎ0𝐶0𝑥𝑥
(1 + ℎ0)

2
ℎ

−
ℎ0𝑥
1 + ℎ0

𝐶𝑥 − 

𝐶0𝑥
1 + ℎ0

ℎ𝑥 +
ℎ0𝑥𝐶0𝑥
(1 + ℎ0)

2
− 𝑢0𝐶0𝑥 −

𝑢0𝑥𝐶0
(1 + ℎ0)

2
+ 

ℎ0𝐶0𝑥𝑥

(1+ℎ0)
2 +

ℎ0𝑥𝐶0𝑥

(1+ℎ0)
2 (78) 

On [0, 𝑇] × ℝ and  

ℎ = ℎ0, 
𝑢 = 𝑢0, 
𝐶 = 𝐶0 

On {0} × ℝ. For the integral form of the linearized problem, the 

mathematical definitions of the respective spaces and norms are 

needed. 

Definition 1 

Let  

 𝐻𝑚(ℝ){𝑢 ∈ 𝐿2(ℝ): 𝐷2𝑢 ∈ 𝐿2(ℝ), |𝛼| ⩽ 𝑚} 
Be a Sobolev space of order 𝑚. In particular 𝐻0(ℝ) = 𝐿2(ℝ). 
Define the spaces 𝑉,𝐻 by  

𝑉:= 𝐻2(ℝ) × 𝐻1(ℝ) × 𝐻1(ℝ) 
𝐻:= 𝐿2(ℝ) × 𝐿2(ℝ) × 𝐿2(ℝ) 

With (. , . )𝐻𝑚 and (. , . )𝐿2 as the standard norms defined on the 

spaces 𝐻𝑚 and 𝐿2. Note that 𝑉 and 𝐻 are Hilbert spaces with 

respect to ((. , . )) and (. , . ), respectively. 

Definition 2 Let 𝑉,𝐻 be a pair of real separable Hilbert spaces 

with corresponding scalar products ((. , . )) and (. , . ), and norms 

||. || and |. |. 



 International Journal of Scientific Engineering and Science 
Volume 5, Issue 10, pp. 43-57, 2021. ISSN (Online): 2456-7361 

 

 

51 

http://ijses.com/ 

All rights reserved 

Let 𝑇 ∈ ℝ ∪ {∞}, 𝐵 be a Banach space. 𝐿2(𝐵): =
𝐿2(0, 𝑇; 𝐵) denotes the space of functions 𝑡 → 𝑓(𝑡): (0. 𝑇) → 𝐵 

such that   

i. 𝑓 is measurable for 𝑑𝑡,  

ii. ||𝑓||𝐿2(𝐵) = (∫
𝑡

0
||𝑓(𝑡)||𝐵

2𝑑𝑡)

1

2
< ∞  

Moreover, we define the space  

𝑊(𝑉):= 𝑊(0, 𝑇; 𝑉, 𝑉′): = {𝑢: 𝑢 ∈ 𝐿2(𝑉),    𝑢′ ∈ 𝐿2(𝑉′)} 
Where 𝑉′ denotes the dual space of 𝑉 

Using Definition 1, Integral formulation requires less 

derivability conditions on the solutions, which allows to obtain 

discontinuous solutions. These discontinuous solutions do not 

verify the partial differential equation at every point because the 

derivatives are not defined at the discontinuities, and must meet 

a ’jump condition’ along them, which is obtained from the 

integral form (see Lemma 1, Rankine-Hugoniot condition). 

Problem 1 

(Integral Form): Find  

𝑈 = [
ℎ
𝑢
𝐶
] : [0, 𝑇] × ℝ → 𝑉 

fulfilling  

𝑈(𝑡 = 0) = 𝑈0 ∈ 𝑉 (79) 

 Such that  
𝑑

𝑑𝑡
∫
𝑥
𝑗+
1
2

𝑥
𝑗−
1
2

𝑈(𝑥, 𝑡)𝑑𝑥 + ∫
𝑥
𝑗+
1
2

𝑥
𝑗−
1
2

𝜕

𝜕𝑥
𝐹(𝑈(𝑥, 𝑡))𝑑𝑥 = ∫

𝑥
𝑗+
1
2

𝑥
𝑗−
1
2

𝐺𝑑𝑥 (80) 

 Since the integrand (80) is continuous and it holds for every 

segment (𝑥
𝑗−

1

2

, 𝑥
𝑗+

1

2

), then it follows that the integrand must 

vanish in order to have the partial differential equation given 

by (74). All the integration are performed over ℝ. 

Theorem 1 Discontinuous Solution to (76), and (77) Let 𝑢0 ∈
𝐶′(ℝ). Then the Cauchy problem has a unique solution 𝑢 ∈
[(0, 𝑇) × ℝ].  
Proof. Note that classical solutions are weak solutions and weak 

solutions that lie in 𝐶1(ℝ × [0, 𝑇]) satisfy (74), (79) in the 

classical sense. An important class of the solutions are piece-

wise classical solutions with discontinuities separating the 

smooth regions. The following lemma gives a necessary and 

sufficient condition imposed on these discontinuities such that 

the solution is a weak solution [12, 16].  

Lemma 2 Rankine-Hugoniot jump condition Assume that 

ℝ × [0, 𝑇] is separated by a smooth curve 𝑥 = 𝑥(𝑡) into two 

parts 𝛺1 and 𝛺2. Suppose that 𝑢 is a classical solution of (74) 

on either side of the curve 𝑥 = 𝑥(𝑡) and that 𝑢 and its 

derivatives extend continuously to the curve from the left to the 

right. Furthermore, assume 𝑢 is a 𝐶1 −function on 𝛺1 and 𝛺2, 

respectively. We therefore obtain the necessary condition  

(𝑢𝑅(𝑡) − 𝑢𝐿(𝑡))𝑥̇(𝑡) = 𝑓(𝑢𝑅(𝑡)) − 𝑓(𝑢𝐿(𝑡)) 
for u to be a solution of the integrated version of the 

conservation law. It is often written  

[𝑓(𝑢)] = 𝑥̇[𝑢] 
By allowing shocks [17] we can solve the IVP uniquely. We 

first look at constant states. The simplest problem to solve is the 

transition from one constant speed, say 𝑢𝑅 to another speed 𝑢𝐿. 

The deceleration requirement is that 𝑢𝑅 > 𝑢𝐿 ,    ℎ𝑅 >
ℎ𝐿 ,    𝑐𝑅 > 𝑐𝐿 . 

The shock speed 𝑠 = 𝑥̇(𝑡) =
𝐹𝑅−𝐹𝐿

𝑢𝑅−𝑢𝐿
, is the slope of the line 

segment connecting two points on the flux curve. 

Using definition we can admit discontinuous solutions 

using the integral form of the conservation laws, that is  
𝑑

𝑑𝑥
∫
𝑥
𝑗+
1
2

𝑥
𝑗−
1
2

𝑈(𝑥, 𝑡)𝑑𝑥 + ∫
𝑥
𝑗+
1
2

𝑥
𝑗−
1
2

𝜕

𝜕𝑥
(𝐹(𝑈(𝑥, 𝑡))𝑑𝑥 = ∫

𝑥
𝑗+
1
2

𝑥
𝑗−
1
2

𝐺𝑑𝑥(81) 

 where  

𝐹(𝑈) =

[
 
 
 
 
𝑢0ℎ + ℎ0𝑢

𝑢0𝑢 +
𝑐

1 + ℎ0
𝑢𝑐0
1 + ℎ0

+ 𝑢0𝑐 ]
 
 
 
 

,    𝐺

=

[
 
 
 
 
 
(ℎ𝑜𝑢𝑜)𝑥

1 + 𝑢𝑜𝑢𝑜𝑥 −
𝐶0𝑥
ℎ𝑜

𝑢𝑜𝐶𝑜𝑥 +
𝑢𝑜𝑥𝐶𝑜

(1 + ℎ𝑜)
2
−

ℎ𝑜𝑥𝐶𝑜𝑥
(1 + ℎ𝑜)

2]
 
 
 
 
 

 

Theorem 3  Let ℎ𝑜 , 𝑢𝑜, 𝐶𝑜 and their spatial derivatives be 

bounded by some 𝑀̃ and let ℎ𝑜(𝑥) ⩾ 𝐻𝑜 > 0 for all 𝑥 ∈ ℝ. 

Then there exists a unique solution 𝑈 of problem 1 and the 

solution fulfills  

 𝑈 ∈ 𝑊(0, 𝑇; 𝑉, 𝑉′). 
Proof. We prove Theorem 3 by applying results from [8, 

p.~513], following two conditions: 

Condition 1 For each 𝑡 ∈ [0, 𝑇] we are given a continuous 

function 𝑈 on 𝑉 with the following property: For 𝑢 ∈ 𝑉, the 

map 𝑡 → 𝑈(𝑡, 𝑢) is measurable and there exists a constant 𝑀 =
𝑀(𝑡) > 0 such that  

|𝑈(𝑡, 𝑢)| ⩽ 𝑀||𝑈||    ∀𝑢 ∈ 𝑉 

Condition 2 The initial conditions and sources satisfy  

𝑢𝑜 ∈ 𝐻
1(0,1),    𝐺 ∈ 𝐿2(𝑉′). 

Using these, the following theorem can be stated:  

Theorem 4 Consider the following problem: 

Find u satisfying  

𝑢 ∈ 𝑊(𝑉) 
and  

 
𝑑

𝑑𝑡
∫
𝑥
𝑗+
1
2

𝑥
𝑗−
1
2

𝑈(𝑥, 𝑡)𝑑𝑥 + ∫
𝑥
𝑗+
1
2

𝑥
𝑗−
1
2

𝜕

𝜕𝑥
𝑓(𝑈(𝑥, 𝑡))𝑑𝑥 =

∫
𝑥
𝑗+
1
2

𝑥
𝑗−
1
2

𝐺𝑑𝑥 

Moreover 𝑢(0) = 𝑢𝑜. Suppose the spaces 𝑉, 𝐻 are given, 

𝑈(𝑡; 𝑋(𝑡; 0, 𝑦) satisfies Condition 1, and 𝑢𝑜, 𝐺 satisfy 

Condition 2. Then the problem has a unique solution u fulfilling   

 𝑊(0, 𝑇: 𝑉, 𝑉′). 
For the proof of Theorem 1, we refer to [9]. 

Proof Existence. Let 𝑢𝑜(𝑥) ∈ 𝐶0
1(ℝ) and 𝑓 ∈ 𝐶2(ℝ) with 𝑢0 ⩾

0 be given. Since 𝑢 is defined as the composition of the 𝐶1 maps 

𝑢0 and (𝑡, 𝑥) → 𝑋(0; 𝑡, 𝑥). Then there exists a maximal time 

𝑇 > 0 such that (75), (79) has a unique solution 𝑈 ∈
𝐶1([0, 𝑇] × ℝ). The corresponding characteristics are straight 

lines. If 𝐻(𝑢0) for the system (75), (79) is increasing, the 

maximal existence time is infinite, 𝑇 = inf. The formula (79) 

defines a 𝐶1 function. Since 𝑢 is defined as the composition of 

the 𝐶1 maps 𝑢0 and (𝑡, 𝑥) → 𝑋(0; 𝑡, 𝑥). This function obviously 

satisfies 𝑢|𝑡=0 = 𝑢0. 
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Uniqueness 

Uniqueness follows from the uniqueness of characteristics 

(the PDE is reduced to an ODE along the characteristic), as 

follows. Since the map 𝑡 → 𝑋(𝑡; 0, 𝑦) is 𝐶1 and 𝑢 ∈ 𝐶1, so is 

the map 𝑡 → 𝑢(𝑡, 𝑋(𝑡; 0, 𝑦)). Applying the chain Rule one 

easily sees that  
𝑑

𝑑𝑡
𝑢(𝑡, 𝑋(𝑡; 0, 𝑦)) = 0. 

Hence 𝑡 → 𝑢(𝑡, 𝑋(𝑡; 0, 𝑦)) is constant on [0𝑇] and 

𝑢(𝑡, 𝑋(𝑡; 0, 𝑦)) = 𝑢(0, 𝑋(0; 0, 𝑦)) = 𝑢0(𝑦). 
Letting 𝑥 = 𝑋(𝑡; 0, 𝑦) we have 𝑥 = 𝑋(0; 𝑡, 𝑦) so that  

 𝑢(𝑡, 𝑥) = 𝑢0(𝑋(0; 𝑡, 𝑥)),    ∀(𝑡, 𝑥) ∈ [0, 𝑇] × ℝ. 
For the proof of Theorem 2, we refer to [8] 

Condition 1. We have to show that the function 𝑈 is bounded, 

i.e. for each 𝑈 ∈ 𝑉, 𝑡 → 𝑈(𝑡, 𝑢) is measurable and there exists 

a constant 𝑀 = 𝑀(𝑡) > 0 such that  

|𝑈(𝑡, 𝑢)| ⩽ 𝑀||𝑈|| 
Since we assumed that ℎ0,    ℎ0𝑥,    𝑢0,    𝑢0𝑥,    𝑐0,    𝑐0𝑥 ⩽ 𝑀̃ 

are all bounded, we can drag them in front of the integrals in 

(80). Further ℎ0
−1 is bounded by 𝐻0

−1. We denote the common 

bound of 𝑀̃ and 𝐻0
−1 by 𝑀0 and obtain from (80):  

 |𝑈(𝑈)| ⩽ 𝑀0 ∫ |ℎ𝑥| + 𝑀0 ∫ |𝑢𝑥| + 𝑀0 ∫ |𝑢𝑥| + 𝑀0 ∫ |𝑢𝑥𝑥| +
𝑀0
2 ∫ |𝑢𝑥| + 𝑀0

2 ∫ |ℎ𝑥| + 𝑀0
4 ∫ |ℎ| + 𝑀0 ∫ |𝑐𝑥| + 𝑀0

3 ∫ |ℎ| +
𝑀0 ∫ |𝑐𝑥| + 𝑀0 ∫ |𝑢| + 𝑀0

2 ∫ |𝑢𝑥𝑐| + 𝑀0
2 ∫ |𝑐| + 𝑀0

4 ∫ |ℎ| +
𝑀0
2 ∫ |𝑐𝑥𝑥| + 𝑀0

4 ∫ |𝑐𝑥| + 𝑀0
2 ∫ |ℎ𝑥| + 𝑀0

4 ∫ |ℎ| +
𝑀0
4 ∫ |ℎ𝑥| + 𝑀0

4 ∫ |ℎ𝑥| ⩽ 𝑀. ||𝑈|| 
Such that |. | denotes the absolute value not the norms in 𝐻.  

add Condition 2. The condition on 𝑈𝑜 follows immediately 

from the assumptions of the problem since 𝑉 ⊂ 𝐻. 

This concludes the proof of Theorem 3. We have shown that 

there exists a unique solution 𝑈 of problem 2 which fulfills 𝑈 ∈
𝑊(0,△ 𝑇: 𝑉, 𝑉′). 

E. A Finite Volume Approach 

The staggered finite volume method is advantageous for the 

discretization of conservation laws such as the thin film 

equations due to its direct connection to the physical flow 

properties. In this section, we consider the one-dimensional 

case with capillary effect negligible. The flux evaluation is the 

most important step in this solution [18]. The method can be 

formulated analogously for the two–dimensional problem. We 

consider the 1-D case as follows: Let Ω = [0,1]. Find 𝑈 =
(ℎ, 𝑢, 𝑐)𝑇: [0, 𝑇] × Ω ⟶ ℝ, such that  

0 = ℎ𝑡 + (𝑢ℎ)𝑥 (82) 

0 =
2𝑀𝑎

𝜖
𝑐𝑥 + 𝑅𝑒ℎ(𝑢𝑡 + 𝑢𝑢𝑥) − ℎ

𝑅𝑒.𝑔

𝐹𝑟
𝑒𝑔𝑥 − 4(ℎ𝑢𝑥)𝑥 (83) 

 0 =
2

𝜖𝑠
(𝐶𝑡 + (𝑢𝐶)𝑥) + 𝑃𝑒ℎ(𝐶𝑡 + 𝑢𝐶𝑥) − (ℎ𝐶𝑥)𝑥 (84) 

 In [0, 𝑇] × Ω and  

𝑢 = 𝑢𝑜 

On [{0}] × Ω. Moreover, the boundary conditions  

0 = ℎ𝑥 (85) 

0 = 𝑐𝑥 (86) 

 at 𝑥 = 0, and  

0 = 𝑐𝑥 (87) 

0 = (ℎ𝑢)𝑥 (88) 

𝑢 =
𝑄

ℎ
 (89) 

 At 𝑥 = 1 must be fulfilled. In order to formulate the integral 

form of problem, we have defined a suitable space. 

Definition 3: Let Ω = [0,1]. Let the sobolev space 𝐻𝑚(Ω) be 

given analogous to Section 6.4 by 

 𝐻𝑚(Ω) = {𝑢 ∈ 𝐿2(Ω); 𝐷𝛼𝑢 ∈ 𝐿2(Ω); |𝛼| ≤ 𝑚} 
We can then define the spaces 

𝑉ℎ(Ω) = {𝑢 ∈ 𝐻2(Ω); 𝑢𝑥(0) = 0}, 
𝑉𝑢(Ω) = {𝑢 ∈ 𝐻′(Ω); 𝑢(0) = 0 

and 

𝑉𝐶(Ω) = 𝐻′(Ω). 
Moreover, we let  

𝑉:= 𝑉ℎ(Ω) × 𝑉𝑢(Ω) × 𝑉𝐶(Ω) 
Thus, we can formulate the 

Piecewise problem Find 𝑈: [0, 𝑇] → 𝑉, such that  
𝑑

𝑑𝑡
(𝑈) + 𝐹(𝑈)𝑥 = 0 (90) 

 where  

𝑈(0) = 𝑈𝑜 ∈ 𝑉 

The corresponding finite-dimensional approximation reads 

Finite volume problem Find 𝑈𝑁: [0, 𝑇] → 𝑉𝑁, such that  
𝑑

𝑑𝑡
(𝑈𝑁) + 𝐹(𝑈𝑁)𝑥 = 0 (91) 

 where  

𝑈𝑁(0) = 𝑈𝑁0 ∈ 𝑉𝑁 

𝑉𝑁 denotes the finite-dimensional approximation space to 𝑉. 

There are multiple possibilities to define such a space that differ 

in their approximation qualities. For further information, we 

refer to [5]. The following is an exemplary approximation space 

𝑉𝑁 suitable for our problem. 

Remark (91) is a finite-dimensional system of ordinary 

differential equations which can be solved using a standard 

solver. 

We describe the staggered scheme in the one-dimensional 

case. We consider the time interval (0, 𝑇) and the space domain 

Ω:= (0,1). The time interval is divided into 𝑁𝑡 time steps of 

length △ 𝑡 and for all 𝑛 ∈ {0,1, . . . , 𝑁𝑡}, 𝑡
𝑛 = 𝑛 △ 𝑡. The 

domain Ω is divided into 𝑁𝑥 cells of length △ 𝑥. The left end, 

the center and the right end of the 𝑗 − 𝑡ℎ cell are denoted by 

𝑥
𝑗−

1

2

, 𝑥𝑗 and 𝑥
𝑗+

1

2

, respectfully. This method is based on writing 

the governing equations in integral form over an elementary 

control volume or cell, hence the general term Finite Volume 

(FV) Method. 

The approximation of ℎ at point 𝑥𝑗 and at time 𝑡𝑛 is 

denoted by ℎ𝑗
𝑛. The velocity 𝑢 is discretized at the interfaces 

between the cells. The approximation of 𝑢 at point 𝑥
𝑗+

1

2

 and at 

time 𝑡𝑛 is denoted 𝑢
𝑗+

1

2

𝑛 . Fluxes, on the other hand are evaluated 

at the interfaces between (𝑥
𝑗−

1

2

 and 𝑥
𝑗+

1

2

). From the derivation 

in Chapter 3, thin film drainage model (82)-(84) are balance 

laws in the form (91). 

For the 𝑗𝑡ℎ cell, the integration of (91) with respect to 𝑥 

from control surface 𝑥
𝑗−

1

2

 to control surface 𝑥
𝑗+

1

2

 yields:  

𝑑

𝑑𝑡
∫
𝑥
𝑗+
1
2

𝑥
𝑗−
1
2

𝑢𝑑𝑥 + 𝐹𝑥
𝑗+
1
2

− 𝐹𝑥
𝑗−
1
2

= 0 (92) 

Recalling that the flow variables (ℎ&𝑢) are averaged over 

the cell, the application of Green’s theorem to (92), gives 
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𝑢𝑗
−𝑛+1 = 𝑢𝑗

−𝑛 −
△𝑡

△𝑥
[𝐹
𝑗+

1

2

𝑛 − 𝐹
𝑗−

1

2

𝑛 ] (93) 

Where the superscript 𝑛 and 𝑛 + 1 reflect the 𝑡 and 𝑡 +△ 𝑡 time 

levels respectively. In (93), the determination of 𝑢 at the new 

time step 𝑛 + 1 requires the computation of the numerical flux 

at the cell interfaces at the old time n and the evaluation of the 

source term. The source terms are introduced into the solution 

through a second-order time splitting. The evaluation of the flux 

term is presented in the next section. 

1) Flux Computation 

In the Godunov approach the numerical flux 𝐹𝑗+1/2, is 

determined by solving a local Riemann problem, section 4.5.4 

of the Handbook on Numerical Analysis Hyperbolic Problems) 

at each cell interface. 

𝑃𝐷𝐸:    𝑈𝑡 + (𝐹(𝑈))𝑥 = 0    𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1] (94) 

𝐼𝐶𝑠:    𝑢(𝑥, 𝑡𝑛) = {

𝑢𝐿 ,    𝑖𝑓    𝑥 < 𝑥𝑗+1
2
,

𝑢𝑅 ,    𝑖𝑓    𝑥 > 𝑥
𝑗+
1
2
.
 

Where the left and right states are given , respectively, by 𝑢𝐿 =
𝑢𝑗
−𝑛 and 𝑢𝑅 = 𝑢𝑗+1

−𝑛   

To compute the flux 𝐹
𝑗+

1

2

 we need to know the solution u 

along the interface 𝑥 = 𝑥
𝑗+

1

2

, 𝑡𝑛 ≤ 𝑡 ≤ 𝑡𝑛 +△ 𝑡. We introduce 

the shock speed at the cell interface;  

𝑠̇ =
𝑓(𝑢𝑅) − 𝑓(𝑢𝐿)

𝑢𝑅 − 𝑢𝐿
 

According to the Rankine-Hugoniot jump condition under the 

condition that 𝑓(𝑢) is convex, using the method of 

characteristics: we have, for 𝑡𝑛 ≤ 𝑡 ≤ 𝑡𝑛 +△ 𝑡,  
𝑢(𝑥

𝑗+
1

2

, 𝑡) =

{
 
 

 
 
𝑢𝐿    𝑖𝑓    𝑓

′(𝑢𝐿) > 0    𝑎𝑛𝑑    𝑓′(𝑢𝑅) > 0

𝑢𝑅    𝑖𝑓    𝑓
′(𝑢𝐿) < 0    𝑎𝑛𝑑    𝑓′(𝑢𝑅) < 0

𝑢𝐿    𝑖𝑓    𝑓
′(𝑢𝐿) ≥ 0    𝑎𝑛𝑑    𝑓′(𝑢𝑅) ≤ 0    𝑎𝑛𝑑    𝑠̇ > 0

𝑢𝑅    𝑖𝑓    𝑓
′(𝑢𝐿) ≥ 0    𝑎𝑛𝑑    𝑓′(𝑢𝑅) ≤ 0    𝑎𝑛𝑑    𝑠̇ < 0

 (95) 

 Note that the four cases correspond either to a shock where, 

according to Lax’s criterion 𝑓′(𝑢𝐿) ≥ 𝑠̇ ≥ 𝑓
′(𝑢𝑅) so that 

𝑢𝑗+1/2 = 𝑢𝐿 if 𝑢𝑗+1/2 = 𝑢𝑅 if 𝑠̇ > 0. 

The celebrated Godunov’s method, [18] is now 

obtained by simply using the solution to the Riemann problem 

(95) at each interface 𝑥
𝑗+

1

2

 to compute the numerical fluxes 

𝐹
𝑗−

1

2

, 𝐹
𝑗+

1

2

 in (94), yielding  

𝐹(𝑥
𝑗+

1

2

, 𝑡) =

{
 
 

 
 
𝑓(𝑢𝐿)    𝑖𝑓    𝑓

′(𝑢𝐿) > 0    𝑎𝑛𝑑    𝑓
′(𝑢𝑅) > 0

𝑓(𝑢𝑅)    𝑖𝑓    𝑓
′(𝑢𝐿) < 0    𝑎𝑛𝑑    𝑓

′(𝑢𝑅) < 0

𝑓(𝑢𝐿)    𝑖𝑓    𝑓
′(𝑢𝐿) ≥ 0    𝑎𝑛𝑑    𝑓

′(𝑢𝑅) ≤ 0    𝑎𝑛𝑑    𝑠̇ > 0

𝑓(𝑢𝑅)    𝑖𝑓    𝑓
′(𝑢𝐿) ≥ 0    𝑎𝑛𝑑    𝑓

′(𝑢𝑅) ≤ 0    𝑎𝑛𝑑    𝑠̇ < 0

 (96) 

2) Stability of the Godunov method 

The numerical results indicated that stability for the upwind 

scheme is subtle. It is unconditionally unstable as the scheme 

(101), instead. the stability depends on parameters Δ𝑥 and Δ𝑡. 
Numerical results indicate the crucial role played by the ratio ∥

Δ𝑥

Δ𝑡
∥. Recall that the upwind method is stable under the 𝐶𝐹𝐿 

condition. Therefore, provided the 𝐶𝐹𝐿 condition 

max
𝑗
|𝑓′(𝑢𝑗

𝑛)|
Δ𝑥

Δ𝑡
≤

1

2
 (97) 

Is satisfied, Godunov’s method is stable [18]. We assume 

that the scheme used is stable. 

3) Consistency 

A finite volume scheme (101) with numerical flux function 

𝐹
𝑗+

1

2

𝑛 = 𝑓(𝑢𝑗−𝑛+1
𝑛 , … , 𝑢𝑗+𝑛

𝑛 ) (98) 

 is consistent if 

𝐹(𝑢,… , 𝑢) = 𝑓(𝑢)    ∀    𝑢 ∈ ℝ (99) 

4) Convergence 

The numerical results shows that the scheme with the flux 

function 

𝐹
𝑗+

1

2

𝑛 = 𝑓(𝑢𝑗
𝑛, 𝑢𝑗+1

𝑛 =
𝑓(𝑢𝑗

𝑛)+𝑓(𝑢𝑗+1
𝑛 )

2
 (100) 

It gives the standard central difference scheme for the 

conservation law (94) end up being unconditionally unstable 

even for linear equations. The conservation equations are 

presented in the discretization below: Using finite volume 

framework, we assume that 𝑢̅𝑛 ≈ 𝑢̅(𝑥𝑖 , 𝑡
𝑛), 𝑓̅(𝑢̅𝑛) ≈

𝑓(̅𝑢̅(𝑥𝑖 , 𝑡
𝑛)) and 𝐺̅𝑖

𝑛 ≈ 𝐺̅(𝑢̅(𝑥𝑖 , 𝑡
𝑛)). The fully discrete finite 

volume method [18] to get the numerical solution to the balance 

laws (94) is 

𝑢̅𝑗
𝑛+1 = 𝑢̅𝑗

𝑛 −
△𝑡

△𝑥
(𝐹̅
𝑗+

1

2

𝑛 − 𝐹̅
𝑗−

1

2

𝑛 ) (101) 

We now proceed to describe our staggered finite volume 

scheme for (82). The mass conservative approximation for (82) 

at the cell 𝑥
𝑗−

1

2

, 𝑥
𝑗+

1

2

 is  

ℎ𝑗
𝑛+1 = ℎ𝑗

𝑛 −
△𝑡

△𝑥
(𝐹
𝑗+

1

2

𝑛 − 𝐹
𝑗−

1

2

𝑛 )    ∀𝑗 ∈ ℤ (102) 

Where 

𝐹
𝑗+

1

2

𝑛 = ℎ̅
𝑗+

1

2

𝑛 𝑢
𝑗+

1

2

𝑛 , ℎ̅
𝑗+

1

2

𝑛 : = {

ℎ𝑗
𝑛    𝑖𝑓    𝑢

𝑗+
1

2

𝑛 > 0,

ℎ𝑗+1
𝑛     𝑖𝑓    𝑢

𝑗+
1

2

𝑛 < 0
 (103) 

The upwind approximation (103) is a direct consequence of 

considering the flow direction-when the flow is to the right 

(𝑢
𝑗−

1

2

) ⩾ 0 we take the left flux ℎ𝑗𝑢𝑗+1
2

; and when the flow is to 

the left (𝑢
𝑗+

1

2

< 0) we take the right flux ℎ𝑗+1𝑢𝑗+1
2

. 

The approximated momentum (83) and surfactant 

conservation (84) are  

 ℎ
𝑗+

1

2

𝑛+1𝑢
𝑗+

1

2

𝑛+1 = ℎ
𝑗+

1

2

𝑛 𝑢
𝑗+

1

2

𝑛 −
△𝑡

△𝑥
[𝐹𝑗+1

𝑛 𝑢̅𝑗+1
𝑛 − 𝐹𝑗

𝑛𝑢̅𝑗
𝑛 +

2𝑀𝑎

𝑅𝑒𝜖
(ℎ𝑗+1

𝑛+1 − 𝑐𝑗
𝑛+1) −

4

𝑅𝑒
(ℎ𝑗+1

𝑛+1
𝑢
𝑗+
1
2

𝑛 −𝑢
𝑗−
1
2

𝑛

△𝑥
−

ℎ𝑗
𝑛+1

𝑢
𝑗+
1
2

𝑛 −𝑢
𝑗−
1
2

𝑛

△𝑥
)] −

𝑔

𝐹𝑟
△ 𝑡ℎ

𝑗+
1

2

𝑛+1𝑒𝑔𝑥
𝑗+
1
2

 (104) 

ℎ
𝑗+

1

2

𝑛+1𝑐
𝑗+

1

2

𝑛+1 = ℎ
𝑗+

1

2

𝑛 𝑐
𝑗+

1

2

𝑛 −
△𝑡

△𝑥
[𝐹𝑗+1

𝑛 𝑐𝑗̅+1
𝑛 − 𝐹𝑗

𝑛𝑐𝑗̅
𝑛 +

𝛼

𝛼+𝛽
𝑐
𝑗+

1

2

𝑛+1(𝑢𝑗+1
𝑛 − 𝑢𝑗

𝑛) −
1

𝛼+𝛽
ℎ𝑗+1
𝑛+1

𝑐
𝑗+
1
2

𝑛 −𝑐
𝑗−
1
2

𝑛

△𝑥
] (105) 

Where  
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ℎ
𝑗+

1

2

𝑛 =
1

2
(ℎ𝑗

𝑛 + ℎ𝑗+1
𝑛 ),    ∀𝑗 ∈ ℤ (106) 

𝐹𝑗
𝑛 =

1

2
(𝐹
𝑗−

1

2

𝑛 + 𝐹
𝑗+

1

2

𝑛 ), (107) 

𝑢̅𝑗
𝑛: = {

𝑢
𝑗−

1

2

𝑛     𝑖𝑓    𝐹𝑗
𝑛 > 0,

𝑢
𝑗+

1

2

𝑛     𝑖𝑓    𝐹𝑗
𝑛 < 0,    ∀𝑗 ∈ ℤ

 (108) 

𝛼 =
2

𝜖𝑠
,    𝛽 = 𝑃𝑒 

𝑐𝑗̅
𝑛: = {

𝑐
𝑗−

1

2

𝑛     𝑢𝑗
𝑛 > 0

𝑐
𝑗+

1

2

𝑛     𝑢𝑗
𝑛 < 0    ∀𝑗 ∈ ℤ

 (109) 

 ℎ
𝑗+

1

2

𝑛 , 𝐹𝑗
𝑛, 𝑢̅𝑗

𝑛 are as in (106). (107) and (108). 

We are now ready to present our results of numerical 

simulations of the thin film drainage model. 

IV. SIMULATIONS 

In the previous sections, we have derived and analyzed 

models for the description and simulation of the dynamical 

behavior of a thin film foam. We now present and discuss 

results of simulation of the velocity profiles of the interface of 

the surfactant-fuel. This will depict the drainage of the aqueous 

films confined surfactant-fuel thin film in order to arrest fuel 

spill explosions. 

A. Numerical Simulations 

In this section, we present some numerical solutions of the 

one dimensional problem. The one-dimensional problems are 

computed on the interval 𝐼 = [0,1]. The boundary conditions 

applied are 𝑥𝑅 = 1 as discussed earlier in the chapter. We 

prescribe ℎ0 = 1 and 𝑢0 = 0as that initial conditin for the 

thickness and the velocity. Numerical plots of the film velocity 

profile for the established discretized equation presented in 

(104)-(105) using finite volume method with varied 𝑅𝑒 =
[0.01,0.1,1,10,100,1000] and the results presented in Figs. 2-

4. The simulations are based on the evolution of a film with the 

characteristic parameters 𝜖 = 0.01, 𝑀𝑎 = 100, 𝑆 = 2 and 

𝑃𝑒 = 1. The initial thickness is in this case given by ℎ0 = 1. 

The surfactant concentration at time 𝑡 = 0 is set to 𝐶𝑜 = 1, i.e. 

we start with a uniform distribution as in a freshly formed foam. 

Moreover, the film is motionless in the beginning, that is 𝑢𝑜 =
0.  

B. Surfactant-Fuel Thin-film Velocity Profile 

We now turn to the question of the influence of a surface 

active agent on the stability of a film spread over a fuel spill 

surface. We present velocity profiles of of thin-film against 

distance under varied Reynolds number in Figs. 2.  

 

 
Fig. 2. Velocity profile of the thin-film of surfactant-fuel foam. The first row from left to right is 𝑅𝑒 = 0.01,0.1,1. The second row from left to right 𝑅𝑒 =

10,100,1000 

 

Fig. 2 indicated that for 𝑅𝑒 = 0.01, the velocity profile 

stabilizes after ≃ 0.5 and the flow continues. The plot also 

indicate that for this 𝑅𝑒 value, the speed becomes constant after 

≃ 0.5 simulated distance. 

Fig. 2 indicated that for 𝑅𝑒 = 0.1, the velocity profile 

stabilizes after ≃ 0.5 and the flow continues. This observation 

is similar to when 𝑅𝑒 = 0.01. However, unlike when 𝑅𝑒 =
0.01, the maximum and minimum velocities are less than the 

previous figure. The plot also indicates that for this 𝑅𝑒 value, 

the speed becomes constant after ≃ 0.5 simulated distance. 

Fig. 2 indicated that for 𝑅𝑒 = 1, the velocity profile 

stabilizes after ≃ 0.5 and the flow continues. This observation 

is similar to when 𝑅𝑒 = 0.01 and 𝑅𝑒 = 0.1. However, unlike 

when 𝑅𝑒 = 0.01,0.1, the maximum and minimum velocities 

are greater than the previous figures. The plot also indicates that 

for this 𝑅𝑒 value, the speed becomes constant after ≃ 0.5 

simulated distance. 

Fig. 2 indicated that for 𝑅𝑒 = 10, the velocity profile 

stabilizes after ≃ 0.8 and the flow continues. This observation 

is unlike when 𝑅𝑒 = 0.01,0.1. However, unlike when 𝑅𝑒 =
0.01,0.1, the maximum and minimum velocities are greater 

than the previous figures. At the commencement of the 

simulations, the velocity tends to be constant until after ≃ 0.2m. 

The plot also indicates that for this 𝑅𝑒 value, the speed becomes 

constant after ≃ 0.8m simulated distance. 

For Fig. 2 the behavior of the solution is quite complicated. 

The initial disturbances compress in some parts and expand in 

some other parts. This leads to a combination of shocks and 
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rarefactions. The oscillations decay after 𝑥 =≃
0.5,0.52,0.55,0.57&0.79, respectively in Fig. 2. For high 

Reynolds numbers, 𝑅𝑒 = 100,1000 (see Fig. 2) the interfaces 

fails to oscillate, rather reaches equilibrium state. However, at 

𝑅𝑒 = 100 besides the motion being not oscillatory, it captures 

the discontinuity quite sharply. 

Fig. 2 indicated that for 𝑅𝑒 = 100, the velocity profile is 

constant at the beginning of simulation then falls rapidly at ≃
0.25m to 𝑈 = 0𝑚/𝑠. The observation is unlike when 𝑅𝑒 =
0.01,0.1,1,10. However, unlike when 𝑅𝑒 = 0.01,0.1,1,10, the 

maximum and minimum velocities are 1𝑚/𝑠 and 0𝑚/𝑠 
respectively. The zero speed is reached at ≃ 0.38𝑚. This imply 

that at 𝑅𝑒 ≫ 1, the surfactant-fuel thin-film is depleted faster 

than 𝑅𝑒 ≪ 1. The observation suggests that in order to suppress 

the gas vapors and control the fire incidences, then 𝑅𝑒 ≠≫ 1. 

Fig. 2 indicated that for 𝑅𝑒 = 1000, the velocity profile is 

constant at the beginning of simulation then falls rapidly at ≃
0.15m to 𝑈 = 0𝑚/𝑠. The observation is unlike when 𝑅𝑒 =
0.01,0.1,1,10. However, unlike when 𝑅𝑒 = 0.01,0.1,1,10, the 

maximum and minimum velocities are 1𝑚/𝑠 and 0𝑚/𝑠 

respectively. The zero speed is reached at ≃ 0.3𝑚. This imply 

that at 𝑅𝑒 ≫ 1, the surfactant-fuel thin-film is depleted fasted 

than 𝑅𝑒 ≪ 1. The observation suggests that in order to suppress 

the gas vapors and control the fire incidences, then 𝑅𝑒 ≠≫ 1. 

The observation when 𝑅𝑒 = 100,1000 indicate that the higher 

the 𝑅𝑒 the faster the depletion of the surfactant-fuel thin-film 

foam. 

C. Drainage of the Film 

We can study how the drainage of the thin film proceeds. 

For each value of the thin film thickness ℎ, we set the surfactant 

concentration. We in this study simulate the drainage in thin 

liquid film spread over fuel spill surface. So, once the remaining 

parameters 𝑃𝑒, 𝑅𝑒, 𝑆,𝑀𝑎 are specified, we can in principle 

calculate 𝑄 for each value of ℎ and thus determine the rate at 

which the thin film drains. To demonstrate two classes of 

solutions to the model, we start by keeping 𝑃𝑒 = 5,𝑀𝑎 = 5 

and 𝑆 = 2 fixed while varying 𝑐. Fig. 3 summarizes the 

drainage profile of surfactant-fuel thin film profile  

 

 

Fig. 3. Drainage profile beginning with 𝑅𝑒 = 0.01 to 𝑅𝑒 = 1000 with ℎ(surfactant thickness ranging from 𝐻 = 1𝑚𝑚 to 𝐻0 = 0.1𝑚𝑚). 

 
Fig. 4. Volumetric flux profile analogous to drainage profile beginning with 𝑅𝑒 = 0.01 to 𝑅𝑒 = 1000 with ℎ(surfactant thickness ranging from 𝐻 = 1𝑚𝑚 to 

𝐻0 = 0.1𝑚𝑚). 

 

Fig. 3 indicate that at higher 𝑅𝑒, the drainage is so quicker 

than the at lower 𝑅𝑒. 𝑅𝑒 =
𝜌𝑈𝐿

𝜇
 where 𝜌 is the thin-film 

surfactant foam interface density, 𝑈 is the velocity, 𝐿 is the 

characteristic length, and 𝜇 is the viscosity. 𝜌, 𝐿, 𝜇 is constant; 

thus, increasing 𝑅𝑒 increases the velocity of the thin film 

surfactant foam. The implication suggests that at higher 𝑅𝑒, the 
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thin film surfactant foam drains faster. Thus, vise-versa is true 

if we look at 𝑅𝑒 = 0.01; 0.1; 1. 

D. Volumetric Flux Profile 

Fig. 4 indicate that at higher Re, the volumetric flux falls so 

quicker than the at lower Re. The observation is similar to those 

made in Figure 3. The volumetric flow rate is higher when Re 

is high and lower when Re is low. Figure 3 and Figure 4 suggest 

that at higher Re the surfactant drainage is faster and the fuel 

spill explodes. 

In the beginning, a constant surfactant concentration where 

viscous forces is dominant show the film thinning very fast. 

Due to the flow of liquid and surfactant into the shock regions, 

a gradient in the surfactant concentration arises, ultimately 

stopping the thinning. Due to inertial effects, an equilibrium is 

not immediately reached. Still, the thin film shows an 

oscillatory behaviour in which liquid alternatively flows back 

into the thin film and out again until a quasi-equilibrium state is 

reached. 

V. CONCLUSION  

The estimation of the depletion of surfactant-fuel thin-film 

foam is an enormous task that has elicited many pieces of 

research. The chapter tries to estimate the distance before 

depletion of surfactant-fuel thin-film foam. We varied 𝑅𝑒 to 

show that given different interface Reynolds numbers (inertial 

forces to viscous forces), the surfactant-fuel thin-film foam will 

show different velocity profiles. 

The simulation of the study has shown that for 𝑅𝑒 =
0.01,0.1,1, the velocity profile stabilizes after ≃ 0.5 and the 

flow continues. Surfactant-fuel thin-film foam with 𝑅𝑒 = 1 has 

the maximum and minimum velocities are less than that of 

𝑅𝑒 = 0.01&0.1. 𝑅𝑒 = 10, the velocity profile stabilizes after ≃
0.8, and the maximum and minimum velocities are greater than 

the previous values of 𝑅𝑒. The higher 𝑅𝑒 that is, at 𝑅𝑒 ≫ 1, the 

surfactant-fuel thin-film is depleted fasted than 𝑅𝑒 ≪ 1. Thus, 

to suppress the gas vapors and control the fire incidences, 𝑅𝑒 ≠
≫ 1. Future studies in the area need to consider the effect of 

variation in temperature, velocity, besides Reynolds number, in 

determining the lifetime of a surfactant-fuel thin foam.  
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