
International Journal of Scientific Engineering and Science 
Volume 5, Issue 7, pp. 58-73, 2021. ISSN (Online): 2456-7361 

 

 

58 

http://ijses.com/ 

All rights reserved 

Experimental and Micro-Macro Mechanics Methods 

in Prediction of Mechanical Properties of Carbon 

Fibre-Reinforced Composite Panels 
 

Umar Farooq
*1

, Peter Myler
2
, Mahmoona Siddique

3
 

1, 2
Faculty of Engineering, Support and Advanced Sciences, University of Bolton BL3 5AB, United Kingdom 

Email: U.Farooq @ bolton.ac.uk, pm8 @ bolton.ac.uk 
3
Lecturer, Department of Mathematics, Government Degree College for Women, Sargodha 4000 

Pakistan. Email: monamaths0 @ gmail.com 

 

 
Abstract— This paper is concerned with predictions of mechanical properties of carbon fibre-reinforced laminated composite panels using 

micro-macro mechanics laws. Due to superior mechanical properties, the fibrous composites are being increasingly used in aircraft industry. 

The industry attaches prime importance to experimental testing methods to screen quality mechanical properties of fibrous composite made 

components at pre-design level. However, different test methods and setups produce different results, while analytical studies neglect influence 

from coupling deformations. That necessitates use of micro-macro mechanics methods to be included to supplement the existing methods. 

Present work is mainly based on usage of micro-macro mechanics laws and influence from deformations to enhance previous efforts in 

prediction of mechanical properties. Current study progresses with determining properties from physical tests and relating them to off-axes 

properties to develop two- and three-dimensional mathematical formulations. Computer programs for the formulations were written and 

implemented in MATLABTM software to predict the properties. Good agreement was found between predicted and experimental produced 

quantities of the mechanical properties. Comparisons of results confirmed that proposed use of micro-macro mechanics laws could efficiently 

predict mechanical properties the panels considered in current study.  

 

Keywords— A. Polymer Matrix Composites; B. Mechanical Property; C. Material Testing Methods.  

I. INTRODUCTION  

Fiber-reinforced composite panels are manufactured from combination of fibres and resin rich matrices. The combined 

constituents keep their individual characteristics while creating a new substance of superior properties in a specific application 

[1]. Fibers are deliberately oriented in matrices to increase directional stiffness of the materials. Plies are stacked in various 

orientations of fibre directions to build composite panels [2]. The most efficient configuration to effectively transfer forces for a 

unidirectional force system is a unidirectional composite panel oriented in the direction of loading path [3]. In cases where 

loading are such that unidirectional panels are inadequate or inefficient then multi-directional panels are used. The composites are 

being used as alternatives to steel due to their outstanding corrosion resistance, high specific strength properties (20-40% weight 

savings), low cost, long service life, and reduced maintenance. The other common desirables consist of the following: ability to 

fabricate directional mechanical properties, excellent fatigue and fracture resistance, lower tooling cost alternatives, lower thermal 

expansion properties, simplification of manufacturing by parts integration, potential for rapid process cycles, and ability to meet 

stringent dimensional stability requirements. Because of favourable properties, the composite materials are being widely used in 

modern aircraft structures as shown in Figure 1 [4], and their applications are rapidly expanding in military vehicles, ships, 

buildings, and offshore structures. 

 
a)                                                                                     b) 
Figure 1: Images of a) commercial, b) military aircrafts 

 
Since composite panels possess anisotropic properties whereby a normal stress may induce both normal and shear strains 

hence relationships between forces and deformations exhibit much more complication compared to conventional materials [5]. 

Commercial  

   Military  
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These coupling effects have important implications in mechanics of composites and characterization of mechanical properties to 

understand their unexpected behaviour structural components during service life [6]. Thus extensive research work is being 

carried out on various aspects of mechanical properties characterizations of the composites. Selected ones are being presented 

below for reference.  

Structural elements have certain characteristics of shape, rigidity, stiffness, and strength [7]. Thus comprehensive knowledge 

of their characteristic properties is important before using them as load bearing components. Various physical testing methods are 

used for screening properties of materials before they are used put into work. Basic ‘ignition loss method‘ is used to determine 

quantities of volume fractions by weight in a composite panel. The characteristic properties identify parameters that influence 

strengths and response of composite materials such as fibre, matrix types and interfaces [8]. These volume fractions quantities are 

utilised in Rule of Mixture (ROM), Halping-Tsai relations, and physical testing to formulate relationships among basic 

mechanical properties so that the property data can further be used to evaluate performance of the composite panels [9]. Common 

experimental methods to predict properties of composite materials consist of the tensile, compression, flexural, shear modulus, 

Iosipescu, and v-notch-rail detailed in [10]. Young‘s modulus is one of the important characteristic; however, factors affecting its 

determination are complicated: nature of matrix and filler, compatibility, and material processing technology [11] and [12]. 

Similarly, dispersion or distribution of the filler in the matrix, interfacial structure and morphology affect the modulus [13] and 

[14]. Influence of shear effects in the displacements is another important factor, larger span-to-depth ratios are used to reduce the 

influence [14]. It is reported in [16] that fibre reinforced composites are inhomogeneous and anisotropic in nature hence their 

characterisation is complex. Laminates with aligned reinforcement are stiff along the fibres, but weak in transverse to the fibre 

direction [17]. In order to obtain equal stiffness in all off-axis loading systems to present balanced angle plies were investigated in 

[18] and [19]. To obtain equal stiffness in all directions quasi-isotropic lay-up configurations were used in [20] and [21]. These 

methods relate material properties into algebraic set of equations that are easier to code and solve using computers [31], [23]. 

However, use of the method is reported to be limited for cases of tensile-shear interaction if the off-axis loading system does not 

coincide with the main axes of a single lamina or if the panel is not balanced. Instead of such testing, the simplified property 

prediction schemes based on mathematical formulations were preferred in [24] and [25]. A composite laminate subjected to off-

axis loading system presents tensile-shear interactions in its plies that leads to distortions and local micro-structural damage hence 

their testing can produce unreliable results. Thus, unidirectional lamina was tested at different fibre volume fractions to predict 

elastic constants using the finite element method [26] and [27]. The study paved the way for solution to obtain equal stiffness of 

panels subjected in all directions within a plane is presented by various authors by stacking and bonding together plies with 

different fibres orientations. Allocations of appropriate input engineering parameters such as the effective elastic moduli and the 

associated Poisson‘s ratios for materials based on the theory of micro-macro mechanics along with linear elasticity and their 

limitations are detailed in [28], [29], and [30]. Characterization of in-plane mechanical properties of laminated hybrid composites 

is given in [31], and mechanics-of-materials model for predicting Young‘s modulus of damaged woven fabric composites, 

involving three damage modes can be found in [32].   

The literature review reveals that majority of the existing studies are experimental, resource and time consuming. Many test 

methods use different geometries for panels and holding-fixtures that produce different data. Researcher has to undergo series of 

experiments to obtain desired properties [33]. Moreover, composites are anisotropic in nature while certain characteristics of 

shape, rigidity, and strength make physical testing complicated [34]. Furthermore, analytical studies based on neglecting 

deformation effects could not be relied to predict optimal mechanical properties [35]. Micro-macro mechanics based theoretical 

methods are required to evaluate performance and identify load bearing parameters panels. 

Current study is mainly based on micro-macro mechanics of fibrous composites. Stiffness matrices and invariants were 

formulated to include stress-strain effects and implemented in MATLAB
TM

 code to approximate the properties. Comparison and 

validation were carried out against intra-simulation and experimentally produced results and found within acceptable agreement. 

The study proposed that mechanical properties can be reliably determined from computer codes utilising the micro-macro 

mechanics laws.  

II. MATERIALS AND METHODS 

2.1 Carbon fibre-reinforced panel and material properties  

General realisation is that a comprehensive analysis programme to investigate the mechanical properties of a full-scale 

structure would prove too costly. Thus, smaller representative specimens are normally studied using restricted parameters under 

specific conditions so that the scale effect is accounted for, and data could be used at pre-design evaluation of full-scale structures. 

Moreover, composites are heterogeneous materials hence full characterisation of their properties is difficult, as various processing 

factors may influence the properties: misaligned fibres, fibre damage, non-uniform curing, cracks, voids and residual stresses. 

These factors are assumed to be negligible when care is taken in the manufacturing processes. Considering these reasons, the 

purpose specific fabricated panels supplied by manufacturer were considered. Brief illustrations of carbon fibres, satin weave 5
th

 

ply harness layup, and schematic of 8-, 16-, and 24-Ply beam-panels with plane dimensions: 150mm x 120mm are shown in [2].  

 



International Journal of Scientific Engineering and Science 
Volume 5, Issue 7, pp. 58-73, 2021. ISSN (Online): 2456-7361 

 

 

60 

http://ijses.com/ 

All rights reserved 

 
 

Figure 2: Schematic a) fibres, b) 5th harness satin weave, and c) beam specimens 

 

Panels considered were of code Fibredux 914C-833-40, consisting of 8-, 16-, and 24-Ply layup, assumed to be void-free, 

Poison‘s ratio: 0.21, and property parameters given in Table 1. 

 
Table 1: Panels, layup codes, average thickness, and properties 

Panel Lay-up code Thickness mm Property parameter Unit MPa 

8-Ply [0/90/45/-45]S 2.4 Exx (0
0), Eyy (900) 230 

16-Ply [0/90/45/-45]2S 4.8 τxy 450, -450 23 

24-Ply [0/90/45/-45]3S 7.2 Gxy 88 

2.2 Experimental test methods 

An important aspect of the subject is the physical testing of material samples by applying forces and deformations. Once 

behaviour of material is quantitatively known from testing, its chances of success in a particular engineering design could be 

evaluated. When a material is characterised experimentally, its mechanical properties (engineering constants) are measured 

instead of the stiffness or the compliance. This is because mechanical properties can be easily defined and interpreted in terms of 

simple state of stress and strain used in design development and analysis. Mechanical properties of the test standard panels are 

obtained from static experimental test methods: tensile, compression, flexural, shear modulus as shown in Figure 3, for details 

please refer to (ASTM: D7264). Tensile and bending tests suffice requirements of current study; therefore, compression and shear 

testing procedures and discussion of their results will not be included.    

 
Figure 3: Schematics of common test methods for composite panels 

 

Commonly used universal machine for the above tension, compression, flexure tests is shown in Figure 4 below.  

b)  a) 

    24-Ply  

    16-Ply  

8-Ply  

c)  

b) Compression 

a) Tensile 

c) Shear 

d) Bending/Flexural 
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 a) InstranTM 5585H machine        b) Tension/compression        c) Flexural 

Figure 4: Images of a) Machine, b), and c) enlarged view of chambers 

 
2.2.1 Tensile test 

Three specimens from each of the panels were prepared in I-shapes in line with the testing standard for tensile tests (ASTM: 

D3039). Photographs of the specimens selected for the tests are shown in Figure 2(c). Average span and width of 8-, 16-, and 24-

Ply specimens were considered 120mm and 20mm with average thicknesses considered 2.4, 4.8, and 7.2mm, respectively. The 

effective beam length (L) used for all calculations was length (120mm) –both the grips (30mm) = 90mm, approximate dimensions 

and relevant spans to depth ratios as shown in Figure 5. Load transfer tabs were adhesively bonded to the ends of the specimens in 

order that the load may be transferred from the grips of the tensile testing machine to the specimen without damaging it. 

Specimens were gripped at both ends. The specimen was inserted within in the fixture holders of the machine by metal grips as 

shown in and loaded axially at a rate of 1 mm/min. The applied tensile load produced tensile stresses through the holding grips 

that results elongation of the specimen in loading direction.  

 

 

 

 
a)                                                                                              b) 

Figure 5: Schematic of a) beam panel, b) cross-sectional area 

 

Results from two beam specimens were selected from the three types of panels shown in Figure 2(c). Approximate mechanical 

properties predicted by tensile experimental tests are presented in Table 3. 

2.2.2 Flexural test 

Flexural properties of the specimens were determined using the standard method of three point bending test. A schematic of 

simply supported flat rectangular specimens three types closed at both ends with cross-sectional areas of constant width is shown 

in Figure 6. The specimens have different thicknesses: t= 2.4, 4.8, 7.2mm, as can be seen from Figure 5. There is a wide variety of 

test methods available for flexure testing described in (ASTM: D7264) those address particular testing needs of heterogeneous, 

non-isotropic materials.  

 

 

 

 

 

Figure 6: Schematics of specimen under three-point bending  

b =120 mm 

b =90 mm 

t = 4.8 , 4.8, 7.2mm 

W= 20 

       L=100 

       L/2        L/2 
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The vertically applied load could deflect (bend) the specimen and could even fracture the outer fibres under excessive loading. 

Approximate dimensions and relevant simple support of span to depth ratios provides base to be utilised in beam bending 

formulation. Calculation of Young‘s modulus from the load-displacement relations are given in  

Table 2. 
 

Table 2: Formulation used to calculate young‘s modulus. 

Bending moment Area moment Max Bending Stress Load Young’s modulus 
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Approximate mechanical properties for three types of specimens in Figure 2(c) predicted by tensile and three-point bending 

tests are compared and illustrated in Table 3 below. 

 
Table 3: Young‘s modulus of beam specimens 

 

Specimen 

Young’s modulus GPa  

Tensile test Flexural Test 

1 2 1 2 

8-Ply 45.8 45.2 52.8 53.2 

16-Ply 45.5 45.7 51.5 49.2 

24-Ply 48.4 49.1 48.6 49.8 

 

2.3 Micro-macro mechanics methods to determine engineering properties   

2.3.1 Use of Rule of Mixture properties in orthotropic lamina formulations  

Most of the structural parts use laminates that consist of several plies with different orientations connected together through a 

bonding interface. A lamina (heterogeneous at the constituent level) forms the building block of laminated composites based 

structures. Micromechanics do not refer to mechanical behaviour at the molecular level rather it looks at components of a 

composite lamina (matrix and fibre) while behaviour of the lamina is called ―macro-mechanics‖ those predict behaviour of the 

assumed homogeneous composite material. Mechanical and physical properties of the lamiae (reinforcement and matrix) and their 

interactions are examined on a micro-macroscopic level on various degrees of simplifications. Fibre and matrix densities are 

measured and converted into respective fibre volume fractions that form basis for approximation of engineering properties [14].  

Elastic constants (for uniformity expressed in normal format rather than italic) for unidirectional lamina with fibres aligned in x 

direction can be calculated using Rule of Mixture from the following equations:  

                (Longitudinal Young‘s modulus)        (1)  

    
    

         
   (Transverse Young‘s modulus)        (2) 

     
  

 (     )
   (In-plane shear modulus)          (3) 

              (Relation for Poisson‘s ratios)         (4) 

Equations (1)-(4) can be utilised to determine components of the lamina stiffness matrix (Q), and subscripts L and T are 

replaced by 1 & 2:   

     
  

        
 ,      

     

        
    ,      

  

        
 , and         ,  

Elastic constants are required to consider influence from in-plane deformations. Out-of-plane stresses (             ) 

may be neglected for the stress-strain relations of a thin elastic lamina.   

    
 

 
(        )   

    
 

 
(         )  

    
 

 
(   )              (5) 

There is no coupling between the shear stresses and normal stress.  For an orthotropic lamina in a plane stress form as shown 

in Figure 7, the stress-strain relations may be written: 

    
   

   
    

   

   
        

        
   

   
 
   

   
        

                 
   

   
              (6) 
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Figure 7: Orthotropic lamina in a plane stress 

  

Stresses in a general orthotropic lamina under a plane stress conditions may be obtained from coefficients of mutual influence 

(   and   ) for an angle-lamina in global coordinates can be determined from the equations:  
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For an especially orthotropic lamina (            ), the stress-strain relations yield:  

        
   

   
    

   

   
  

            
   

   
 
   

   
  

               
   

   
             (9)  

The relations may be written in local coordinates as 

{

  
  
   
}  [

       
       
     

] {

  
  
   

 

}            (10) 

Similarly, for the general orthotropic lamina (           ), the complete set of transformation equations for the stresses in the 

xy-coordinate system can be developed using the local-global coordinate transformation matrix  

{

  
  
   
}  [ ] {

  
  
   
}             (11) 

Where: [ ]  [
       
        
          

];                  

The generally orthotropic laminate creates fully populated, the reduced transformed stiffness matrix:  

{

  
  
   
}  [

 ̅   ̅   ̅  
 ̅   ̅   ̅  
 ̅   ̅   ̅  

] {

  
  
   
}            (12) 

Where:  ̅  are the components of the transformed stiffness matrix defined as follows:  

 ̅          
         

    (        )   
         

𝜎𝑦𝑦 

 x 

 1 
2 

 θ 

 τxy 

   y 

 τxy 

𝜎𝑥𝑥 𝜎𝑥𝑥 

𝜎𝑦𝑦 
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 ̅    (            )   
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        )  
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   (            )        

    

 ̅   (            )        
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 ̅    (                 )   

           (   
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It appears from Eq. (12) that there are six constants that govern the stress-strain behaviour of a lamina. However, the equations 

are linear combinations of the four basic elastic constants, and therefore are not independent. Elements in stiffness matrices can be 

expresses in terms of five invariant properties of the lamina using trigonometric identities: 

 ̅                        

 ̅                

 ̅                        

 ̅    
  

 
               

 ̅    
  

 
                 

 ̅     
 

 
(     )                                      (13) 

Where the set of invariants is defined as  

   
 

 
(                   )  

   
 

 
(       )  

   
 

 
(                 )  

   
 

 
(                   )           (14) 

The invariants due to rotations in Eq. (14) are simply linear combinations in plane of the lamina. There are four independent 

invariants, just as there are four independent elastic constants. In the equation, all the stiffness expressions (except coupling) 

consist of one constant term which varies with lamina orientations. Thus, the effects of lamina orientation on stiffness are easier 

to interpret very useful in computing elements of these matrices. The element of fibre-reinforced composite material with its fibre 

oriented at some arbitrary angle exhibits a shear strain when subjected to a normal stress, and it also exhibits an extensional strain 

when subjected to a shear stress. The state of stress is defined as  xx     yy    xy     

Mutual influence coefficients can be found from:  

 x xy  
   

   
             (15)  

Similarly, when the state of stress is defined as  yy     xx    xy              

 y xy  
   

   
             (16)  

 As pure shear stresses  xy     xx    yy               xy y characterises the normal strain response along the y direction due 

to a shear stress in the x-y plane. The ratio can be found as:  

 xy y  
   

 ̅  
             (17) 

Superposition of loading, stress-strain relations in terms of elastic constants are:  
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Elastic constants derived from Eq. (18) in global coordinates can be written as: 
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 yx  
 yy xy

 xx
⁄              (23)  

 x 
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(     )  

  (     )

   
+       (24)  

 y 
 yy
⁄  

  y
 xy
⁄  *

    

   
(     )  

    

   
(     )  

  (     )

   
+       (25)  

2.3.2 Effective mechanical properties for three-dimensional panels 

Real structural elements involve lay-ups containing various number of angle plies subjected to three-dimensional state of 

stresses. Engineering properties using ‗Rule of Mixture‘ may be written as:    

 x  
 

 
   

 

 
                (26)  

 y  
 

 
   

 

 
               (27)  

 z                  (28)  

                         (29)  

Shear moduli may be written as follows: 

 xy  
   

   
,  xz  

   

   
,  yz  

   

   
,            (30)  

Where: L stands for longitudinal and T for transverse directions.  

The determination of the material properties of laminate with several layers of lamina and orientations can be done using the 

theory of lamination plates. The deformation hypothesis from classical homogeneous plate theory and the laminated force-

deformation equation can be used to define the coordinate system in developing the relations. The force, N and moment, M per 

unit length for the laminate, which can be computed at ply level. The quadratic mid-plane of the laminate contains x-y axes, and z 

axis defines the thickness direction. A typical laminate geometry of thickness h, number of laminas N, and lamina thickness t is 

shown in sketch Figure 8.  

 

 
Figure 8: Laminate geometry coordinate locations of ply in a laminate 

 

Laminate strains are linearly related to the distance from the mid-plane:  

       
          

       
       

       
                    (31)   

Where: 

   
 ,    

  = mid-plane normal strains in the laminate 

   
          =  mid-plane shear strain in the laminate 

         bending curvatures in the laminate 

             = twisting curvature in the laminate 

  = distance from the mid-plane in the thickness direction.  

The mid-surface strain and curvature are always assumed zero and not function of z. Integrations at mid-surface yields:  
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The laminate reduced transformed stiffness matrices and the ply thickness reference coordinate    can be combined to form 

new matrices. The element stiffness matrices: [A], [B], [D], [E], [F], and [H] may be written as: 
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Where i, j =1, 2, 6; so stresses may be written as follows: 
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Applying unidirectional load in x-axis direction, the matrix of Eq. (34) becomes, 

{
 
 
 
 

 
 
 
 
  
 
 
 
 
 
 
 
 }
 
 
 
 

 
 
 
 

 

[
 
 
 
 
 
 
 
 
   
   
   
   
   
   
   
   
   

   
   
   
   
   
   
   
   
   

   
   
   
   
   
   
   
   
   

   
   
   
   
   
   
   
   
   

   
   
   
   
   
   
   
   
   

   
   
   
   
   
   
   
   
   

   
   
   
   
   
   
   
   
   

   
   
   
   
   
   
   
   
   

   
   
   
   
   
   
   
   
   ]

 
 
 
 
 
 
 
 

{
 
 
 
 
 

 
 
 
 
 
  
      

 

  
      

 

  
      

 

  
 

  
 

   
 

  
 

  
 

   
 

}
 
 
 
 
 

 
 
 
 
 

        (35)  

Using the relation 
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Where hj-1; distance from the mid-plane to the top of the j
th

 lamina, hj: distance from the mid-plane to the bottom of the j
th

 lamina, 

and thickness of the k
th

 lamina denoted by    and   ̅  
(       )

 
, and putting Ln =0.  

Due to inherent heterogeneity, anisotropy, complicated geometries, and variety of loading, the in-plane forces cause out-of-

plane deformations. Components of such laminates may be obtained by referring stress and strain components. The principal 

system of material coordinates (1, 2, 3) related to an arbitrary coordinate system (x, y, z) by the transformation relations as shown 

in Figure 9. 

 

 
 a)       b) 

Figure 9: a) 3-D panel, b) Coordinate systems referred to 3D transformation relations 

 

Stress and strain components in local-coordinates may be related to the corresponding components in global-coordinates along 

with transformation matrix as follows:   
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Where transformation matrix is given as, 
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The transformation relations for angles ( x   x   x ) measured from x-axis to axis 1-, 2-, 3-axes in terms of direction cosines 

             are given as:  

       x                 x                   x   

       y                   y                          y   

       z                   z                           z   

To transform the lamina stiffness matrix into a global form using the transformed coefficient with different angles and 

thickness of each layer, the transformed stiffness matrices can be calculated. Denoting q, r, and s as contractions of the subscripts 

y-z, z-x, and x-y the following 3D formulations for coefficients of the reduced stiffen matrices:  

5th Ply Harness Satin Weave Panel 
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The mathematical formulations may be utilised to formulate effective mechanical properties of laminated structural 

beam/plate panels of thickness H consisting of N plies rotated at angles   :  

 ̅  
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International Journal of Scientific Engineering and Science 
Volume 5, Issue 7, pp. 58-73, 2021. ISSN (Online): 2456-7361 

 

 

69 

http://ijses.com/ 

All rights reserved 

 ̅   
 

  
∑    (  )
 
               (61) 

 ̅   
 

  
∑    (  )
 
               (62)  

 ̅   
 

  
∑    (  )
 
               (63)  

III. RESULTS AND DISCUSSIONS 

Mathematical formulations relevant to the current study were selected out of the formulations presented in the Section2.3 

above. Three-dimensional formulations were selected to program and implement in MATLAB
TM

 software to approximate the 

mechanical properties (elastic constants) as presented in Table 4, Table 5, and  

Table 6. The coded programs were executed to predict effective mechanical properties of laminated structural beam/plate 

panels of thickness H (8-ply of 2.4 mm; 16-ply of 4.8 mm; and 24-ply of 7.2 mm thickness laminates) made of N plies as shown 

in Figure 1 with material properties provided in Table 1. Extensive data for mechanical properties (Young‘s modulus, shear 

modulus, and Poisson‘s ratios) from axis-aligned and rotated beam panels through simulations of tensile, shear, and bending tests, 

and effective were recorded. Selected data were plotted as functions for the four mechanical properties against ply orientation 

angles range:    ⁄      ⁄  at the step difference of 10
0
 depicted in Figure 10, Figure 11, Figure 12, and Figure 13. Selected 

quantities out of simulated results illustrated in Table 7 were compared against the data available in Table 1 and reference [14] 

and found to be within good agreement. Mechanical properties (elastic constants) are presented in Table 7 are independent, so the 

presented elastic constants were considered to be parallel in fibre directions in all cases.  
 

Table 4: Computer program to predict mechanical properties 

Clear 
clc 
e11=230;e22=23;neu12=0.2;g12=88;   
diaryElastic_Constants.out 
fprintf('====== Angle and Elastic constants ======\n'); fprintf(' -----------------------\n\n'); 
fprintf('Angle    \tExx         v12         Eyy Gxy \n'); 
 fprintf('=====   \t=======  \t=======  \t=======      =======    \n'); 
i=0;for ii = -90:10:90;i=i+1; ex1(i) = Ex(e11,e22, neu12, g12, ii); 
neux1(i) = NUxy(e11,e22, neu12, g12, ii);ey2(i) = Ey(e11,e22, neu12, g12, ii); 
%neuy2(i) = NUyx(e11,e22, neu12, g12, ii) 
gxy(i) = Gxy(e11,e22, neu12, g12, ii);  
fprintf('%2d \t\t%5.2f\t\t%5.2f\t\t%5.2f\t\t%5.2f\n',ii, ex1(i),neux1(i),ey2(i), gxy(i)) 
end 
x=[-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90]; 
ex=[23 24.28 28.61 37.69 55.41 88.86 143.52 200.83 226.73 230 226.73 200.83 143.52 88.86 55.41 37.69 28.61 24.28 23]; 
neu=[0.02 -0.01 -0.08 -0.18 -0.29 -0.39 -0.42 -0.32 -0.04 0.2 -0.04 -0.32 -0.42 -0.39 -0.29 -0.18 -0.08 -0.01 0.02]; 
ey=[230 252.98 297.4 247.96 134.08 70.16 42.38 30 24.56 23 24.56 30 42.38 70.16 134.08 247.96 297.4 252.98 230]; 
gxy=[88 63.16 36.84 24.99 20.66 20.66 24.99 36.84 63.16 88 63.16 36.84 24.99 20.66 20.66 24.99 36.84 63.16 88];  
subplot(x,ex);xlabel('Angle,\theta(degree)');ylabel('E_{xx}'); 
title('Elasitic modulus Exx v Rotation'); subplot(x,neu,2);xlabel('Angle, \theta (degree)');ylabel('\neu_{12}'); 
title('Subplot 2 Poisson ratios');subplot(x,ey,3); xlabel('Angle, \theta (degree)');ylabel('E_{yy}'); 
title('Subplot 3 Elastic modulus Eyy');subplot(x,gxy,4); xlabel('Angle, \theta (degree)');ylabel('G_{xy}'); 
title('Subplot 4 Shear modulus Gxy');  
diary off 
e11=59.14;e22=59.14;nu12=0.2;g12=10.0;   
diaryElastic_Constants.out 
fprintf('====== Angle and Elastic constants ======\n'); fprintf('      -----------------------\n\n') 
fprintf('Angle    \tExx         v12         EyyGxy \n'); 
 fprintf('=====   \t=======  \t=======  \t=======      ========    \n'); 
i=0;for ii = -90:10:90;i=i+1;ex1(i) = Ex(e11,e22, neu12, g12, ii); neux1(i) = NUxy(e11,e22, neu12, g12, ii); 
ey2(i) = Ey(e11,e22, neu12, g12, ii);  
%neuy2(i) = NUyx(e11,e22, neu12, g12, ii) gxy(i) = Gxy(e11,e22, neu12, g12, ii); 
fprintf('%2d \t\t%5.2f\t\t%5.2f\t\t%5.2f\t\t%5.2f\n',ii, ex1(i),neux1(i),ey2(i), gxy(i)); end 
x=[-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90]; 
ey=[230 252.98 297.4 247.96 134.08 70.16 2.38 30 24.56 23 24.56 30 42.38 70.16 134.08 247.96 297.4 252.98 230]; 
plot(x,ey); xlabel('Angle, \theta (degree)'); ylabel('E_{yy}'); title('Elastic modulus Eyy');  
diary off 

 

Table 5: Computer program for mechanical properties by tensile-bending 

Clear 
clc 
function y = Ex(E1,E2,NU12,G12,theta) 
m = cos(theta*pi/180);n = sin(theta*pi/180);denom = m^4 + (E1/G12 - 2*NU12)*n*n*m*m + (E1/E2)*n^4;y = E1/denom; 
function y = NUxy(E1,E2,NU12,G12,theta);%NUxy This function returns Poisson’s ratio % NUxy in the global 
m = cos(theta*pi/180);n = sin(theta*pi/180);denom = m^4 + (E1/G12 - 2*NU12)*n*n*m*m + (E1/E2)*n*n; 
numer=NU12*(n^4 + m^4)-(1+E1/E2-E1/G12)*n*n*m*m;y=numer/denom; 
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function y = Ey(E1,E2,NU21,G12,theta) 
m = cos(theta*pi/180);n = sin(theta*pi/180); denom = m^4 + (E2/G12 - 2*NU21)*n*n*m*m + (E2/E1)*n^4;y = E2/denom; 
function y = Gbarxy(A,H);a = inv(A); y = 1/(H*a(3,3)); 
function y = Gxy(E1,E2,NU12,G12,theta) 
m = cos(theta*pi/180);n = sin(theta*pi/180);denom = n^4 + m^4 + 2*(2*G12*(1 + 2*NU12)/E1 + 2*G12/E2 - 1)*n*n*m*m; 
y = G12/denom; 
function y = NUbarxy(A,H);a = inv(A);y = -a(1,2)/a(1,1);function y = NUxy(E1,E2,NU12,G12,theta) 
m = cos(theta*pi/180);n = sin(theta*pi/180);denom = m^4 + (E1/G12 - 2*NU12)*n*n*m*m + (E1/E2)*n*n; 
numer = NU12*(n^4 + m^4) - (1 + E1/E2 - E1/G12)*n*n*m*m;y = numer/denom; 
function y = NUyx(E1,E2,NU21,G12,theta) 
m = cos(theta*pi/180);n = sin(theta*pi/180);denom = m^4 + (E2/G12 - 2*NU21)*n*n*m*m + (E2/E1)*n*n; 
numer = NU21*(n^4 + m^4) - (1 + E2/E1 - E2/G12)*n*n*m*m;y = numer/denom;e11=230;e22=23;neu12=0.2;g12=88;   
diary Elastic_Constants.out 
fprintf('====== Angle and Elastic constants ======\n');fprintf('      -----------------------\n\n') 
fprintf('Angle    \tExx         v12         EyyGxy \n');fprintf('=====   \t=======  \t=======  \t=======      ========    \n'); 
i=0;for ii = -90:10:90;i=i+1;ex1(i) = Ex(e11,e22, neu12, g12, ii); neux1(i) = NUxy(e11,e22, neu12, g12, ii);ey2(i) = 
Ey(e11,e22, neu12, g12, ii);%neuy2(i) = NUyx(e11,e22, neu12, g12, ii)gxy(i) = Gxy(e11,e22, neu12, g12, ii); 
fprintf('%2d \t\t%5.2f\t\t%5.2f\t\t%5.2f\t\t%5.2f\n',ii, ex1(i),neux1(i),ey2(i), gxy(i));end 
x=[-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90]; 
neu=[0.02 -0.01 -0.08 -0.18 -0.29 -0.39 -0.42 -0.32 -0.04 0.2 -0.04 -0.32 -0.42 -0.39 -0.29 -0.18 -0.08 -0.01 0.02]; 
plot(x,neu);xlabel('Angle, \theta (degree)');ylabel('\nu_{12}');diary off 
function y = Qbar(Q,theta) 
m = cos(theta*pi/180);n = sin(theta*pi/180);T = [m*m n*n 2*m*n ; n*n m*m -2*m*n ; -m*n m*n m*m-n*n]; 
Tinv = [m*m n*n -2*m*n ; n*n m*m 2*m*n ; m*n -m*n m*m-n*n];y = Tinv*Q*T; 
function y = ReducedStiffness(E1,E2,NU12,G12) 
NU21 = NU12*E2/E1;y = [E1/(1-NU12*NU21) NU12*E2/(1-NU12*NU21) 0 ;NU12*E2/(1-NU12*NU21) E2/(1-NU12*NU21) 
0 ; 0 0 G12];e11=230;e22=23;neu12=0.2;g12=88; diaryElastic_Constants.out 
fprintf('====== Angle and Elastic constants ======\n');fprintf('-----------------------\n\n');fprintf('Angle\tExx v12   EyyGxy 
\n');fprintf('=====   \t=======  \t=======  \t=======  ==\n');i=0;for ii = -90:10:90;i=i+1;ex1(i) = Ex(e11,e22, neu12, g12, 
ii);neux1(i) = NUxy(e11,e22, neu12, g12, ii);ey2(i) = Ey(e11,e22, neu12, g12, ii);%neuy2(i) = NUyx(e11,e22, neu12, g12, 
ii)gxy(i) = Gxy(e11,e22, neu12, g12, ii); fprintf('%2d \t\t%5.2f\t\t%5.2f\t\t%5.2f\t\t%5.2f\n',ii, ex1(i),neux1(i),ey2(i), 
gxy(i));end; x=[-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90]; 
gxy=[88 63.16 36.84 24.99 20.66 20.66 24.99 36.84 63.16 88 63.16 36.84 24.99 20.66 20.66 24.99 36.84 63.16 88];  
plot(x,gxy);xlabel('Angle, \theta (degree)');ylabel('G_{xy}'); title('Shear modulus Gxy');  
diary off; e11=59.14;% in directions parallel and perpendicular to fibres e22= 6;% in any angle to fibre direction  
nu12=0.2;N=8;e(1)=6;e(2)=e(1);e(3)=59.14;e(4)=e(3);sum =e(1);for k = 2:N/2;sum =sum +e(k)*(k^3-(k-1)^3);end 
ex=8*sum/N^3;end 

 

Table 6: Code for effective mechanical properties of 3-D panels 

========================================================== 
||         TO PREDICT EFFECTIVE ENGINEERING CONSTANTS   OF PANEL     || 
========================================================== 
clear 
clc 
e11=58.8;e22=58.80;nu12=0.2;g12=10.0;Q=ReducedStiffness(e11,e22,nu12,g12); 
Qbar1=Qbar(Q,0);Qbar2=Qbar(Q,90);Qbar3=Qbar(Q,45);Qbar4=Qbar(Q,-45);Qbar5=Qbar(Q,-45);Qbar6=Qbar(Q,45); 
Qbar7=Qbar(Q,90);Qbar8=Qbar(Q,0);z1=-1.2;z2=-0.9;z3=-0.6;z4=-0.3;z5=0.00;z6=0.3;z7=0.6;z8=0.9;z9=1.12; 
A=zeros(3,3);A=Amatrix(A,Qbar1,z1,z2);A=Amatrix(A,Qbar2,z2,z3);A=Amatrix(A,Qbar3,z3,z4);A=Amatrix(A,Qbar4,z4,z5); 
A=Amatrix(A,Qbar5,z5,z6);A=Amatrix(A,Qbar6,z6,z7);A=Amatrix(A,Qbar7,z7,z8);A=Amatrix(A,Qbar8,z8,z9);a=A;B = zeros(3,3); 
B = Bmatrix(B,Qbar1,z1,z2);B = Bmatrix(B,Qbar2,z2,z3);B = Bmatrix(B,Qbar3,z3,z4);B = Bmatrix(B,Qbar4,z4,z5); 
B = Bmatrix(B,Qbar5,z5,z6);B = Bmatrix(B,Qbar6,z6,z7);B = Bmatrix(B,Qbar7,z7,z8);B = Bmatrix(B,Qbar8,z8,z9);b=B; 
D = zeros(3,3);D = Dmatrix(D,Qbar1,z1,z2)D = Dmatrix(D,Qbar2,z2,z3);D = Dmatrix(D,Qbar3,z3,z4); D = Dmatrix(D,Qbar4,z4,z5) 
D = Dmatrix(D,Qbar5,z5,z6);D = Dmatrix(D,Qbar6,z6,z7);D = Dmatrix(D,Qbar7,z7,z8);D = Dmatrix(D,Qbar8,z8,z9) 
d=D;H=2.4;h=H;abd=[a(1,1) a(1,2) a(1,3) b(1,1) b(1,2) b(1,3); 
a(2,1) a(2,2) a(2,3) b(2,1) b(2,2) b(2,3);a(3,1) a(3,2) a(3,3) b(3,1) b(3,2) b(3,3);b(1,1) b(1,2) b(1,3) d(1,1) d(1,2) d(1,3); 
b(2,1) b(2,2) b(2,3) d(2,1) d(2,2) d(2,3);b(3,1) b(3,2) b(3,3) d(3,1) d(3,2) d(3,3)];bd=[ a(2,2) a(2,3) b(2,1) b(2,2) b(2,3); 
a(3,2) a(3,3) b(3,1) b(3,2) b(3,3);b(1,2) b(1,3) d(1,1) d(1,2) d(1,3); b(2,2) b(2,3) d(2,1) d(2,2) d(2,3);b(3,2) b(3,3) d(3,1) d(3,2) 
d(3,3)];ab=det(abd)/det(bd);ex=abs(ab*1/h); 
end 
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Figure 10:  Elastic constants in parallel to fibre direction against orientation angles 

 

 
Figure 11:  Poisson‘s ratios against orientation angle 

 

 
Figure 12: Elastic constants perpendicular to fibre against orientation angle 

 



International Journal of Scientific Engineering and Science 
Volume 5, Issue 7, pp. 58-73, 2021. ISSN (Online): 2456-7361 

 

 

72 

http://ijses.com/ 

All rights reserved 

 
Figure 13: Shear modulus against orientation angle 

 
Table 7: Simulation produced data 

Young’s modulus GPa 

8-Ply 16-Ply 24-Ply 

56.5 46.6 45.8 

IV. CONCLUSIONS 

In this work, mechanical properties of carbon fibre-reinforced laminated composite panels were determined from experimental 

tests and micro-macro mechanics theory. Micro-macro mechanics laws were applied to systematically develop formulations from 

one-, two-, and three-dimensional panels. The following conclusions can be extracted from the study:  

 Experimental tests were conducted to determine baseline for mechanical properties 

 Micro-macro mechanics based mathematical formulations were developed and implemented into commercial software 

MATLAB
TM

 to predict the mechanical properties  

 Mechanical properties were determined from theoretical calculations considering influence from deformations due to 

coupling in global coordinate were considered 

 Simulation produced results were compared and validated against the values obtained by tensile and flexural tests and found 

to be within acceptable deviations (±10%).  

Based on acceptable comparisons of the results, the study proposed that micro-macro mechanics laws utilising in-plane 

material properties and stress-strain relations could be useful to effectively predict mechanical properties influenced by coupling 

deformation parameters.  
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