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Abstract— Over the last few decades, mixture distributions are used in creating population from two or more distributions. Mixture 

distributions are a good application in the applications of medical science, biology, engineering, finance and economics. Gaussian mixture 

models have broad utility, including their usage for model-based clustering framework. Recently, there are indications to use of non-Gaussian 

mixture distributions to skewed and asymmetric data. We propose a mixture model of inverse power Gamma shape distributions (MIPGSD) to 

analyze positive data.  Basic structural properties such raw and central moments and hazard rate function are obtained. Different estimation 

methods are studied to estimate the proposed model parameters. Simulation studies is done to present the performance and behavior of the 

different estimates of the proposed model parameters. A real data set is provided to compare the reliability of the new model with other models. 
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I. INTRODUCTION  

If we have positive data, right-skewed, and assumed to come 

from a mixture distribution, then the use of a Gamma density 

is a logical choice. There are many papers discussed finite 

mixtures of Gamma. John [17] discussed finite mixtures of 

Gamma of a two-component model with both the method of 

moments and maximum likelihood. Gharib [13] studied two 

characterizations for a mixture of two Gamma distributions. 

Huang and Chang [16] showed that the Lukacstype 

characterization for the sum of independent Gamma random 

variables can be represented as a particular mixture of 

Gamma. Mixtures of Gamma have also been presented as 

applied models for various applications for example, 

characterizing rates across sites of molecular sequence 

evolution Mayrose et al [20], modeling Internet traffic 

Almhana et al. [1], and modeling extremes in various 

hydrological phenomena Evin et al. [12]. 

The objective of this paper is to consider seven different 

estimators for the parameters of our proposed distribution and 

evaluates their performance in simulation and applications 

studies. Many authors have compared several classical 

estimation methods for estimating the parameters of well-

known distributions. For example, Rodrigues et al. [22] for 

Poisson–exponential distribution, Karamikabir et al. [18] for a 

new extended generalized Gompertz distribution, Dey et al. 

[10] for exponentiated Chen distribution and Sharma et al. 

[23] for the generalized inverse Lindley distribution. 

In this paper, we are motivated to introduce the MIPGSD 

model because (i) it contains a mixture of another lifetime sub 

model; (ii) this model reveals upside down bathtub-shaped 

hazard rate which occurs in most real life systems and very 

useful in survival analysis; (iii) the proposed model can be 

considered as a suitable model for fitting the positive data with 

a longer right tail which can be used in various fields such as 

survival analysis and biomedical studies; and (iv) the 

MIPGSD model outperforms most well-known lifetime 

models with respect to two real data sets. 

 

For our paper, let X  is continuous random variable follow 

the Gamma distribution with parameters   and  , then the 

probability density function (pdf) is given by 
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where   1

0

a ya y e dy



    is (complete) Gamma function. 

Here,   is a shape parameter and   is a an inverse scale 

parameter called a rate parameter for the Gamma density. We 

denote this distribution by  ,G    and the cumulative 

distribution function (cdf) can be written as   
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where   1

0

,

x

a ya x y e dy     is the lower incomplete gamma 

function. 

Let Y  be a random variable having pdf (1), then the 

random variable
1/X Y   is said to follow an inverse power 

Gamma (IPG) distribution, shown as  ~ , ,X IPG    , with 

pdf and corresponding cdf defined, respectively, by 
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where   1, a y

x

a x y e dy



     is the upper incomplete gamma 

function. It can be noticed that the inverse Gamma distribution 

is a special case of IPG when 1  . 

Suppose a mixture distribution consisting of k  

components ( 1,2,...,i k ) and the distribution of the ith 

individual component follows an IPG distribution. The 
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generated mixture distribution represents the inverse power 

Gamma shape mixture IPGSM distribution with pdf and cdf 

defined, respectively, by 
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k

i i

i
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where    ; , ; , ,if x f x i     and    ; , ; , ,iF x F x i     

denote respectively, the pdf and cdf of an inverse power 

Gamma  , ,IPG i   random variable. Let k  is known and 

fixed, whereas  1,..., k π  is a vector of mixture weights 

(proportions) that satisfy the conditions  

(i) 1 1,2,...,i i k      and  

(ii) 
1

1
k

i

i




 .  

The aim of this paper is to define and study a new finite 

mixture distribution called the inverse power Gamma shape 

mixture (MIPGSD) distribution with its mathematical 

properties. These include the reliability measurers such as 

survival and hazard rate function. The moments and moment 

generating function are provided. Maximum likelihood 

estimation of the model parameters and confidence interval 

are derived. Application of the model to a real data set is 

finally presented and compared to the fit attained by some 

other well-known distributions. 

II. THE MIPGSD MODEL AND STATISTICAL PROPERTIES  

The formulas in (5) and (6) can simply be rewritten using 

next theorem. 

Theorem 1. Let X  be a random variable that follows the 

MIPGSD model, then the pdf and cdf can be written, 

respectively, as 
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where 1,2,3,...k   

proof  
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From the definition of the upper incomplete gamma function, 

we have  
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From (9) and (10), we have  
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where 
i  is restricted to be positive and sum to unity ( 

i   and 
1

1
k

i

i




 ). 

The cumulative distribution function (cdf) of the MIPGSD 

model is given by 
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letting  1y z     and after simplification the expression, 

we get the following 
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A. Behaviour of the density function 

The behaviors of the density function of the MIPGSD 

model at 0x   and x   , respectively, are given by  
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and  
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Theorem 2. The probability density function of the MIPGSD 

model is unimodal shaped in x   

Proof. The first derivative of  f x is given by  
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In Fig. 1, we plot the behavior of pdf for the MIPGSD model 

for some values of ,  . 

  

  

  
Fig.1. Plots of the probability density function of the MIPGSD model for different parameter values. 

 

B. Behaviour of the hazard rate function 

The hazard rate function (hf) of the proposed model is 

obtained as 
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where 0x   and 0,   . 

Fig. 2 shows the hrf plots of the MIPGSD model for 

different values of the parameters   and  . Fig. 2 reveals 

that the hrf of proposed model is upside down bathtub shaped 
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Fig. 2. Plots of the hazard function of the MIPGSD model for different parameter values 

 

C. Moments and related measures 

Let X  be a random variable that follows the MIPGSD model 

with pdf as in (7), then the rth raw moment (about the origin) 

is given by 
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The mean of the MIPGSD distribution is given by  
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The nth central moments of the proposed model are given 

by  
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The variance, coefficient of skewness, kurtosis and 

variation measures can be obtained from the expressions 
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upon substituting for the central moments in (19). 

Raw moment of the MIPGSD model will exist only when 

r
i


. Therefore, the evaluation of inverse moments may be 

of interest. The rth raw inverse moment (about the origin) is 

given by 
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The harmonic mean of the proposed distribution is obtained by 
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From the empirical relation among mean, median and 

mode, the median  M of the proposed distribution can be 

written as  

0

1 2

3 3
M x                                           (17) 

Table 1 shows some important measures of the MIPGSD 

model at different parameter combination and it is observed 
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that the shape of the proposed distribution is right skewed for 

values of k ,   and  .  

 
TABLE 1.Values of some important measures of the MIPGSD model. 

Moments   2  1  2  0x  M  CV  H  

k  6, 4    

2 1.37 0.11 8.100 25.19 1.18 1.31 24.79 0.76 

4 1.26 0.09 9.02 27.41 1.10 1.21 23.73 0.82 

6 1.15 0.06 11.06 32.87 1.02 1.11 21.33 0.89 

8 1.04 0.03 14.19 43.81 0.96 1.01 17.24 0.97 

10 0.96 0.01 14.67 55.06 0.914 0.94 12.60 1.04 

  4, 2k    

6 1.05 0.04 11.16 33.63 0.93 1.01 20.84 0.98 

8 1.03 0.02 7.05 19.33 0.95 1.00 14.85 0.98 

10 1.02 0.01 5.51 14.98 0.96 1.00 11.56 0.98 

12 1.02 0.00 4.72 12.91 0.97 1.00 9.47 0.98 

14 1.01 0.00 4.23 11.71 0.97 1.00 8.02 0.98 

  2, 6k    

1 1.03 0.05 9.20 28.16 0.90 0.99 23.23 1.00 

2 1.19 0.08 8.49 26.15 1.03 1.14 24.30 0.87 

3 1.29 0.10 8.22 25.49 1.12 1.24 24.64 0.80 

4 1.37 0.11 8.10 25.19 1.18 1.31 24.79 0.76 

5 1.43 0.12 8.03 25.03 1.23 1.36 24.87 0.72 

III. ESTIMATION AND INFERENCE OF THE PARAMETERS 

The main aim of this section is to study different 

estimation methods of the unknown parameters of the 

MIPGSD model. 

A. Maximum likelihood method 

The most widely method used for parameter estimation is 

maximum likelihood method. Let 1 2, ,..., nx x x be a random 

sample from the MIPGSD prmodel with pdf (11). The log-

likelihood function is given by 

       
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The maximum likelihood estimators (MLEs) of ,   

denoted by MLE  and MLE  can be obtained by solving the 

following system of non-linear equations 

     
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We used non-linear maximization techniques to get the 

solution of the MLE's of the parameters. For interval 

estimation of the parameter vector  ,
T

   , we derive 

Fisher information matrix for constructing  100 1 %  

asymptotic confidence interval for the parameters using large 

sample theory. The Fisher information matrix can be obtained 

by using log-likelihood function as 
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where  
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The diagonal elements of the inverse of the Fisher information 

matrix  1 ,I    provide asymptotic variance of   and   

respectively. The corresponding asymptotic  100 1 %  

confidence interval of   and  , are given by 

 
1

2

Z Var 


,  
1

2

Z Var 


 

respectively. 

B.  Least squares and weighted least squares methods 

The least squares (LSE) and the weighted least squares 

(WLSE) methods are used to find the minimum distance 

between theoretical cumulative distribution and the empirical 

cumulative distribution. These methods were introduced by 

Swain et al. [24] to estimate the parameters of Beta 

distributions. Let 
  i

F X  be the distribution function of the 

ordered random variables      1 2
...

n
X X X    where 

 1 2 2, ,...,X X X  is a random sample of size n from a 

distribution function  .F . Then, the expectation of the 

empirical cumulative distribution function is defined as 

   ; 1,2,...,
i

i
E F X i n

n i
   
  

 

The LSEs of   and  denoted by LSE  and LSE  can be 

obtained by minimizing the following function 

    
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with respect to   and  , where  .F  is given by (8). 

therefore LSE  and LSE  can be obtained as the solution of the 

following system of non-linear equations: 
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Gupta & Kundu [15] introduced the following weighted 

function 
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The WLSEs of   and   denoted by WLSE  and WLSE   can 

be obtained by minimizing 

 
   

    
2 2

1

1 2
, ; ,

1

n

i
i

n n i
WLS F x

i n i n i
   



   
  

   
 (21) 

with respect to   and  , therefore these estimators can also 

be obtained by solving: 
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and  
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D. Cramer-von-Mises estimator 

The Cramer-von Mises (CME) method is a type of 

minimum distance estimation method introduced by Choi and 

Bulgren [9]. This method based on the Cramer-von Mises 

statistics given by 
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Boos [6] proved that the Cramer-von Mises statistics can 

be given by  
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Then the CME estimators CME  and CME  of   and 

 are obtained by minimizing (24) with respect to  and  . 

These estimators can also be obtained by solving the following 

non-linear equations: 
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E. Maximum product spacing method 

Cheng and Amin [7] introduced the maximum product 

spacing (MPS) and showed that the MPS method can be used 

as an alternative to MLE to estimate the parameters of 

continuous univariate distributions. This method assumes that 

differences (spacings) between the cdf values should be 

identically distributed at consecutive data points. Let the 

difference is defined as  
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mean of the differences can be written as  

   
1

1

1

, ,
n

n
i

i

G D   






                                 (28) 

Substituting (8) in (28) and maximizing the above 

expression, we have 
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Cheng & Stephens [8] showed that finding the maximum 

of the geometric mean of the spacings is the same as finding 

the minimum of the Moran’s statistics, the Moran’s statistics 

given by 
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The MPSEs MPS  and MPS  of   and   are obtained as 

the simultaneous solution of the following nonlinear 

equations: 
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where  ; ,F x    and  ; ,F x   are defined above. 

F. Anderson–Darling and right-tail Anderson–Darling 

methods 

Another type of minimum distance estimation method is 

the method of Anderson-Darling (AD). This method was 

introduced by Anderson and Darling [3, 4] and is based on an 

Anderson-Darling statistic. The Anderson-Darling statistic is 

given by 
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Boos [6] proved that the Anderson-Darling statistic has 

computational form which is given by 
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Therefore, the ADs AD  and AD  of   and   can be 

determined by minimizing (36) with respect to   and  . 

These estimators can also be obtained by solving the non-

linear equations 
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Luceno [19] provides some motivation about AD statistics 

and also introduces a modification, namely Right-tail 

Anderson–Darling statistics. The Right-tail AD statistics given 

by 
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Also, the Right-tail AD has computational form which is 

given by 
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Hence, the RADs RAD  and RAD  of   and   are 

obtained by minimizing (36) with respect to   and  . These 

estimators can also be determined by solving the non-linear 

equations 
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IV. SIMULATION 

Here, a simulation study is performed to examine the 

performance of the different estimates presented above. The 

following procedure for evaluating the efficiency of the 

estimators is adopted as follow: 

1. Generate random sample with size n  from the MIPGSD 

model. 

2. The values obtained in step 1are used to compute the 

 ,    considering the MLE, LSE, WLSE, CME, 

MPS, AD and RAD estimators. 

3. Repeat the steps 1 and 2 N times. 

4. Using  ,    and  ,   , compute the Bias and 

the mean square errors (MSE). 

The results are computed using the nlminb function (in the 

stat package) and Nelder-Mead method in R software. The 

chosen values to perform this procedure are  1.5,0.8  , 

5,000N   and  50,80,120,200,300n  . The simulation 

studies are put under the same conditions (initial values and 

random samples) for different estimation methods. 

 

 
 

 
 

Fig. 3. Bias and MSEs, for the estimates of 2.5  and 3.5   versus n  when 2k   for the estimation methods 
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Fig. 4. Bias and MSEs, for the estimates of 2  and 1.5   versus n  when 3k   for the estimation methods 

 

 
 

  
Fig. 5. Bias and MSEs, for the estimates of 1.5  and 1   versus n  when 4k   for the estimation methods. 

 

Figures 3-5 show how the seven biases, mean squared 

errors vary with respect to sample size for 2k  , 3 and 4. As 

expected, the Biases and MSEs of estimated parameters 

converge to zero as n increases  

V. APPLICATION 

In this section, we use maximum likelihood estimate of the 

parameters to perform the goodness of fit of the MIPGSD 

model for a data set to know the potentiality of the new model 

as compared to some other existing models. 

1. The data set represent the relief times (in minutes) of 20 

patients receiving an analgesic and reported by Gross and 

Clark[14]. The observed values are 
 

1.1 1.4 1.3 1.7 1.9 
1.8 1.6 2.2 1.7 2.7 

4.1 1.8 1.5 1.2 1.4 

3.0 1.7 2.3 1.6 2.0 

 

The data set is used to compare the MIPGSD model for 

values of 2k   and 3 with four competitive models such as: 

• Inverted exponentiated gamma (IEG) model (Yadav 

[27]) 
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 
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        

      
 

where , 0x    

• Inverse Gompertz (IG) model (Eliwa et al [11]) 

 
2

exp exp 1f x
x xx

   



    
     

   
 

where , , 0x     

 Inverted xgamma (IXG) model (Yadav et al [28]) 

 
 

2

2 2

1 1
. 1 . exp

1 2
f x

xx x

  



   
    

    
 

where , 0x     

 Exponentiated inverse Rayleigh (EIR) model (Ul Haq 

[30]) 

 
3 2

2
expf x

x x

  
  

 
 

where , , 0x    . 

For more simplification, let 

   , ,k kMIPGSD PM     and to compare the models, 

we take the following goodness of fit measures into 

consideration: the log likelihood function (-L), Akaike 

Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) defined by: 

2 2AIC L q    

 2 lnBIC L q n    

where q  is the number of parameters, n  is the sample size, 

and  ;iF x   estimated cumulative distribution function of 

theoretical models. The model with the lowest values of 

goodness of fit measures provides the best fit for data set.  

Tests statistics such as Cramér–von Mises 
2

n
W , Anderson–

Darling 
2

n
A , Watson 

2

n
U , Liao-Shimokawa 

n
L and  

Kolmogrov- Smirnov K S  with  its respective p-value are 

considered in order to verify which distribution fits better to 

each data set. These tests display the differences between the 

proposed cumulative distribution function and the empirical 

cumulative distribution function from the data to verify the fit 

of the distributions (p-value > 0.05). For more details about 

above tests statistics see Al-Zahrani [2]. 
 

TABLE 2. The goodness of fit measures for the data set. 

Models 
Measures 

MLEs − L AIC BIC 

 2 ,kPM    89.3 19.6 15.41 34.82 36.81 

 3 ,kPM    3.94 7.41 15.41 34.83 36.82 

 IEG   --- 0.44 38.19 80.38 82.37 

 ,IG    0.110 6.14 16.39 36.78 38.77 

 IXG   --- 2.72 33.63 71.27 73.26 

 ,EIR    1.31 2.09 21.18 46.36 48.35 

TABLE 3. The goodness-of-fit test statistics for the data set. 

Models 

Statistics 

2

n
W

 

2

n
A

 

2

n
U

 n
L

 
K S  p-value 

 2 ,kPM    0.02 0.15 4.54 0.61 0.10 0.98 

 3 ,kPM    0.02 0.15 4.54 0.61 0.10 0.98 

 IEG   1.21 5.72 5.61 2.13 0.47 0.00 

 ,IG    0.05 0.32 4.55 0.77 0.14 0.81 

 IXG   1.05 5.08 5.68 2.06 0.40 0.00 

 ,EIR    0.39 2.06 4.99 1.41 0.25 0.14 

 

Table 2 provides the values of the goodness of fit measures 

for the fitted models to the data set. The MIPGSD model 

provides the lowest values for all measures among all fitted 

models. The tests shown in Table 3 presents that the proposed 

model, IG model and EIR model fit the data set (p-value > 

0.05) and the proposed model shows the lowest test statistics 

with the largest p-values. Thus, The MIPGSD model fits well 

the data set and can be considered as a good competitor 

against the other models. 

Furthermore, seven estimation methods are used to 

estimate the unknown parameters of MIPGSD distribution. 

Table 4 display the estimates of the MIPGSD parameters 

using these estimation methods with its rank and the values of 

K S  and its p-value for the data set, respectively. We can 

conclude that the CME estimation method is recommended to 

estimate the MIPGSD parameters for the data set.   

 

TABLE 4. The parameter estimates of the MIPGSD model , K S and p-

value for the data set at 2k . 

Est. Meth. 
Est. Par. 

K S
 

p-value Rank 
    

MLE 3.98 6.71 0.10 0.98 5 

LSE 3.87 6.46 0.10 0.98 4 

WLSE 3.64 5.81 0.1 0.97 6 

CME 4.23 7.6 0.09 0.99 1 

MPS 3.41 5.23 0.10 0.97 7 

AD 3.95 6.67 0.10 0.98 3 

RAD 4.06 7.05 0.09 0.99 2 

 

Figure 6 shows the probability-probability (P-P) plot of the 

fitted models for the data set, whereas Figure 7 shows fitted 

pdfs of the considered models for the data set. We can 

conclude that the proposed distribution was the one which best 

adjusted to the two data sets. 

VI. CONCLUSION  

In this paper, we proposed a mixture model of inverse 

power Gamma shape distributions and studied in detail. Some 

statistical expression for its properties are obtained. The 

estimation of distribution parameters by using seven 

estimation methods are performed. We present a simulation 

study to illustrate the performance of the estimates. Two data 

sets also presented for the demonstration of enhanced 

flexibility and better fit of the observed model as compared to 

some other well-known existing models. 
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Fig.6. P-P plots for the first data set. 

 

 
Fig.7. Estimated pdfs for the data set 1. 
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