
 International Journal of Scientific Engineering and Science
Volume 5, Issue 4, pp. 36-39, 2021. ISSN (Online): 2456-7361

36

http://ijses.com/

All rights reserved

Converting SVG to G-code for 3D Printers

Kuo-pao Yang
1
, Ghassan Alkadi

2
, Terry Parker

3

1, 2, 3
Computer Science Department, Southeastern Louisiana University, Hammond, Louisiana, USA

Abstract— This paper describes a research project that converts Scalable Vector Graphics (SVG) directly to G-code for three-dimensional

printers. An SVG file uses coordinates to create an image in XML format, and a G-code file is readable by a 3D printer. By taking an SVG file

and then converting it to a G-code, an image can be printed by our custom-built 3D printer. This project is implemented by the Rust

programming language, and the Turtle Graphics package is used to assist in the translation of SVG to G-code.

Keywords— G-code, Rust, SVG, Turtle Graphics.

I. INTRODUCTION

3D printing has become very popular in recent years. It is the

process of making a three-dimensional object of virtually any

shape from a digital model. They are becoming more

commonly used within homes as well. It also provides an

opportunity to create personalized 3D objects from a picture.

This project allows users to easily create 3D printable objects

by just using pictures taken from their phone. There is no need

to worry about how to use a specific program or learn how to

use a Computer Aided Design (CAD) system.

A great diversity of CAD systems can be found in the

market today. A CAD system is a versatile tool that can be

used to create, manipulate, and optimize objects, pictures, or

other designs [4]. These are commonly used for laser

engravers, embroideries, and 3D printers. However, they need

the files to be in specific formats, otherwise the user would

have to create it from scratch. Even with the proper files, the

CAD systems do not create files that work directly with 3D

printers. There are solutions by other languages to convert

Scalable Vector Graphics (SVG) [12] to G-code such as C

language, but Rust programming language is preferred

because it is memory safe and more efficient in accomplishing

this task.

Our application converts an SVG file to G-code for three-

dimensional printing within seconds. Converting SVG to G-

code is completed by the implementation of the Rust

programming language. This project‟s application takes in an

SVG file and generates a G-code for a 3D printer to print

objects using the Turtle Graphics package. Rust handles its

memory more efficiently since it is managed by its system of

ownership at compile time [3]. This makes our application

process these images faster than other programming languages

or CAD programs.

In the following sections, we review the related work on

3D printing. Then, this paper describes the implementation to

perform the functionality for the 3D printing. Furthermore, we

discuss the methods and procedures used to complete this

project along with how challenges are addressed. Finally, we

provide the project evaluation, conclusion, and future areas of

research as well.

II. RELATED WORK

A CAD program usually manages the conversion of

images to other file types. These specific programs operate off

only specified items. For example, the Tinkercad [9] is a

simple CAD system for 3D printing. The user can import OBJ

and SVG files, but Tinkercad has a size limitation of 25MB.

This is not an issue in our application because it can process

any size of SVG files. The user inputs an SVG file that is

converted to a Stereolithography (STL) file through the

Tinkercad process. After using the Tinkercad, the user has to

go through another step for 3D printing. Then, the user needs a

slicer program to convert the STL file to G-code that is

readable by a 3D printer [2]. Although Tinkercad is a

phenomenal program to create STL files, it does not create the

G-code necessary for 3D printers. A separate program is

required to convert STL files to G-code for 3D printing.

 A STL file is a very common 3D file type developed in

1986 by Chuck Hull of 3D System. STL is typically employed

as an output model of a CAD system and describes 3D objects

in mathematical terms. These descriptions store and transfer

data about the file model in the form of geometric shapes,

which join to form the subject‟s surface. For 3D printing, the

STL file needs to be sliced into G-code layers. G-code files

tell a 3D printer how to print a 3D object. Furthermore, G-

code typically describes printer parameters, such as speed and

temperature, as well as the geometry of the 3D object.

Once the design is finalized and CAD systems output the

STL file, the slicer can convert STL files to G-code [1]. The

most notable slicers are Cura, Slic3r, and Simplify 3D. The

slicer converts STL files into a series of thin layers and

produces a G-code file. Furthermore, it divides the object into

a stack of flat layers and describes these layers as linear

movements of the 3D printer extruder, fixation laser, or

equivalent. After the G-code is generated, it can be sent to the

printer to build the 3D object that suits the user‟s needs [10].

Our project‟s application is designed to resolve Tinkercad

and a slicer into a single program. This allows the user to input

an SVG file and retrieve a G-code that is printer-ready all

within a few seconds. This cuts down the time and process

significantly and simplifies it to just using one program as

well.

 International Journal of Scientific Engineering and Science
Volume 5, Issue 4, pp. 36-39, 2021. ISSN (Online): 2456-7361

37

http://ijses.com/

All rights reserved

III. IMPLEMENTATION

The software approach was done through Ray tracing [8].

This project creates images through coordinates and matrices

within Rust. Fig. 1 shows the code in the Rust programming

language that does a simple Ray Tracer to read coordinates to

create an image.

Fig. 1. The basis of a Ray Tracer in the Rust programming language

The path tracers can produce 3D images but take a long

time. This time-consuming problem is necessary for CPU-

accelerated process to handle the computing power and

calculations. It can take half an hour for a simple image to

complete path tracing. To resolve this problem, this project

developed applications that converts SVG file to G-code by

giving the object depth and volume.

With the Turtle Graphics package, this project successfully

implemented the Rust programming language [7]. The

developed program directly converts SVG to G-code files [5].

The basic structure of the Turtle Graphics used within our

program is shown in Fig. 2.

By implementing the Turtle Graphics and machine settings

codes, the created G-code can be read with our custom-built

3D printer [11]. Using vectors, the printer can process the

coordinates that Turtle Graphics converted from the original

SVG file. Then, these vectors break down to output the G-

code file that can then be sent straight to the users‟ 3D printer

to be printed. To implement this software, this program

determines how the image can be drawn. To accomplish this

task, the path segments for the image were translated and then

converted to G-code.

In Fig. 3, giving specific coordinates and using a stack of

„t‟ we can keep up with the different movements from top to

bottom in an SVG file and recreate those images from top to

bottom in G-code so that the 3D printer can recognize and

print this file. The Cubic Bezier curve allows the image to

create smooth surfaces by using four points on a coordinate to

control the curve. Therefore, this program can create smooth

curves that are needed for images. Alternatively, non-Bezier

curves are used to generate rigid curves for objects. Different

path segments are used to translate and create any image.

Fig. 2. The basic structure of the Turtle Graphics used within our project

Fig. 3. Different path segments needed to translate and create any images

Finally, the application program in Fig. 4 creates the

settings for the 3D printer that is stored at the beginning of the

G-code for the printer to be able to execute the code properly.

These are all maintained and can be edited within the code for

the specific printer at use. In addition, our program can even

create G-code for laser engravers.

pub struct Ray {

 pub origin: Point,

 pub direction: Vector3,

}

impl Ray {

pub fn create_prime(x: u32, y: u32, scene: &Scene) ->

 Ray {

 assert!(scene.width >= scene.height);

 let fov_adjustment = (scene.fov.to_radians() /

2.0).tan();

 let aspect_ratio = (scene.width as f64) /

(scene.height as f64);

 let sensor_x = ((((x as f64 + 0.5) / scene.width

as f64) * 2.0 - 1.0) * aspect_ratio) *

fov_adjustment;

 let sensor_y = (1.0 - ((y as f64 + 0.5) /

scene.height as f64) * 2.0) *

fov_adjustment;

 Ray {

 origin: Point::zero(),

 direction: Vector3 {

 x: sensor_x,

 y: sensor_y,

 z: -1.0,

 }

 .normalize(),

 }

}

}

pub struct Turtle {

 curpos: F64Point,

 initpos: F64Point,

 curtran: Transform2D<f64>,

 scaling: Option<Transform2D<f64>>,

 transtack: Vec<Transform2D<f64>>,

 pub mach: Machine,

 prev_ctrl: Option<F64Point>,

}

impl Default for Turtle {

 fn default() -> Self {

 Self {

 curpos: point(0.0, 0.0),

 initpos: point(0.0, 0.0),

 curtran: Transform2D::identity(),

 scaling: None,

 transtack: vec![],

 mach: Machine::default(),

 prev_ctrl: None,

 }

 }

}

PathSegment::CurveTo {

 abs, x1, y1, x2, y2, x, y,

} => t.cubic_bezier(

 *abs, *x1, *y1, *x2, *y2, *x, *y,

 opts.tolerance,

 None,

 opts.feedrate,

),

PathSegment::SmoothCurveTo {

 abs, x2, y2, x, y

} => t.smooth_cubic_bezier(

 *abs, *x2, *y2, *x, *y,

 opts.tolerance,

 None,

 opts.feedrate,

),

PathSegment::Quadratic {

 abs, x1, y1, x, y

} => t.quadratic_bezier(

 *abs, *x1, *y1, *x, *y,

 opts.tolerance,

 None,

 opts.feedrate,

),

PathSegment::SmoothQuadratic {

 abs, x, y

} => t.smooth_quadratic_bezier(

 *abs, *x, *y,

 opts.tolerance,

 None,

 opts.feedrate,

),

 International Journal of Scientific Engineering and Science
Volume 5, Issue 4, pp. 36-39, 2021. ISSN (Online): 2456-7361

38

http://ijses.com/

All rights reserved

Fig. 4. The settings for the 3D printer

Our custom-built 3D printer is the main hardware

equipment involved in this research project. The printer‟s

extruder is run by a stepper and extrudes the material that is

used to create the object. The extruder is on a three-axis pivot

structure, which controls where the print is positioned on the

hot bed. The components that make up the extruder are the

stepper motor, quick release, heating element, heat sink, and

fan shown in Fig. 5.

Fig. 5. Labeled extruder: stepper, quick release, heating element, heat sink,

and fan

The logic components are used to power and control the

parts on the 3D printer. This printer uses a Reprap Arduino

Mega Pololu Shield (RAMPS) board to power the

components. Stepper motors, thermistors, and heating

elements are plugged into the RAMPS board. The converted

G-code is stored onto an SD card, which can be read by the

card reader and displayed on the LCD screen of our

customized printer. Then, the 3D printer can read G-code

straight from the SD card.

The settings of the 3D printer are all managed through the

Repetier Server. Various printer properties can be modified

using this program, including the heat of extruder, heat of the

bed, extruder extrusion rate, and the tolerance level of the axis

speed rate. This Repetier Server image serves as a web

interface to control the printer from anywhere with an internet

connection. A face printed by the 3D printer is shown in Fig.

6.

Fig. 6. A face printed by the 3D printer

IV. EVALUATION

The initial test for our software and hardware was not

fruitful at first. We tested the software with basic SVG files

that are common for embroidery hardware and also have

cleanly drawn lines. The software converted these objects to

G-code with few issues. The main problem was tweaking the

size and editing the machine settings for the G-code to align

appropriately. Initially, the program converted SVG into a G-

code file that was too large to be printed on the bed of the

printer. Once the SVG files of embroidery objects worked, we

moved on to images that have been converted to SVG. Within

a second, the software converts SVG files to G-code, which

can be stored on an SD card to be printed.

Our solution performed even faster than expected,

especially because the original Ray Tracer took about fifteen

minutes just to create a plane and three spheres before even

converting any files to G-code. The performance of our

solution is quicker than other languages, and transfers faster

than CAD systems. First, CAD systems must spend a

significant amount of time compiling the file to an STL file.

Then, a slicer can convert the STL file to a printable G-code.

These methods take much longer to convert an SVG file to a

printable file for 3D printers [6].

The solutions proposed by previous methods have multiple

complicated steps. Our solution simplifies this by setting up a

program to convert SVG file straight to G-code, instead of

converting SVG to STL and finally converting to G-code via a

separate program.

The degree of success and speed make our method a better

solution to converting SVG files to printable 3D objects,

especially since it only takes the program around a second to

create a printable file. Furthermore, the ability to be able to

accomplish everything within one location for a user makes

this project even more impressive. Besides user convenience,

the rapid speed of completion is another great feature of this

project.

V. CONCUSION AND FUTURE WORK

This research project originated to solve the problem of

printing SVG files to a 3D printer. The main challenges users

G28 ; Home extruder

G1 Z15 F240

M107 ; Turn off fan

G90 ; Absolute positioning

M82 ; Extruder in absolute mode

M190 S50 ; Activate all used extruder

M104 T0 S210

G92 E0 ; Reset extruder position

; Wait for all used extruders to reach temperature

M109 T0 S210

; Layer count: 3

; Layer: 0

M107

G0 F9000 X77.560 Y68.534 Z0.300

 International Journal of Scientific Engineering and Science
Volume 5, Issue 4, pp. 36-39, 2021. ISSN (Online): 2456-7361

39

http://ijses.com/

All rights reserved

face is having to learn different software and being able to

modify the files to be compatible with 3D printers. It is

inconvenient and time-consuming for the user, who must

figure out how to use those programs and also spend more

time converting files through at least two different programs.

With this project, the user only needs to input the desired SVG

file, and the program will output the printable G-code. Not

only does this have everything in the one project, but it is done

in under a second as well. This is the main reason this solution

is better than the others.

In the future, this project plans to process not only SVG

but also other image files like JPG and PNG. Furthermore, our

next goal is to take in a folder of files from all around an

object and use Path Tracing to render a full 3D print of an

object. This will be accomplished through GPU-Accelerated

programming. Currently, the Nividia‟s CUDA software can

accomplish this task. At the time of creating this project, the

RustaCUDA package was still under development. We look

forward to implementing this package to explore further tasks.

Our solution is just the stepping-stone to incorporating the file

reading conversion to G-code. Through RustaCUDA and path

tracing, we will be able to combine these technologies for

quick and efficient conversion of any objects. This project can

be applied to laser engraving or, in fact, any other objects that

uses G-code. Those can already be taken care by the solution

we have now. There is also the possibility of copying organs

through this project and having a 3D printer that prints with

tissue. This could create great benefits for the medical field.

REFERENCES

[1] M. S. Akter and M. H. Kabir, "Temperature Optimization of RepRap
(Replicating Rapid-prototyper) 3D Printer," 2018 International

Conference on Computer, Communication, Chemical, Material and

Electronic Engineering (IC4ME2), Rajshahi, Bangladesh, pp. 1-4,
February 2018, doi: 10.1109/IC4ME2.2018.8465657.

[2] S. Battiato, G. Gallo, and G. Messina, “SVG Rendering of Real Images

Using Data Dependent Triangulation,” SCCG‟04 Proceedings of the
20th Spring Conference on Computer Graphics, pp. 185-192, April

2004, doi: 10.1145/1037210.1037238.

[3] M. Hergarden and S. Jongmans, “Shared Memory Implementations of
Protocol Programming Languages, Data-Race-Free,” ICOOOLPS‟18

Proceedings of the 13th Workshop on Implementation, Compilation,

Optimization of Object-Oriented Languages, Programs and Systems, pp.
36-40, July 2018, doi: 10.1145/3242947.3242952.

[4] C. Hsia, S. Hsia and Y. Chou, "Application of CAD/CAE/3D printing to

development of magnetic foldable hanger," 2016 International
Conference on Advanced Materials for Science and Engineering

(ICAMSE), Tainan, Taiwan, pp. 657-660, November 2016, doi:

10.1109/ICAMSE.2016.7840288.
[5] M. Joy and T. Axford, “GCODE: a revised standard for a graph

representation for functional programs,” ACM SIGPLAN Notices, vol.

26, issue 1, pp. 133-139, January 1991, doi: 10.1145/122203.122214.
[6] I. Liss and T. McMillan, “The Implementation of a Simple Turtle

Graphics Package,” ACM SIGCSE Bulletin, pp. 45-53, 1987, doi:

10.1145/39316.39326.
[7] N. Matsakis and F. Klock, “The Rust Language,” HILT 2014:

Proceedings of the 2014 ACM SIGAda annual conference on High

integrity language technology, pp. 103–104, October 2014, doi:
10.1145/2663171.2663188.

[8] S. Panghal, D. A. Bilung, N. Gupta and G. Kumar, "Enhancing Graphic

Performance Curve using Ray Tracing," 2020 12th International
Conference on Computational Intelligence and Communication

Networks (CICN), Bhimtal, India, pp. 55-59, September 2020, doi:

10.1109/CICN49253.2020.9242622.
[9] W. Shalannanda, “Digital Logic Design Laboratory using Autodesk

Tinkercad and Google Classroom,” 2020 Proceedings of the 14th

International Conference on Telecommunication Systems, Services, and
Applications (TSSA), Bandung, Indonesia, pp. 1-5, November 2020,

doi: 10.1109/TSSA51342.2020.9310842.

[10] A. Sharma, S. Madhvanath, A. Shekhawat and M. Billinghurst,
“MozArt: a Multimodal Interface for Conceptual 3D Modeling,”

ICMI‟11 Proceedings of the 13th international conference on multimodal

interfaces, pp. 307-310, November 2011, doi:
10.1145/2070481.2070538.

[11] K. P. Yang, P. McDowell, R. Demourelle, T. Parker, and E.
Langstonirst, “3D Printing: A Custom-Built 3D Printer with Wireless

Connectivity,” SSRG International Journal of Computer Science and

Engineering (SSRG-IJCSE), ISSN 2348 – 8387, vol. 7, issue 10, pp. 1-5,
October 2020, doi: 10.14445/23488387/IJCSE-V7I10P101.

[12] J. Ye, H. Liu, W. Xu, and J. Li, "Research and Application of Integrated

System Design of Smart Substation Secondary System Based on
SCD/CAD File Mapping Technology," 2019 IEEE 3rd Conference on

Energy Internet and Energy System Integration (EI2), Changsha, China,

pp. 2844-2848, November 2019, doi: 10.1109/EI247390.2019.9061834.

