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Abstract— The outbreak of the novel coronavirus diseases caused by SARS-CoV-2 is causing great challenges to the global health. Non-

pharmaceutical interventions are being deployed due to the unavailability of certified effective drugs or vaccine for the virus. In this study, a 

compartmental model is formulated to explore the transmission dynamics of COVID-19 in Nigeria. The model has six non- linear differential 

equations which describe the spread of corona virus disease. The disease free equilibrium point and existence of endemic point was determined. 

The basic reproduction number which is the threshold value for determining the pattern of coronavirus disease was calculated to be R0=0.9330. 

Pontryagin Maximum Principle was applied on the model in order to develop strategies to counteract corona virus disease pandemic. Four 

control methods were used which are combination of social distance, contact tracing, treatment and face masks usage. This study reveals that 

observation of social distancing and uses of face masks should be strictly comply with by susceptible, exposed and infectious detected individual 

in order to combat COVID-19. Finally, contact tracing should be force on both exposed and infectious undetected individual with disease. 

Treatment is only effective at early stage of infectious detected that is between 1-20 days of detection, anything above that treatment is no longer 

effective.  
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I. INTRODUCTION  

Ever since the first reported case of the deadly corona virus 

(COVID-19) was reported in the china city of Wuhan in late 

2019, the whole world has since been experiencing the worst 

pandemic in the century spreading to over 215 countries. The 

cause of COVID-19 is a novel Coronavirus named Severe 

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-

2).The World Health organization (WHO), on the 30
th

 of 

January, 2020 officially announced corona virus outbreak a 

Global Public Health Emergency of International Concern [1] 

and later declared the virus a pandemic on the 11
th

of March, 

2020 [2]. As of 3
rd

 September 2020, COVID-19 has accounted 

for over 26240870 confirmed positive cases with about 

868448 deaths globally [3]. 

Nigeria, Africa’s most populous country of over 200 

million people [4] had her 1
st
 reported case on February 27, 

2020 when an Italian citizen who just returned from Europe to 

Lagos was tested positive of the virus [5]. Ever since, COVID-

19 has spread to all state of the country. As of September 3rd, 

2020, data released by the Nigeria Centre for Disease Control 

(NCDC) shows that out of 411077 total tested samples for the 

virus, there are 54463 confirmed positive cases of the virus 

with 1027 deaths in the country. Lagos the epicenter of the 

virus in the country account for over 33% of the country’s 

reported cases as at the end August 2020 [6]. 

Scientists are still battling with the search for safe and 

effective vaccine or antiviral drug for use against the virus.  

Consequent upon this, non-pharmaceutical intervention are 

recommended to control the spread of the virus. These include 

community lockdown, maintenance of social distance, face 

mask usage in public, contact tracing, confirmed cases 

isolation and quarantine of suspected cases. 

On the 30
th

 of March, in other to control community 

transmission of the virus, the federal government of Nigeria 

declared a strict two weeks lockdown of two states (namely, 

Lagos and Ogun State) together with the Federal Capital 

Territory Abuja [7]. The lock down was later extended for 

another two weeks on April 13 and the rest of the country was 

placed under lock down on April 27 when there are increased 

numbers of cases being recorded across the country.  Despite 

the continuous rise in the number of reported cases, the 

government begins easing of imposed restrictions in phases on 

May 4.  The contentious issue is how effective and safe are the 

non-pharmaceutical interventions in the control of the virus. 

This study therefore aims on evaluating the effectiveness of 

some of the control measures using a mathematical model 

based on the available data on the virus spread. 

II. MODEL FORMULATION  

The mathematical model formulated is based on the spread 

and transmission of SARS-CoV-2. The model subdivides the 

total population size at time t  denoted as ( )N t  into 

susceptible ( )S t , exposed ( )E t , infectious detected ( )DI t , 

infectious undetected ( )UI t , infectious isolated ( )SI t and 

recovered class ( )R t . The infectious rate  is defined as: 

( )D D U U S SI I I

N

   


 
  

The assumption is that the exposed and recovered 

individual do not transmit the disease i.e. only infected 

detected, infected undetected and infected isolated are 

assumed capable of transmitting the COVID-19 to susceptible 

individual. Putting all this assumptions together, we obtain the 

following model equations 
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    
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   

     

    

    

   

 (2.1)

 
 

TABLE 1. Description of parameters 

Parameter Description 

  Recruitment rate 

  Disease induced death rate 

  Endogenous reactivation rate 

  
Progression rate from exposed to detected and 

undetected individual 

  Slow progressor 

1  Recovery rate of infectious undetected individual 

2  Recovery rate of infectious isolated individual 

  Natural death rate 

1  Isolation rate of exposed individual 

2  Isolation rate of infectious detected 

D = U =

S  

Modification parameters 

  Contact rate 

  Loss of immunity from recovered individual 

III. MODEL ANALYSIS 

a. Invariant region 

In this aspect, the solutions of the model system are 

uniformly bounded in the proper subset 
6

 . 

By the entire population, we have 

 U SD dI dIdIdN dE dR

dt dt dt dt dt dt
      (2.2) 

Therefore 

( ) ( )D U S D U S

dN
S E I I I R I I I

dt
             (2.3) 

In the absence of mortality due to COVID 19, equation (2.3) 

lead  

dN
N

dt
    (2.4) 

tN Be       (2.5) 

Where B is a constant independent of t. Further simplification 

gives 

0 tN
N e  

 

 
   

 
 (2.6) 

As t   in equation (2.6), the population N





 

that 

implies 0 N



 

.

Thus the feasible solution set of the 

system equation of the model enter and remain in the region 

  6, , , , , :D U SS E I I I R N





 
    

 
.

 

Therefore, the basic model is well posed epidemiologically 

and mathematically. The Disease Free Equilibrium E0 of the 

model is given by 0 ,0,0,0,0,0E




 
  
 

. 

b. Existence of endemic equilibrium point 

Here, we determine the possible existence and stability of 

endemic (positive) equilibria of the model (2.1). Let 

 ** ** ** **
1 , , , , ,D U SE S E I I I R   represent any arbitrary 

endemic equilibrium of the model (2.1), so that 

** ** ** ** **
D U SN S E I I I R      

.
 Force of infection

**  

at endemic steady-state is defined as  

    
** ** **

**

**

( )D D U U S SI I I

N

   


 


.  (2.7)

 

Solving the model (2.1)  at steady-state gives 

**
**

**

R
S

 

 





,  

** **
** ** **

1
1

S
E b S




  
 

 
, 

 ** ** **
1** ** **

2 2

** **
2

(1 )(1 )

,

D

bS E
I S

b S

   


     



  
 

   



  

  ** ****
1** **

3
1 1

(1 )(1 )
U

b SE
I b S

   


     


  

   
,

  ** **** **
1 1 2 2** **1 2

4
2 2

D
S

b b SE I
I b S

   


     


  

   
, 

 ** **
1 3 2 4** ** **1 2

**
5

U S
b bI I

R S

b S

  


   




 

 



       (2.8) 

Where 

1
1

b


  


 
, 

 1
2

2

(1 ) b
b

 

  

 


 
, 

 1
3

1

(1 ) b
b

 

  




 
, 

 1 1 2 2
4

2

b b
b

 

  




 
, 

 1 3 2 4
5

b b
b

 

 





 

Substituting the expressions in (2.8) into (2.7) gives, 
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** ** ** ** ** ** ** ** ** ** ** **
1 2 3 4 5

** ** ** ** ** ** **
2 3 4

( )

( )D U S

S b S b S b S b S b S

b S b S b S

     

      

    

  
 

** ** ** ** ** ** **
1 2 3 4 5

** **
2 3 4

(1 )

( )D U S

S b b b b b

S b b b

     

   

    

  
 

**
1 2 3 4 5 2 3 41 ( ) ( )D U Sb b b b b b b b             

**
01 P R    

** 0 1
0

R

P



   whenever 10 R  (2.9) 

The components of 1E can be obtained by substituting the 

unique value of
** , obtain in (2.9) into the expression in (2.8), 

then the result is established. 

c. Basic reproduction number  

The new infection matrix F , the transition matrix V and 

the  basic reproduction number R0 defined by the spectral 

radius of the next generation matrix
1FV 

 [8] are given by:

 

0

0 (1 ) (1 ) (1 )

0 0 0 0

0 0 0 0

D U S

D U S
F

  

     

 
 

   
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 
 
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0
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U D
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s D S

a a a a

a a a

a a a a a

a a a a a a a
R

a a a a

   

    


    

     

  
 

  
  
    



 

d. Optimal control analysis 

Control variables are strategies to detect and reduce 

coronavirus disease (COVID-19) transmission especially in 

Nigeria, this includes social distancing ( 1u ), contact tracing (

2u ), case detection and treatment ( 3u ) and wearing of face 

masks ( 4u ) as recommended by World Health Organization.  

Based on the optimal control problem, the formulated 

mathematical model is re-modified by incorporating the 

control strategies into the model:  

1 4

2 4 3 1

1 4 1 4

2 3

1

3 1 3 2 2

1 2

(1 )

(1 ) ( )

(1 ) (1 )

( )

(1 ) ( )

( )

( )

D

D

U
U

S
D S

U S

dS
u u S S R

dt

dE
u u S u E

dt

dI
u u S u u S

dt

E u I

dI
E I

dt

dI
u E u I I

dt

dR
I I R

dt

   

   

 

   

    

    

   

     

     

      

  

    

    

   

 (2.10) 

The goal of the control variables is to find the optimal 

strategies to minimize the exposed, infected undetected, 

infected detected and infected isolated individuals. Like the 

common form of an objective function in an optimal control 

transversality problem, the objective function of the model to 

be minimized is a non-linear and quadratic function defined 

as: 

 

1 2 3 4

1 2 3 4 2 2 2 2
5 1 6 2 7 3 8 4

0

( , , , ) 1

2

t
D U S

t

f K E K I K I K I

J u u u u dt
K u K u K u K u

    
 
   
  
  

e. Existence of an optimal control 

The existence of optimal control pairs is proved in the 

below theorem. 

Theorem 1. There exist an optimal control 
*u = 

 * * * *
1 2 3 4, , ,u u u u U such that; 

   * * * *
1 2 3 4 1 2 3 4, , , min , , , :J u u u u J u u u u  1 2 3 4, , ,u u u u U  

Subject to the control system  

Proof: The state and the control variables of the system (2.10) 

are non-negative value. The control set U is closed and 

convex. The integrand of the objective cost function J of 

expressed by (2.10) is a convex function of 1 2 3 4( , , , )u u u u   

on the control set U . Therefore, there exist positive numbers 

1 2,C C and a constant 1p  such that; 

   22 2 2 2
1 2 3 4 1 1 2 3 4 2, , ,

p

J u u u u C u u u u C    

The Lipschitz property of the state system with respect to the 

state variables is satisfied since the state variables are 

bounded. This completes the existence of an optimal control. 

f. Hamiltonian and Optimality System 

By using the principle of Pontryagins Maximum Principle 

[9], we obtained a Hamiltonian (H) defined as: 

1 2 3 4

1 2 3 4 5 6

( , , , , , , ) ( , , , , , , )D U S D U

U SD

H S E I I I R t L E I I u u u u

dI dIdIdS dE dR

dt dt dt dt dt dt
     

 

    

 
Where 
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1 2 3 4 1 2 3

2 2 2 2
4 5 1 6 2 7 3 8 4

( , , , , , , , )

1 1 1 1

2 2 2 2

D U S D U

S

L E I I I u u u u K E K I K I

K I K u K u K u K u

   

   
and 

, 1, 2,3,4, 6i i 
 
are the adjoint variable to be determined  

by Pontryagin’s maximal principle and also using [10] for 

existence of the optimal control pairs. 

Theorem 2. Given an optimal control 
* * * *
1 2 3 4, , ,u u u u  and 

solutions 
* * * * * *, , , , ,D U SS E I I I R of the corresponding state 

system (2.10) that minimizes  1 2 3 4, , ,J u u u u  over U. Then, 

there exists adjoint variables 1 2 3 4, , ,    such that; 

 2
2 3 1 3 4 5 3 1 1(1 )

d
u u K

dt


                   

  

  

 

1 3 1 43

3 2 2 4

3 5 2 3 3 2

1

1

( )

D

D

u u Sd

dt N

u u S

N

u K

  

  

     

  
 

  


   

  

  

 

1 3 1 44

3 2 2 4

4 6 1 4 3

1

1

( )

U

u

u u Sd

dt N

u u S

N

K

  

  

     

  
 

  


   

  

  

 

1 3 1 45

3 2 2 4

5 6 2 5 4

1

1

( )

S

S

u u Sd

dt N

u u S

N

K

  

  

     

  
 

  


   

 

 4
6

d

dt


     

With transversality conditions; ( ) 0, i 1,2, ,6.i ft    

Similarly, obtain the control set 
* * * *
1 2 3 4( , , , )u u u u  which is 

characterized by; 

*
* 3 1
1

5

( )
max 0,min 1,

S
u

K

     
    

   
,         

*
* 2 3
2

6

( )
max 0,min 1,

S
u

K

     
    

   
 

* *
* 2 5 1 3 2
3

7

( )
max 0,min 1, DE I

u
K

        
    

   
, 

* *
* 3 1 2 3
4

8

( ) ( )
max 0,min 1,

S S
u

K

          
    

   

 

IV. NUMERICAL RESULTS ON OPTIMAL CONTROL 

ANALYSIS 

In this section, the effect of optimal strategy on COVID-19 

transmission is investigated by applying some numerical 

techniques. The optimal strategy is achieved by obtaining a 

solution for the state system (2.1) and their co-state system. 

An iterative scheme is explored and used to determine the 

solution for the optimality system. We begin by solving the 

state equations with a guess for the controls over the simulated 

time by applying an in-built forward fourth order Runge-Kutta 

Method. Also, the co-state equations were at the same time 

computed by employing a backward fourth order Runge-Kutta 

Method with the transversality conditions. For numerical 

simulation, the state system solution is determined based on 

time with initial conditions  

(0) 2069617,S  (0) 304064E  , (0) 44942,DI 

(0) 14323UI  , (0) 35902SI 
 

and (0) 44942R   with 

following parameters: 

 
TABLE 2. Model parameters and values for simulations 

Parameters Values Parameters Values 

  271.23/days   0.000031 

  0.7/days 
1  0.07143 

  0.09/days 
2  0.04762 

  0.1429/days 
D = U = S  0.10 

  0.7/days   0.2 

1  0.05   0.0051 

2  0.1   

 

The following graphical results were obtained 

 

 
  (a).   (b). 

 
  (c).   (d). 

Figure 1. Model simulation showing effect of controls on susceptible 

population 
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  (a).   (b). 

 
                  (c).                                                 (d). 
Figure 2. Model simulation showing effect of controls on exposed population 

 

 
         (a).     (b). 

 

 
           (c).   (d).     
Figure 3. Model simulation showing effect of controls on infectious detected 

population 

 

 
         (a).    (b). 

 
             (c).   (d).           

Figure 4. Model simulation showing effect of controls on susceptible 

population 

 

 
            (a).      (b). 

 
      (c).    (d).  

Figure 5. Model simulation showing effect of all controls on each population 
subdivision 
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V. DISCUSSION OF RESULTS 

Figure 1(a) and 1(d) shows that the susceptible population 

increases due to compliance of social distancing and uses of 

face mask while in public places. Figure 1(b) and 1(c) rises 

initially but later declined due to rapid spread of infection. 

This attribute to treatment and contact tracing have no effect 

on susceptible population. 

Figure 2(a), 2(b) and 2(d) illustrate how the COVID-19 

spread is reducing within the expose individual due to 

effectiveness of social distancing, contact tracing and face 

masks but in Figure 2(c) the treatment is only effective 

between 10-36 days for exposed individual. Figure 3 depict 

the comparative among all the controls on infectious detected 

population. While figure 3(a) and 3(d) shows that infectious 

detected population decreases totally and remain steady as the 

days progresses due to implementation of social distance and 

use of face masks. This is because those who are infectious 

which is the major source for contracting the COVID-19 were 

being controlled. Figure 3(b) reveled sharp population 

increase despite the implementation of contact tracing. This is 

because the infectious has been isolated already and contact 

tracing is no longer effective again. But 3(c) shows a decrease 

of infectious population up to 45days which is credited to 

treatment being applied, then it starts going up because 

recovered individual are joining the infectious population 

again.  

Figure 4(a), 4(b) and 4(d) indicate the effect of social 

distancing, contact tracing and use of face mask respectively 

on infectious undetected population. Initially entire population 

steadily decreases showing the three controls are effective in 

controlling the disease in infectious undetected. The variation 

in 4(c) shows treatment is not necessary because their 

infectious status is unknown, treatment can only applied to 

infectious detected.  

Finally figure 5 shows the effect of social distance, contact 

tracing, treatment and use of face masks on each population 

subdivision. Population increases as a result of social 

distancing and use of face masks unlike contact tracing and 

treatment that doesn’t have effect on Susceptible as depicted 

in 5(a). Figure 5(b) and 5(d) show that infectious detected and 

infectious isolated decrease to zero over some weeks as a 

result of social distance and face masks implementation but 

treatment only has full impact on infectious detected compare 

to 5(c) which kept increasing as a result of infectious 

undetected. But, social distance contact tracing and uses of 

face masks has positive impact on COVID-19 infectious 

undetected population. 

VI. CONCLUSION  

The result of the simulation of our model reveals that 

observation of social distancing and uses of face masks should 

be strictly comply by susceptible, exposed and infectious 

detected individual in order to combat COVID-19. Finally, 

contact tracing should be force on both exposed and infectious 

undetected individual with disease. Treatment is only effective 

at early stage of infectious detected that is between 1-20 days 

of detection, anything above that treatment is no longer 

effective.  
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