
 International Journal of Scientific Engineering and Science
Volume 4, Issue 5, pp. 32-38, 2020. ISSN (Online): 2456-7361

32

http://ijses.com/

All rights reserved

Common Distributed Data Storage for Higher

Education Management Information System in

Afghanistan

Mohammad Zia Sana

Faculty of Computer Science, Kabul Polytechnic University, Kabul, Afghanistan

Abstract— In today's organizations, a management information system (MIS) plays significant roles; it supports the decision-making process

and controls management which impacts the organization’s functions, performance, and productivity. Therefore, one of the primary goals of the

National Higher Education Strategic Plan (NHESP) of the Ministry of Higher Education of Afghanistan was the development of the Higher

Education Management Information System (HEMIS). This system is active now, but its implemented partially and not used by all universities.

This paper aims to analyze the HEMIS and suggest appropriate solutions to solve its main issue(s).

One of the main issues is the centralized structure of the system which causes a single point of failure. To this end, we propose the

distributed database solution which provides a common database backend for the HEMIS and distributes it over the network to all educational

institutions as well as MoHE. In this solution, some constraints of the current situation such as budget limitations and internet connection

constraints are also considered. The university users can use the system locally and synchronize their changes at the central location (MoHE)

once the connection is available. Besides, the distributed database eliminates the process bottleneck by having many replicas and more than one

system can process the user's request. Hence, the performance of the system will be higher, can handle many requests, and store more data.

Keywords— Distributed Database System, Higher Education Management Information System, Data Synchronization, Distributed Database

Storage, Data Replication.

I. INTRODUCTION

The use of information technology has improved the

educational management operations due to its efficiency and

effectiveness and most of the universities now use a computer

system (MIS) for efficient administration and proper

management.

As the higher education sector grew in Afghanistan and the

number of students increased in educational institutions; the

government realized the importance of accurate data for

decision making. So, the Ministry of Higher Education of

Afghanistan (MoHE) decided to develop a HEMIS for itself

and other educational institutions inside the country. Hence, in

2008 the MoHE developed the NHESP that developing a

HEMIS was one of its significant parts.

 In 2012, this system was implemented to ensure accurate

data collection and also automatic management of all

information processes inside the MoHE and universities.

Besides collecting data, providing reports in a meaningful

manner and within a reasonable timeframe for all stakeholders

is a major objective of this system. This system was designed

and implemented in a centralized approach, and it is located in

MoHE and university users access the system through the

Internet. Therefore, it acts as the campus management system

for Afghan universities as well.

The system has not been fully implemented in universities

and so did not have the expected impacts on universities as

well as the MoHE operations and system automation. Due to

the implementation of the current structure, the HEMIS is

facing a single point of failure issue, and bottlenecks can occur

as a result of high traffic which suffers the system’s

performance. Hence, the centralized structure of the system is

a major cause of the mentioned problems since all data is

stored in one place.

II. LITERATURE REVIEW

The distributed database concept is an alternative design

that can solve problems exist with the centralized database

system like a single point of failure and performance

bottleneck. A distributed database is a group of numerous

databases that have a logical relationship between and

deployed over a network [1]. After 1994, the usage of the

distributed database system is increasing and most

organizations move toward distributed database management

for managing and administrating the system [2]. Research

accomplished on distributed databases in 1991, predicted a

massive shift from traditional structures to distributed

databases due to organizational requirements to manage huge

amounts of data [3]. Many applications will be dispersed and

therefore the database will also be distributed [4]. Hence,

implementing a distributed database has become common in

enterprises especially when it is getting larger. Different

business conditions encourage the utilization of the distributed

database, for instance, distribution and autonomy of business

unit, information sharing, and availability, data

communication cost and reliability, database fast recovery,

organization growth and high performance [5]. Therefore,

different options can be used for distributing the database

across the network like data replication, horizontal

partitioning, vertical partitioning and combination of theses.

Database replication is the procedure of establishing and

maintaining numerous instances of the same database and the

process for sharing data or changes in databases among

different locations while not having to copy the whole

database [5]. It enables us to copy a database or even a file

 International Journal of Scientific Engineering and Science
Volume 4, Issue 5, pp. 32-38, 2020. ISSN (Online): 2456-7361

33

http://ijses.com/

All rights reserved

from the master (primary node) database management system

to its accurate slave node. A node can either replicate a portion

or all the data. Replication may permit an organization to

move a database of a centralized mainframe onto less high

expensive, departmental, or near to end-users [6]. Moreover, it

is used to ensure the consistency among the nodes, improves

the accessibility, increased availability, reliability, fault

tolerance as well as the performance [7].

However, currently, NoSQL databases can operate as a

distributed database and it was designed to scale out

horizontally and continue running on various servers that work

together [8]. On the other hand, HEMIS was developed using

relational databases so the relational database system should

be distributed and replication is used to distribute databases

over the universities. For the implementation of a

heterogeneous distributed database system in the educational

sector, hospitals, and organizations replication, partitioning of

database synchronization techniques is used [9 & 15].

Some free and open-source tools can be used to manipulate

replication and database synchronization across the database

systems such as SymmetricDS and Galera Cluster.

SymmetricDS is a web-based, open-source, database-

independent, data synchronization software that uses

asynchronous data replication for both file and database

synchronization with the support for multi-master replication,

filtered synchronization, and transformation across the

network in a heterogeneous environment [16].

A conclusion section is not required. Although a

conclusion may review the main points of the paper, do not

replicate the abstract as the conclusion. A conclusion might

elaborate on the importance of the work or suggest

applications and extensions.

III. METHODOLOGY

For conducting this research and implementing the system

we use the waterfall methodology. First of all, we gather the

requirements, then design the system, implement the system,

and finally, we will test and train the users.

Different research methods will be used to collect

information about the data that each university will share with

MoHE, including interviews and meetings with the

university’s academic and student affairs as well as IT

department staff and HEMIS administrators. We would also

analyze the existing documents to find and classify the shared

and unique data of each university.

IV. HEMIS STURCTURAL CHALLANGES

HEMIS is a centralized web-based system and consists of

a database system which is hosted on a server in MoHE. This

is so that all stakeholders (Kabul and provincial universities

and MoHE users) access the system using the Internet

connection. In this case, all data like student files, academic

affairs, and administrative employees are stored in one central

location. To use the system, each user must have a credential

to access the system through the Internet which is provided by

MoHE for all universities.

At a later date, when the data of a huge number of

universities and MoHE itself are stored in the system, there

will be a large amount of data in the system. What happens if

all data is deleted by the user's fault or a natural disaster, then

a significant number of data will be lost from all the higher

education institutions including MoHE. Additionally, the ICT

infrastructure is limited in the current situation of our country

that if an institution does not have an Internet connection for a

long time, then it is unable to use the system and even can’t

access their data. No one can access if the system fails. The

problems outlined above will occur in the current centralized

structure of the system.

Figure 1. Centralized Structure of HEMIS

Figure 1 illustrates the system structure, where it is

deployed in MoHE, and all data is stored in one central

location. The MoHE users can access the system through the

MoHE local network, while the university users should access

the system using the Internet. The following outlines the major

challenges of the system regarding its centralized structure:

The first problem is breaking the MoHE rules and

regulations: implementing the system in a centralized method

breaks the MoHE rules where all university data stores just in

a single system and each client access its related data.

The MoHE’s rules state that some data like student’s

information (profile, study records, and marks) should have

three copies and each copy retain in three different locations

faculty, university, and MoHE for some security reasons. If

these data are located in one place, it will be easy to obtain

and change, but this is a violation of data security. To

guarantee data security, data should be retained in three

different locations. Therefore, if someone changes data, it is

easy to distinguish the incorrect data and avoid using false

information and it is hard to change data simultaneously in all

three locations.

The current structure of the HEMIS provides an

opportunity for destructive people to alter data because it is

stored just in one central location. Despite this, the current

system has a user trace mechanism and logs every transaction.

However, in a computer system, it is also possible to remove

the logs then it will be difficult to track the data changes.

The second problem of the centralized system is the lack

of ICT infrastructure in the higher education institutions: most

institutions of higher education have basic ICT resources, such

as computers, campus networking, and Internet connection.

 International Journal of Scientific Engineering and Science
Volume 4, Issue 5, pp. 32-38, 2020. ISSN (Online): 2456-7361

34

http://ijses.com/

All rights reserved

Therefore, they cannot use the system for their daily work in

the offices unless they have a stable Internet connection

alongside other IT resources mentioned shortly. However,

some institutions equipped with the necessary ICT

infrastructure such as, networking and computer labs, yet they

have a very limited and unstable Internet connection, which is

not sufficient for a system that needs to be frequently accessed

all the time by many users. In a nutshell, the system usage is

dependent on the Internet connection and is not used locally

within a university.

The third problem is the processing overhead of the

system: because one single system is carrying out all user’s

requests, if a user requests a query it passes a long way to get

the result. For example, when a user from Herat University

attempts to access information from Kabul University, it

requires a round trip to Kabul every time he/she requests, so

the system will be comparatively slow. Accessing such a

system with a low bandwidth Internet makes the overall

performance extremely poor. Currently, HEMIS might not

face this problem, as only administration staff access it. When

some student-related services are integrated with the system

and access given to the students too, the number of users will

reach hundreds or thousands and at that time the system will

face significant problems.

The significant challenge is the single point of failure of

the system: an entire centralized system depends on a single

CPU or a single machine. When the CPU fails, the whole

system is inoperable. As mentioned above, HEMIS is a

centralized system that has a single server and a single

database along with a single switch that is connected to the

Internet, where all these devices are installed in the same

room, if the webserver or the database server machine fails,

the whole system will be down. Considering the current

situation in Afghanistan, the chances of hardware failure are

high due to unstable electricity voltage, insufficient cooling

systems, insecurity, and insurgents’ blasting. In the case of fire

or any other natural disaster, the whole system and data will

be lost because everything is in the same location including

the backup. Therefore, with the current situation when the

system is down, no one has access, even the universities.

V. DISTRIBUTED DATABASE FOR HEMIS

Organizations will usually opt for one of the following

methods to design and implement their system accordingly,

centralized, or distributed. Choosing between these methods

depends on different factors like the organization size,

locations, scalability, and infrastructures.

A distributed database is a single database that is shared

physically over computers in different locations that are

connected by a data communication network [5]. The

centralized structure of the HEMIS has many problems, such

as processing overhead, single point of failure, performance

bottleneck, breaking the rules of MoHE, and requiring users

always to have an Internet connection. The distribution

mechanism will solve most of the current challenges of the

system and attempts to use HEMIS as a campus management

system for all educational institutions.

The distributed database systems are perfectly adapted to

the current situation in Afghanistan while the Internet

connection becomes a challenge for most of the universities.

According to our research and USWDP report, the lack of

Internet or having a slow Internet connection is one of the

reasons which HEMIS is not fully implemented, so an

alternative for educational institutions is to have the system

and utilize it locally. Therefore, by distributing HEMIS to the

universities; a copy of the system will be installed on the

university's local network, and it is accessible inside the

university without having an Internet connection, aside from

when transferring the changes to the central system.

Figure 2. Distributed Structure of HEMIS

Figure 2 shows the distributed structure of the system

whereas every educational institute obtains the system and

uses it locally. Also, it has a connection with MoHE to

synchronize data. The distributed method does not have a

single point of failure issue since every node has access to its

data and a node failure does not affect the other parts of the

system. For instance, when the MoHE system fails,

universities use their system locally, but data changes will not

transfer unless the MoHE system is up again.

The centralized system has low performance due to

processing overhead, whereas the distributed system

minimizes the processing overhead [2]. Each university’s user

functions on a local basis, and a university’s user requests will

not transmit to a remote server.

Therefore, the processing overhead is reduced and the

single point of failure will no more exist because each

university has its system, and failure in MoHE does not affect

data loss in universities. We also ensure high data availability

and removes the process bottleneck for both MoHE and

universities by introducing many replicas that are copying data

on multiple servers. With having more replicas more than one

system can process the user's request, hence the system

performance increased and can handle many requests at a

time.

A. Data Synchronization Architecture

According to the implementation plan, the system should

be used by both MoHE and university users. So in a

distributed database mechanism the database dispersed over

 International Journal of Scientific Engineering and Science
Volume 4, Issue 5, pp. 32-38, 2020. ISSN (Online): 2456-7361

35

http://ijses.com/

All rights reserved

multiple nodes and these nodes connected through the

network. There will be many nodes including MoHE and

educational institutions. Each node has a copy of the system

based on its functionalities. For example, MoHE needs to have

a student module, human resource module, scholarship

module, but university nodes do not require the scholarship

module because it is not related to them.

To synchronize data, the relationship between the nodes

should be considered. Figure 3, illustrates data

synchronization architecture designed for the system. There is

one central node (MoHE), and the relationship between the

node is the same as the parent-child. Every university has a

relation with MoHE, but MoHE may or may not have a

connection with the universities. The flow of data can be

accomplished based on the real system that indicates what data

universities transfer to MoHE and vice versa. According to the

proposed architecture, data can also flow between universities

when it is required, but it is optional. For instance, a student

wants to study his master's degree at Kabul University while

he has studied his bachelor's degree at Herat University.

There are three approaches we propose for transferring the

data between universities. Firstly, universities can establish

relationships with each other like a mesh topology in the

network. However, universities are all connected, but this is a

complicated procedure at the same time the system

administrator will become abstruse and there may be many

links that have been formed but not used.

The second approach is to establish the data

synchronization links for a node in the time it requires. This

method is better than the first one, but requires complex

administration and also depends on the system

implementation. If a central system administration controls

and manages the system then the links can be built simply but

if the administration of the nodes is local then an agreement

between both nodes is necessary before setting up the link, and

both should protocol with each other in the early stages.

In the third approach, we can transfer data between

universities through the central node. As it is evident from

figure 3 each node is connected with the central one and the

links between them are in two directions. Thereby, it is easy to

use the central node as an intermediate node for transferring

data between universities. Therefore, the MoHE node acts as a

router in the network that manages and routes the packages.

As far as the implementation and management of centralized

data distribution between nodes require less effort and it is not

necessary to create additional links, instead, the links which

have already been established are utilized, so this approach is

more optimal.

B. Database Synchronization using SymmetricDS

As far as each university has its system then they need to

transfer data to the MoHE and vice versa if required. For data

synchronization between these systems, several options like

MySQL, Galera Cluster which support MySQL and MariaDB

and SymmetricDS are there [17]. Among these tools, with

considering the Internet connection limitation, we propose the

SymmetricDS application.

SymmetricDS is open-source software designed to

withstand network outage, work across low-bandwidth

connections, and to be scalable to a large number of databases

[18]. It is a data synchronization software that uses

asynchronous data replication for both file and database

synchronization with the support for multi-master replication.

SymmetricDS has been utilized in various methods such as

snapshot, log, trigger, and time stamp method for capturing

data changes [19]. For this scenario, we opt triggered based

and incremental update. Every time data is updated, the

system conducts the synchronization with the central server

and the last change is transferred instead of transferring the

whole database.

It is well adapted to current versions of HEMIS where

different database technologies are used, and Internet

connection is acknowledged as a problem for most of the

universities. Where users can access the system locally, and

data will sync when an Internet connection is available.

Additionally, the administration of the system can be set up as

centralized in MoHE which provides easy management and

control with the data flow among the nodes. Since this

technology can be installed on the top of the database without

a huge change in the system, it is easy to adapt to the existing

system.

Figure 4. HEMIS Data Synchronization

Figure 4 illustrates the synchronization process between

the systems where each university has a local system that can

pull and push data to and from the MoHE. In a distributed

database system replication is used for copying data over the

Figure 3. Nodes relationship

 International Journal of Scientific Engineering and Science
Volume 4, Issue 5, pp. 32-38, 2020. ISSN (Online): 2456-7361

36

http://ijses.com/

All rights reserved

nodes so, for achieving data synchronization between

universities and MoHE replication mechanisms are

considered.

C. Data Replication

Replication is a popular option for distributing data to store

a separate copy of the database at multiple sites of a network,

and it allows an organization to move a centralized database to

location specific and close to users [5]. Furthermore,

replication is used to improve local database performance and

protect the availability of system because alternate data access

options exist. There are three options for replicating data, full

replication, partial, and no replication, each of these

replication methods is adapted and applied to the different

environments [5].

In our solution, we suggest using partial replication

because it is suited better for copying some fragments of the

database from universities to the MoHE and vice versa. In a

partial method, the database is fragmented and multiple copies

of the same fragment are stored and maintained in various

places [5]. The reliability of this approach is high because new

copies of fragments would be still available. All universities

would have the same copies of HEMIS with a similar database

schema, but the system in MoHE has different modules and

functions. There are two types of modules, the unique and

shared modules. The unique modules are implemented in one

of the two nodes either in MoHE or university like the

scholarship module which just belongs to MoHE. The shared

modules are used by both the university and MoHE; for

instance, the student management system is a shared module,

in which both nodes consist and utilize it. The common

modules are the only modules that need to share and

synchronize data. So we do not need to replicate the entire

database, only some parts of the databases are copied among

the nodes.

For data synchronization, it is also important to decide

when the data changes should apply to a node. There are two

options periodic and near real-time replications. Periodic

replication usually sends data after a given moment or on

regular bases like weekly, monthly, or schedule bases [5]. An

application that does not require current data like data

warehousing, data mining, or decision support, uses periodic

replication, and nodes can perform without updated data for

some time. Snapshot is one type of periodic replication. Near

real-time replication transmits data at the time data changes

occur. This kind of replication is useful in scenarios such the

online banking and airline management systems. This

methodology utilizes a message broadcasted across the

network for each completed transaction, and one way is to use

a trigger for generating these messages. When data is updated,

triggers stored at each local site, capture, and update the

commands on the remote database [5].

In our solution, we use the periodic replication mechanism.

Since MoHE uses the data of universities mostly for statistical

and decision-making purposes, the periodic approach is

preferable whereas the update is conducted at a regular time.

Moreover, the Internet connection is not available at some

universities, and also they suffer from low bandwidth

connections. These are the reasons to use this type of

replication since the MoHE node can last for some time

without an update from the universities.

In summary, by applying the proposed solution, every

educational institute will have the HEMIS locally without

always requiring an Internet connection. Furthermore, by

helping the SymmetricDS data synchronization will be

accomplished automatically.

D. Replication Topologies

The connection between universities and MoHE can be

defined based on how they want to contribute. There are

different types of replication topologies like master-slaves,

multi-master, and multi-source [20]. In our case study, we use

multi-source replication for data synchronization, as data is

transferred from many sources (universities) to a central

location (MoHE).

The university system performs locally and when data

changes occur; the node should synchronize the changes with

the MoHE. Similarly, the MoHE users use the system when a

change is required to transfer to any other node; it runs the

synchronization process so that the university will obtain the

data.

The multi-source topology can be used while the MoHE

acts as a slave and the universities as masters. Data comes

together from different sources, and one node is the focal point

to combine all the data. Slave node does not indicate that it is

just read-only, but users can write in the local nodes and then

changes are propagated to the central node

Furthermore, it is important to consider how data should

propagate, two different approaches exist for data propagation

over the network, synchronous, and asynchronous. As far as,

asynchronous tolerate some delay, it works better in our case

study where the Internet connection is the concern, and the

strength of the Internet connection is still an issue for some

universities. The latency does not matter, although the MoHE

needs data for decision making and static. For a resolution to

the problems with the Internet, they can provide an Internet

connection for data synchronization at the time it is necessary

or based on a schedule.

E. More Replica: High Availability and Performance

After HEMIS has been distributed to the universities, the

data synchronization can be manipulated to transfer data

between the nodes. Therefore, the processing overhead will be

reduced, and the issue of a single point of failure can be

decreased but not eliminated.

Moreover, the performance bottleneck can occur to any

node yet, while the number of records is getting larger and

larger every day, in particular when a more educational

institution or new facilities join the system, more data need to

be processed, stored, and maintained. So the bottlenecks can

occur as a result of high traffic, and the performance can

suffer because more users will utilize the system. To process

the user's request with high speed and lower latency, the

machine should be upgraded to produce an efficient result.

The easy option is to scale the machine vertically, but it is not

cost-effective. Instead, we can scale out horizontally.

 International Journal of Scientific Engineering and Science
Volume 4, Issue 5, pp. 32-38, 2020. ISSN (Online): 2456-7361

37

http://ijses.com/

All rights reserved

Consequently, a distributed database has the replication

feature, and by replicating data to multiple servers, we can

achieve greater availability (no point of failure) and higher

performance [6]. Each node is a server and has the computing

power, so by adding more nodes we extremely have a robust

system that can handle more requests. By copying data of a

particular node into the multiple nodes, the single point of

failure will no more exist and the system’s performance will

be increased by managing to route the user’s requests to

specific systems. If one node crashes, another node can

operate with no disruption.

For assuring high data availability, the master/slave

topology is suitable both for universities and MoHE sides to

store a copy of data on multiple servers. The user requests are

distributed to a specific node regardless of the request type,

where a master node can perform read and write but the slave

node is read-only. As far as both MoHE and universities have

more write than reading operations and on the other hand

configuring all nodes as the master is complex and it causes

data synchronization to become more complicated, so we use

master-slave to send read requests to the slave and write

requests to the master node. Here, we list how to design data

distribution on both sides.

 Full replication in the MoHE side to have the same copy

of data in master and slave nodes.

 The university systems can be partitioned horizontally

by departments or can use full replication.

Since the MoHE system can use full replication, multiple

sites have the same copy of the database; so the same database

is available at various locations. The reliability is high; failure

of any site does not make trouble in accessing data because

there are multiple copies of the database, and still data can be

obtained from a site that is functioning [5].

Figure 5. Data Replication Architecture for each Node

Figure 5 illustrates the replication servers on each node in

which the slave node replicate from the master node. The

master is the primary database system and asynchronously

duplicate to the slave node. For assuring data consistency in

each local system, data synchronization should run locally as

well. When the master node is down the slave node is

becoming a master to provide data. The slave node answers

the read operations instead of only one primary node for

answering every request, so the performance is scaled.

For achieving high data availability and removing the

performance bottleneck in our scenario, more slaves’ nodes

are added on each side thus the central node (MoHE) slave

node is configured as master as shown in Figure 5. Therefore,

data synchronization happens between master nodes which are

called multi-master. As stated previously, concerning the

alternative technologies for our solution like MySQL Cluster

and Galera Cluster, SymmetricDS is a better choice to achieve

asynchronous data changes in a multi-master replication

topology.

Even though the master/slave has many advantages, it

would also cause the data inconsistency problems when they

cannot read the latest write. As a result, we can obtain both

data availability and high performance.

F. MySQL Router Load Balancing

However, two copies of data exist on both sides (MoHE

and universities), but currently, all load is going to the master

server. Now it is a question how to distribute the workload to

both servers? MySQL router is a middleware that intelligently

routes MySQL connection and transactions to increase

performance (load balancing) and uptime (failover) [21].

Therefore, it balances the workload and handles failover, if the

primary server fails then it will find the secondary server and

establishes the connection to it. The router has both read-only

and read-write mode.

Figure 6. MySql Router Implementation

Figure 6 illustrates the implementation of MySQL router

in MoHE. As mentioned above, we suggest a master/slave

topology so there is a master node that should handle reads

and writes and slave node for read requests. By configuring

the router, the workload will be distributed among both

servers. Hence, we achieve both high performance and high

data availability.

VI. RESULT

After implementing the proposed solution, the system will

be locally accessible for each university and the single point of

failure will not exist more. Moreover, the performance is

enhanced and the bottleneck will not occur. The users will not

worry about sharing data between universities and MoHE

because the system will take care of it automatically.

Furthermore, in this solution, some constraints of the current

situation are also considered such as budget limitations and

Internet connection constraints. Finally, the HEMIS will have

the expected output, and university users, as well as MoHE,

will have their system.

 International Journal of Scientific Engineering and Science
Volume 4, Issue 5, pp. 32-38, 2020. ISSN (Online): 2456-7361

38

http://ijses.com/

All rights reserved

VII. CONCLUSION

We analyzed the current status of HEMIS which is

implemented partially in some universities. To this aim, we

have conducted many interviews with the involved persons

and participated in conferences and presentations and also

observed the system and examined related documents. The

main challenges that system face is the lack of infrastructure,

unreliable Internet connection, untrained employee, and the

centralized structure of the system. We discovered that the

central architecture is the main reason why the system usage

in universities has been unsuccessful. To address these

challenges, we introduced an alternative approach that uses

distributed databases. Using this approach, we will be able to

distribute the system over the universities. We introduced a

commonly distributed database backend for HEMIS which all

universities will have the system locally and synchronizes the

database with a central point in MoHE. The users do not need

to be connected to the Internet and can use the system offline.

We have improved the system availability using the

replication mechanism, and the system’s scalability and

performance enhanced as well. The system can sustain better

in disasters, as well as it can scale easily by adding a few

configuration files. Similarly, it is extensible and supports the

addition of new features. This solution is not just limited to

HEMIS, any ministries or organizations that have similar use

cases can easily adapt it to its system. Mainly this concept fits

well when data sharing between the departments and branches

is required especially in a disconnected area where the Internet

is limited. Despite the distributed solution has many

advantages, implementing the system to educational institutes,

requires some resources including the trained individuals,

software, and hardware such as a local server, a secure room,

system administrator, power and so on. The system uses

SymmetricDS to support distributed database architecture and

manipulate data synchronization. SymmetricDS is an open-

source and database independent application. Besides, it uses

asynchronous replication for synchronizing data between

nodes and supports areas with a slow Internet connection, and

frequent network outage. Furthermore, the MySQL router is

proposed for routing the user’s requests to the particular server

which enhances the performance of the system and provides

high availability. Finally, we have shown that we can easily

adapt HEMIS with this application as far as it installed on the

top of the database system. We also developed a prototype that

considered different scenarios for implementing the HEMIS in

a distributed way.

REFERENCES

[1] M. T. Ozsu and P. Valduriez, ―Distributed database systems: where are
we now?,‖ Computer, vol. 24, no. 8, pp. 68–78, Aug. 1991, doi:

10.1109/2.84879.

[2] M. T. Ozsu and P. Valduriez, ―Distributed data management: unsolved
problems and new issues,‖ Read. Distrib. Comput. Syst., pp. 512–544,

1994.

[3] B. Johnsirani and M. Natarajan, ―An Overview of Distributed Database
Management System,‖ Int. J. Trend Res. Dev. IJTRD, vol. 2, no. 5, Oct.

2015, Accessed: Aug. 03, 2016. [Online]. Available:

http://www.ijtrd.com/papers/IJTRD106.pdf.

[4] İ. Köse, ―Distributed Database Security,‖ Data Netw. Secur.-Spring,
2002, Accessed: Aug. 03, 2016. [Online]. Available:

http://repository.binus.ac.id/content/M0184/M018456716.pdf.

[5] J. A. Hoffer, R. Venkataraman, and H. Topi, Modern Database
Management, 12 edition. Boston: Pearson, 2015.

[6] A. Runceanu, M. Popescu, and M. Runceanu, ―Techniques For Data

Replication On Distributed Databases,‖ Nov. 2008, Accessed: Sep. 13,
2016. [Online]. Available:

http://www.academia.edu/download/30904010/52_Adrian_Runceanu.pd

f.
[7] S. Goel and R. Buyya, ―Data replication strategies in wide area

distributed systems,‖ Enterp. Serv. Comput. Concept Deploy., vol. 17,

2006, Accessed: Nov. 13, 2016. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.445.9055&rep

=rep1&type=pdf.

[8] M. Allen, ―Relational Databases Are Not Designed For Scale,‖
MarkLogic, Nov. 09, 2015. http://www.marklogic.com/blog/relational-

databases-scale/ (accessed Jun. 30, 2016).

[9] M. Faiz and U. Shanker, ―Data synchronization in distributed client-
server applications,‖ in Engineering and Technology (ICETECH), 2016

IEEE International Conference on, 2016, pp. 611–616, Accessed: Nov.

14, 2016. [Online]. Available:
http://ieeexplore.ieee.org/abstract/document/7569323/.

[10] W. E. Hammond, M. J. Straube, and W. W. Stead, ―The synchronization

of distributed databases,‖ in Proceedings of the Annual Symposium on
Computer Application in Medical Care, 1990, p. 345, Accessed: Nov.

14, 2016. [Online]. Available:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2245569/.
[11] M. Holmgren, ―Multi-Master Database Replication and e-Learning–

Theoretical and Practical Evaluation,‖ 2015, Accessed: Nov. 14, 2016.

[Online]. Available: http://www.diva-
portal.org/smash/record.jsf?pid=diva2:892052.

[12] D. Song and S. Jing, ―Data synchronization solution in cement

enterprise,‖ in Control Conference (CCC), 2016 35th Chinese, 2016, pp.
9543–9546, Accessed: Nov. 14, 2016. [Online]. Available:

http://ieeexplore.ieee.org/abstract/document/7554873/.
[13] J. Wang and D.-S. Zhang, ―Research and Design of Distributed

Database Synchronization System Based on Middleware,‖ in 2015 8th

International Conference on Intelligent Computation Technology and
Automation (ICICTA), 2015, pp. 685–688, Accessed: Nov. 14, 2016.

[Online]. Available:

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7473390.
[14] Y. Wang, J. Wen, W. Fang, and X. Rao, ―Research on Incremental

Heterogeneous Database Synchronization Update Based on Web

Service,‖ in Computational Intelligence and Communication Networks
(CICN), 2015 International Conference on, 2015, pp. 1415–1419,

Accessed: Sep. 27, 2016. [Online]. Available:

http://ieeexplore.ieee.org/abstract/document/7546331/.
[15] Z. Zhenyou, L. Bo, and L. Shu, ―Research synchronization mechanism

for distributed heterogeneous database,‖ in 2012 Fourth International

Conference on Computational and Information Sciences, 2012,
Accessed: Nov. 14, 2016. [Online]. Available:

https://www.infona.pl/resource/bwmeta1.element.ieee-art-

000006300791.
[16] Y. Awe, ―Java Trunk : Bi-directional data and file synchronization with

SymmetricDS,‖ Jun. 08, 2014.

http://javatrunk.blogspot.com/2014/06/bi-directional-data-and-file.html
(accessed Jul. 04, 2016).

[17] ―The Codership Documentation — Galera Cluster Documentation.‖

https://galeracluster.com/documentation-
webpages/documentation/index.html (accessed Apr. 29, 2020).

[18] ―SymmetricDS 3.11 User Guide.‖

https://www.symmetricds.org/doc/3.11/html/user-guide.html (accessed
May 05, 2020).

[19] Y. Wang, J. Wen, W. Fang, and X. Rao, ―Research on Incremental

Heterogeneous Database Synchronization Update Based on Web
Service,‖ Dec. 2015, pp. 1415–1419, doi: 10.1109/CICN.2015.273.

[20] A. Davies, High Availability MySQL Cookbook. Packt Publishing Ltd,

2010.
[21] ―MySQL :: MySQL Router.‖

https://www.mysql.com/products/enterprise/router.html (accessed May

05, 2020).

