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Abstract— There is a great degree of difficulty in addressing problems of significant computational complexity such as the Routing and 

Spectrum Assignment (RSA) problem on heterogeneous clusters comprising CPUs, CUDA GPUs and Intel Many Core (MIC) architecture. A 

scheduling approach is employed in the present study to address the RSA issue on a heterogeneous cluster. Such an approach relies on the 

speed of heterogeneous architectures for task planning. More specifically, the study seeks to use appropriate parallel computing paradigms (e.g. 

MPI, OpenMP, CUDA) on separate architectures to address the problem and afterwards refer to the speed of task solving to determine how 

many tasks each architecture should be allocated. Findings show that the proposed approach is more effective than pure CPU-based 

application in terms of overall execution time, as made apparent by relative comparison of the number of nodes possessed by each architecture. 

Furthermore, as very high CPU numbers can remove the effect of employing architectures of high speed, there is an indirect correlation 

between the speedup and the elevated number of CPUs. On the other hand, system use and, implicitly, the number of tasks that can be 

introduced in the system at the same time are affected by the use of a high number of CPUs in a single task to attain a notable speedup factor. 

Therefore, code amendment for the purpose of task allocation to the architectures is discussed by the study as well. 
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I. BACKGROUND 

Standard multicore microprocessors (CPUs), graphics 

processor units (GPUs), and Intel many integrated core (MIC) 

architectures are the main components of contemporary high-

performance computing (HPC) clusters. Consequently, the 

computational resources in one cluster vary significantly. 

Therefore, the developers’ competencies and the employed 

parallel computing paradigm determine to a considerable 

extent the process of writing a code capable of exploiting the 

heterogeneous resources effectively. Furthermore, the way in 

which heterogeneous systems perform depends greatly on the 

scheduling approach used to manage the lack of uniformity. 

The present study aims to address the issue of Routing and 

Spectrum Assignment (RSA), which is among the problems of 

great computational complexity in the network field. Brute 

force algorithm will be employed to address this issue on 

multicore CPUs, on GPU and on MIC, respectively. After 

computation of the real run time for every one of these 

architectures, a particular scheduling approach will be applied 

to improve use of hardware resources and speedup by 

allocating a suitable workload to the architectures. 

Furthermore, code amendment to ensure compatibility with 

the chosen scheduling approach will be discussed as well. 

The structure of the remainder of the study is as follows: 

The RSA problem is the focus of the second part, while the 

application of the various architectures is discussed in the third 

part. A succinct presentation of the employed scheduling 

approach is provided in the fourth part, while the alterations 

made to the parallel code to satisfy the conditions of the 

scheduling approach are discussed in the fifth part. Finally, 

conclusions and recommendations for further research are 

outlined in the sixth part. 

II. ROUTING SPECTRUM ALLOCATION PROBLEM 

The technology showing the greatest potential in next-

generation backbone transport networks is the elastic optical 

network (EON) [1][2]. This type of network is characterized 

by the separation of the optical fiber frequency spectrum into a 

large number of narrow frequency slots with spectrum width 

that does not vary. A channel can be created by any successive 

slot series and in turn can generate an optical link comprising 

a route and a channel (i.e. light-path) by switching in the 

network nodes. Through assignment of the minimum needed 

bandwidth, EONs permit capacity acquisition [3][4]. A major 

problem in this regard is RSA, which is geared towards 

identifying the optimal path and create a light-path within an 

all-optical channel for existing end-to-end requirements [5]. 

As an NP-hard optimization issue, RSA requires taking into 

account certain restrictions in order to make the existing 

spectrum as efficient as possible. There is a great deal of 

difficulty in addressing the RSA issue and a number of related 

algorithms have been recently suggested. For instance, a range 

of Integer Linear Programming (ILP) models have been 

considered by some studies [6]. 

Link- and path-based formulations are the two existing 

types of ILP formulations, depending on the kinds of variables 

employed. Link-based formulations require taking into 

account the whole space of every potential connection among 

any two network nodes, while path-based formulations are 

geared towards identifying the ideal solution between a 

received series of paths that serve as input for every node pair 

in the network. This latter type of ILP formulations is adopted 

in the present study, so the inputs of the RSA problems are as 

follows: 
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A. Network Topology 

A connected graph G(V, A), with V and A respectively 

representing the set of nodes and the set of directed network 

links (Fig. 1) [7] . 

 

 
G(V)= {A,B,C,D,E}   is a set of nodes 

A(V)= {1,2,3,4,5,6,7,8,9,10}   is a set of directed links 

Fig. 1. Network Topology of 5 nodes 

B. Traffic Demands 

These include a traffic demand matrix T=[tsd], with the 

extent of spectrum necessary for traffic transport between 

nodes s and d being denoted by tsd [8]. Traffic requirement to 

graph G if every link is associated with ten frequency slots 

(FS) is exemplified in Figure 2. Free slots or fragmented 

frequency (FF) and utilized frequency (UF) are respectively 

denoted by the white and grey blocks [9][5]. 
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Fig. 2. Traffic Demands 

C. Routing Paths 

These refer to a series of paths (Ksd) associated with 

source-destination (s, d). For instance, the route paths between 

source A and destination D in the network topology shown in 

Fig. 1 are {{7}, {1,4}, {3,6}, {1,9,6}…}. 

Three major conditions are associated with RSA. The first 

condition is that a contiguous spectrum must be allocated to 

every requirement (spectrum contiguity). The second 

condition is that an identical spectrum must be allocated to 

every requirement along every path link (spectrum continuity). 

The third condition is that portions of the existing spectrum 

that do not overlap must be allocated to requirements with a 

link in common (non-overlapping spectrum) [5][8]. 

The routing algorithm, which produces every possible 

routing table, and the spectrum assignment, which examines 

the traffic demand matrix against every routing table based on 

spectrum assignment algorithms, are the two components of 

the RSA issue. The RSA seeks to reduce the number of 

spectra allocated on any network link as much as possible and 

to meet every condition. 

III. APPLICATION OF RSA ON VARIOUS ARCHITECTURES 

Brute force algorithm will be employed to address this 

issue on multicore CPUs, on GPU and on MIC, respectively. 

After computation of the real run time for every one of these 

architectures, a particular scheduling approach will be applied 

to improve use of hardware resources and speedup by 

allocating a suitable workload to the architectures. 

Furthermore, code amendment to ensure compatibility with 

the chosen scheduling approach will be discussed as well. 

Every experiment is conducted based on Intel Compiler 

2017 and Intel MPI V5. CUDA V6, GCC compiler and 

OpenMPI are the basis of the GPU experiments, while Intel 

Compiler 2015 and Intel MPI V5 with MIC native mode are 

the basis of the MIC experiments.  

A number of 496 nodes (11,904 cores) represent the 

compute nodes for performance of enormous parallel tasks as 

well as small parallel or serial tasks. The number of standard 

compute nodes (9120 cores) with 96 GB (4 GB/core) is 380, 

while high-memory compute nodes (2688 cores) with 256 GB 

(10.6 GB/core) and designed for programs with high memory 

demands is 112. Two Nvidia Tesla K20 GPGPU ready-

compute nodes (2496 CUDA cores for every card) with 96 GB 

for execution of applications capable of applying GPU-based 

accelerators are also used. Furthermore, applications capable 

of implementing accelerators based mainly on MIC are 

executed based on two Intel Phi 5110P Co-processor ready-

compute nodes (120 Xeon phi cores) with 96 GB. Tables I, II 

and III respectively illustrate the standard architectures of 

regular CPU node, MIC (Xeon Phi) node and NVIDIA 

GPGPU (CUDA) node [10]. 

 
TABLE I. Regular Cpu-Based Compute Node [10] 

Attribute Value 

Architecture x86_64 

CPU op-mode(s) 32-bit, 64-bit 

Byte Order Little Endian 

CPU(s) 24 

On-line CPU(s) list 0-23 

Thread(s) per core 1 

Core(s) per socket 12 

Socket(s) 2 

NUMA node(s) 2 

CPU MHz 2399.852 

Memory 96 GB 

 
TABLE II. XEON PHI Compute Node 

Attribute Value 

Total No of Active Cores 60 

Voltage 897000 uV 

Frequency 1052631 kHz 

IV. SCHEDULING STRATEGY 

The objective of this study is to minimize the execution 

time of RSA problem through scheduling it on multiple 

heterogenous architectures. Therefore, in this section we will 
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investigate the impact of using scheduling strategy described 

in [11] on assigning tasks to different architectures. 

Subsequently, we will show how the scheduling strategy will 

affect the code. Since we have 1610 possible routing tables for 

5 nodes complete mesh. Each task will calculate the make-

span(score) of one of the routing tables. (Table V) shows the 

speed differences between architectures when running one 

task. We simply run the task separately on the architecture and 

calculate the execution time. This in fact can give us a ratio on 

which we can decide how many tasks should be assigned to a 

specific architecture. Specific ratio of tasks that should be 

assigned to different architectures from a total number of 

(1610 tasks) is listed in (Table VI). Achieved run times are 

also shown in Table VI. Comparing the results in Table IV 

and Table VI gives us an idea about the improvement in the 

total run time. For example; Using 1 Regular node, 1 CUDA 

node, and 1 MIC node will reduce the run time from 73911 

seconds to 13657 seconds. Since the CUDA and MIC nodes 

are limited number we can only increase the number of regular 

nodes as shown on Table VI. 

 
TABLE III. Nvidia cuda compute node [10] 

Attribute Value 

CUDA Driver Version / Runtime Version 6.0 / 6.0 

CUDA Capability Major/Minor version 
number 

3.5 

Total amount of global memory 
5120 MBytes (5368512512 

bytes) 

(13) Multiprocessors, (192) CUDA 

Cores/MP 
2496 CUDA Cores 

GPU Clock rate 706 MHz (0.71 GHz) 

Memory Clock rate 2600 Mhz 

Memory Bus Width 320-bit 

L2 Cache Size 1310720 bytes 

Total amount of constant memory 65536 bytes 

Total amount of shared memory per block 49152 bytes 

Total number of registers available per 

block 
65536 

Warp size 32 

Maximum number of threads per 

multiprocessor 
2048 

Maximum number of threads per block 1024 

Max dimension size of a thread block 
(x,y,z) 

(1024, 1024, 64) 

Max dimension size of a grid size (x,y,z) (2147483647, 65535, 65535) 

Maximum memory pitch 2147483647 bytes 

 
TABLE IV. Results of implementing RSA on CPU, GPU and Xeon Phi 

Trial No. Platform Result (seconds) 

1 1 Regular Node (OpenMP) 73911 

2 5 Regular Nodes (MPI + OpenMP) 14759 

3 10 Regular Nodes (MPI + OpenMP) 7380 

4 1 GPU Node (CUDA) 23280 

5 1 MIC Node (Offload Mode) 59390 

 

TABLE V. Architectures speed differences for one task 

Architecture 
CPU 

Node 

GPU 

Node 

XEON-Phi 

Node 

Task Execution Time (in 

sec) 
6.72 E-08 2.11 E-08 5.4 E-08 

V. MODIFICATIONS TO THE CODE 

As mentioned earlier, there are two major RSA 

components, which are respectively concerned with producing 

every possible routing table and spectrum assignments in 

keeping with the traffic demand matrix and the routing tables 

produced. The breadth-first search algorithm is the graph 

search method employed in this study for the parallel 

implementation of the produced routing tables. However, any 

graph search method is suitable. Furthermore, to break down 

the problem, the RSA Task Scheduler algorithm employed in 

Fig. 3 is responsible for dividing the problem into chucks each 

contains several tasks. The main purpose of this study is to 

distribute the RSA implementation across different 

architectures to measure the performance, for this reason the 

chunks will execute on different architecture after ensuring 

that this architecture will process the chunks in reasonable 

time and less than processing all chunks on the fastest 

architecture available. 

 
TABLE VI. Tasks assigned to architectures based on speed 

Platform 
CPU 

Ratio % 

CUDA 

Ratio % 

MIC 

Ratio % 

Result 

(Seconds) 

1 Regular Node + 

1 CUDA + 1 MIC 
18.41865 58.66036 22.92099 13657 

2 Regular Node + 
1 CUDA + 1 MIC 

31.10769 49.53642 19.3559 11496 

4 Regular Node + 

1 CUDA + 1 MIC 
47.45365 37.783 14.76336 8768 

8 Regular Node + 
1 CUDA + 1 MIC 

64.36415 25.62364 10.0122 5946 

 

 
Fig. 3. RSATaskScheduler Pseudo Code 
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Both Fig. 4 and Fig. 5 illustrates the pseudo code for 

OpenMP and MPI implementations respectively in the first 

architecture CPU. In Fig. 4, RSA_OMP will take subset of 

routing tables from start to end and executes in parallel to 

calculate the score for each. At the end, the maximum score 

and the best routing table will be returned. RSA_MPI pseudo 

code presents the division of the search space across the 

available MPI ranks and find both mpistart and mpiend. Each 

rank in MPI will use procedure RSA_OMP to perform the 

search on its subplace. 

Fig. 6 and Fig. 7 show the pseudo codes that related to the 

second architecture GPU which uses CUDA. In Fig. 6, 

RSA_GPU is the host side for CUDA implementation whereas 

Fig. 7 shows the actual kernel implementation in RSAKernel. 

The host module calculates the number of CUDA blocks and 

assigns the suitable number of threads per block [10].  

The final architecture to study in the research is the MIC 

and Fig. 8 presents the pseudo code for RSA_MIC and it is 

similar to previous code in MPI and OpenMP. 
 

 
Fig. 4. OpenMP implementation for RSA  
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Fig. 5. MPI implementation for RSA 
 

 
Fig. 6. GPU implementation for RSA 
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Fig. 7. RSA Kernel implementation for RSA 
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Fig. 8. Pseudo code for MIC implementation for RSA 

VI. CONCLUSION  

Heterogeneous architectures can be used to significantly 

enhance and speed up the run time of computationally 

intensive problems with proper scheduling strategy and 

suitable parallel computing paradigms. Having equivalent or 

at least a comparable number of different architectures can 

result in a tangible speedup. Future work may include 

studying different intelligent algorithms for scheduling and 

distributing highly computationally algorithm on different 

architectures to increase the performance. Another research 

direction could investigate is the power consumption and the 
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effective algorithms that could reduce the power consumption 

and maintain the performance and Quality of Service (QoS) in 

general. 
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