
 International Journal of Scientific Engineering and Science
Volume 4, Issue 1, pp. 20-24, 2020. ISSN (Online): 2456-7361

20

http://ijses.com/

All rights reserved

RSA Implementation on a Hetrogeneous Cluster

Architecture using CPUs, GPUs, and MIC

Sanaa A. Sharaf
Department of Computer Science, King Abdulaziz University, Jeddah, Saudi Arabia

Email address: ssharaf @ kau.edu.sa

Abstract— There is a great degree of difficulty in addressing problems of significant computational complexity such as the Routing and

Spectrum Assignment (RSA) problem on heterogeneous clusters comprising CPUs, CUDA GPUs and Intel Many Core (MIC) architecture. A

scheduling approach is employed in the present study to address the RSA issue on a heterogeneous cluster. Such an approach relies on the

speed of heterogeneous architectures for task planning. More specifically, the study seeks to use appropriate parallel computing paradigms (e.g.

MPI, OpenMP, CUDA) on separate architectures to address the problem and afterwards refer to the speed of task solving to determine how

many tasks each architecture should be allocated. Findings show that the proposed approach is more effective than pure CPU-based

application in terms of overall execution time, as made apparent by relative comparison of the number of nodes possessed by each architecture.

Furthermore, as very high CPU numbers can remove the effect of employing architectures of high speed, there is an indirect correlation

between the speedup and the elevated number of CPUs. On the other hand, system use and, implicitly, the number of tasks that can be

introduced in the system at the same time are affected by the use of a high number of CPUs in a single task to attain a notable speedup factor.

Therefore, code amendment for the purpose of task allocation to the architectures is discussed by the study as well.

Keywords— Heterogeneous Architectures, Routing and Spectrum Assignment Problem, Task Scheduling.

I. BACKGROUND

Standard multicore microprocessors (CPUs), graphics

processor units (GPUs), and Intel many integrated core (MIC)

architectures are the main components of contemporary high-

performance computing (HPC) clusters. Consequently, the

computational resources in one cluster vary significantly.

Therefore, the developers’ competencies and the employed

parallel computing paradigm determine to a considerable

extent the process of writing a code capable of exploiting the

heterogeneous resources effectively. Furthermore, the way in

which heterogeneous systems perform depends greatly on the

scheduling approach used to manage the lack of uniformity.

The present study aims to address the issue of Routing and

Spectrum Assignment (RSA), which is among the problems of

great computational complexity in the network field. Brute

force algorithm will be employed to address this issue on

multicore CPUs, on GPU and on MIC, respectively. After

computation of the real run time for every one of these

architectures, a particular scheduling approach will be applied

to improve use of hardware resources and speedup by

allocating a suitable workload to the architectures.

Furthermore, code amendment to ensure compatibility with

the chosen scheduling approach will be discussed as well.

The structure of the remainder of the study is as follows:

The RSA problem is the focus of the second part, while the

application of the various architectures is discussed in the third

part. A succinct presentation of the employed scheduling

approach is provided in the fourth part, while the alterations

made to the parallel code to satisfy the conditions of the

scheduling approach are discussed in the fifth part. Finally,

conclusions and recommendations for further research are

outlined in the sixth part.

II. ROUTING SPECTRUM ALLOCATION PROBLEM

The technology showing the greatest potential in next-

generation backbone transport networks is the elastic optical

network (EON) [1][2]. This type of network is characterized

by the separation of the optical fiber frequency spectrum into a

large number of narrow frequency slots with spectrum width

that does not vary. A channel can be created by any successive

slot series and in turn can generate an optical link comprising

a route and a channel (i.e. light-path) by switching in the

network nodes. Through assignment of the minimum needed

bandwidth, EONs permit capacity acquisition [3][4]. A major

problem in this regard is RSA, which is geared towards

identifying the optimal path and create a light-path within an

all-optical channel for existing end-to-end requirements [5].

As an NP-hard optimization issue, RSA requires taking into

account certain restrictions in order to make the existing

spectrum as efficient as possible. There is a great deal of

difficulty in addressing the RSA issue and a number of related

algorithms have been recently suggested. For instance, a range

of Integer Linear Programming (ILP) models have been

considered by some studies [6].

Link- and path-based formulations are the two existing

types of ILP formulations, depending on the kinds of variables

employed. Link-based formulations require taking into

account the whole space of every potential connection among

any two network nodes, while path-based formulations are

geared towards identifying the ideal solution between a

received series of paths that serve as input for every node pair

in the network. This latter type of ILP formulations is adopted

in the present study, so the inputs of the RSA problems are as

follows:

 International Journal of Scientific Engineering and Science
Volume 4, Issue 1, pp. 20-24, 2020. ISSN (Online): 2456-7361

21

http://ijses.com/

All rights reserved

A. Network Topology

A connected graph G(V, A), with V and A respectively

representing the set of nodes and the set of directed network

links (Fig. 1) [7] .

G(V)= {A,B,C,D,E} is a set of nodes

A(V)= {1,2,3,4,5,6,7,8,9,10} is a set of directed links

Fig. 1. Network Topology of 5 nodes

B. Traffic Demands

These include a traffic demand matrix T=[tsd], with the

extent of spectrum necessary for traffic transport between

nodes s and d being denoted by tsd [8]. Traffic requirement to

graph G if every link is associated with ten frequency slots

(FS) is exemplified in Figure 2. Free slots or fragmented

frequency (FF) and utilized frequency (UF) are respectively

denoted by the white and grey blocks [9][5].

Link1

Link2

Link3

Link4

Link5

Link6

Link7

Link8

Link9

Link10

 1 2 3 4 5 6 7 8 9 10

Fig. 2. Traffic Demands

C. Routing Paths

These refer to a series of paths (Ksd) associated with

source-destination (s, d). For instance, the route paths between

source A and destination D in the network topology shown in

Fig. 1 are {{7}, {1,4}, {3,6}, {1,9,6}…}.

Three major conditions are associated with RSA. The first

condition is that a contiguous spectrum must be allocated to

every requirement (spectrum contiguity). The second

condition is that an identical spectrum must be allocated to

every requirement along every path link (spectrum continuity).

The third condition is that portions of the existing spectrum

that do not overlap must be allocated to requirements with a

link in common (non-overlapping spectrum) [5][8].

The routing algorithm, which produces every possible

routing table, and the spectrum assignment, which examines

the traffic demand matrix against every routing table based on

spectrum assignment algorithms, are the two components of

the RSA issue. The RSA seeks to reduce the number of

spectra allocated on any network link as much as possible and

to meet every condition.

III. APPLICATION OF RSA ON VARIOUS ARCHITECTURES

Brute force algorithm will be employed to address this

issue on multicore CPUs, on GPU and on MIC, respectively.

After computation of the real run time for every one of these

architectures, a particular scheduling approach will be applied

to improve use of hardware resources and speedup by

allocating a suitable workload to the architectures.

Furthermore, code amendment to ensure compatibility with

the chosen scheduling approach will be discussed as well.

Every experiment is conducted based on Intel Compiler

2017 and Intel MPI V5. CUDA V6, GCC compiler and

OpenMPI are the basis of the GPU experiments, while Intel

Compiler 2015 and Intel MPI V5 with MIC native mode are

the basis of the MIC experiments.

A number of 496 nodes (11,904 cores) represent the

compute nodes for performance of enormous parallel tasks as

well as small parallel or serial tasks. The number of standard

compute nodes (9120 cores) with 96 GB (4 GB/core) is 380,

while high-memory compute nodes (2688 cores) with 256 GB

(10.6 GB/core) and designed for programs with high memory

demands is 112. Two Nvidia Tesla K20 GPGPU ready-

compute nodes (2496 CUDA cores for every card) with 96 GB

for execution of applications capable of applying GPU-based

accelerators are also used. Furthermore, applications capable

of implementing accelerators based mainly on MIC are

executed based on two Intel Phi 5110P Co-processor ready-

compute nodes (120 Xeon phi cores) with 96 GB. Tables I, II

and III respectively illustrate the standard architectures of

regular CPU node, MIC (Xeon Phi) node and NVIDIA

GPGPU (CUDA) node [10].

TABLE I. Regular Cpu-Based Compute Node [10]

Attribute Value

Architecture x86_64

CPU op-mode(s) 32-bit, 64-bit

Byte Order Little Endian

CPU(s) 24

On-line CPU(s) list 0-23

Thread(s) per core 1

Core(s) per socket 12

Socket(s) 2

NUMA node(s) 2

CPU MHz 2399.852

Memory 96 GB

TABLE II. XEON PHI Compute Node

Attribute Value

Total No of Active Cores 60

Voltage 897000 uV

Frequency 1052631 kHz

IV. SCHEDULING STRATEGY

The objective of this study is to minimize the execution

time of RSA problem through scheduling it on multiple

heterogenous architectures. Therefore, in this section we will

 International Journal of Scientific Engineering and Science
Volume 4, Issue 1, pp. 20-24, 2020. ISSN (Online): 2456-7361

22

http://ijses.com/

All rights reserved

investigate the impact of using scheduling strategy described

in [11] on assigning tasks to different architectures.

Subsequently, we will show how the scheduling strategy will

affect the code. Since we have 1610 possible routing tables for

5 nodes complete mesh. Each task will calculate the make-

span(score) of one of the routing tables. (Table V) shows the

speed differences between architectures when running one

task. We simply run the task separately on the architecture and

calculate the execution time. This in fact can give us a ratio on

which we can decide how many tasks should be assigned to a

specific architecture. Specific ratio of tasks that should be

assigned to different architectures from a total number of

(1610 tasks) is listed in (Table VI). Achieved run times are

also shown in Table VI. Comparing the results in Table IV

and Table VI gives us an idea about the improvement in the

total run time. For example; Using 1 Regular node, 1 CUDA

node, and 1 MIC node will reduce the run time from 73911

seconds to 13657 seconds. Since the CUDA and MIC nodes

are limited number we can only increase the number of regular

nodes as shown on Table VI.

TABLE III. Nvidia cuda compute node [10]

Attribute Value

CUDA Driver Version / Runtime Version 6.0 / 6.0

CUDA Capability Major/Minor version
number

3.5

Total amount of global memory
5120 MBytes (5368512512

bytes)

(13) Multiprocessors, (192) CUDA

Cores/MP
2496 CUDA Cores

GPU Clock rate 706 MHz (0.71 GHz)

Memory Clock rate 2600 Mhz

Memory Bus Width 320-bit

L2 Cache Size 1310720 bytes

Total amount of constant memory 65536 bytes

Total amount of shared memory per block 49152 bytes

Total number of registers available per

block
65536

Warp size 32

Maximum number of threads per

multiprocessor
2048

Maximum number of threads per block 1024

Max dimension size of a thread block
(x,y,z)

(1024, 1024, 64)

Max dimension size of a grid size (x,y,z) (2147483647, 65535, 65535)

Maximum memory pitch 2147483647 bytes

TABLE IV. Results of implementing RSA on CPU, GPU and Xeon Phi

Trial No. Platform Result (seconds)

1 1 Regular Node (OpenMP) 73911

2 5 Regular Nodes (MPI + OpenMP) 14759

3 10 Regular Nodes (MPI + OpenMP) 7380

4 1 GPU Node (CUDA) 23280

5 1 MIC Node (Offload Mode) 59390

TABLE V. Architectures speed differences for one task

Architecture
CPU

Node

GPU

Node

XEON-Phi

Node

Task Execution Time (in

sec)
6.72 E-08 2.11 E-08 5.4 E-08

V. MODIFICATIONS TO THE CODE

As mentioned earlier, there are two major RSA

components, which are respectively concerned with producing

every possible routing table and spectrum assignments in

keeping with the traffic demand matrix and the routing tables

produced. The breadth-first search algorithm is the graph

search method employed in this study for the parallel

implementation of the produced routing tables. However, any

graph search method is suitable. Furthermore, to break down

the problem, the RSA Task Scheduler algorithm employed in

Fig. 3 is responsible for dividing the problem into chucks each

contains several tasks. The main purpose of this study is to

distribute the RSA implementation across different

architectures to measure the performance, for this reason the

chunks will execute on different architecture after ensuring

that this architecture will process the chunks in reasonable

time and less than processing all chunks on the fastest

architecture available.

TABLE VI. Tasks assigned to architectures based on speed

Platform
CPU

Ratio %

CUDA

Ratio %

MIC

Ratio %

Result

(Seconds)

1 Regular Node +

1 CUDA + 1 MIC
18.41865 58.66036 22.92099 13657

2 Regular Node +
1 CUDA + 1 MIC

31.10769 49.53642 19.3559 11496

4 Regular Node +

1 CUDA + 1 MIC
47.45365 37.783 14.76336 8768

8 Regular Node +
1 CUDA + 1 MIC

64.36415 25.62364 10.0122 5946

Fig. 3. RSATaskScheduler Pseudo Code

 International Journal of Scientific Engineering and Science
Volume 4, Issue 1, pp. 20-24, 2020. ISSN (Online): 2456-7361

23

http://ijses.com/

All rights reserved

Both Fig. 4 and Fig. 5 illustrates the pseudo code for

OpenMP and MPI implementations respectively in the first

architecture CPU. In Fig. 4, RSA_OMP will take subset of

routing tables from start to end and executes in parallel to

calculate the score for each. At the end, the maximum score

and the best routing table will be returned. RSA_MPI pseudo

code presents the division of the search space across the

available MPI ranks and find both mpistart and mpiend. Each

rank in MPI will use procedure RSA_OMP to perform the

search on its subplace.

Fig. 6 and Fig. 7 show the pseudo codes that related to the

second architecture GPU which uses CUDA. In Fig. 6,

RSA_GPU is the host side for CUDA implementation whereas

Fig. 7 shows the actual kernel implementation in RSAKernel.

The host module calculates the number of CUDA blocks and

assigns the suitable number of threads per block [10].

The final architecture to study in the research is the MIC

and Fig. 8 presents the pseudo code for RSA_MIC and it is

similar to previous code in MPI and OpenMP.

Fig. 4. OpenMP implementation for RSA

1.

2.

3.

4.

5.

6.

7.

8.

9.

10. S)

16.

17.

Fig. 5. MPI implementation for RSA

Fig. 6. GPU implementation for RSA

1
2
3
4
5
6
7.
8.
9.

Fig. 7. RSA Kernel implementation for RSA

1.
2.
3.
4.

5.
6.
7.

8.
9.

10.
11.
12.

13.
14.
15.
16.
17.
18.

Fig. 8. Pseudo code for MIC implementation for RSA

VI. CONCLUSION

Heterogeneous architectures can be used to significantly

enhance and speed up the run time of computationally

intensive problems with proper scheduling strategy and

suitable parallel computing paradigms. Having equivalent or

at least a comparable number of different architectures can

result in a tangible speedup. Future work may include

studying different intelligent algorithms for scheduling and

distributing highly computationally algorithm on different

architectures to increase the performance. Another research

direction could investigate is the power consumption and the

 International Journal of Scientific Engineering and Science
Volume 4, Issue 1, pp. 20-24, 2020. ISSN (Online): 2456-7361

24

http://ijses.com/

All rights reserved

effective algorithms that could reduce the power consumption

and maintain the performance and Quality of Service (QoS) in

general.

ACKNOWLEDGMENT

The simulations in this work were performed at King

Abdulaziz University’s High Performance Computing Center

(Aziz Supercomputer) (http://hpc.kau.edu.sa).

REFERENCES

[1] F. Shirin Abkenar and A. Ghaffarpour Rahbar, “Study and Analysis of
Routing and Spectrum Allocation (RSA) and Routing, Modulation and

Spectrum Allocation (RMSA) Algorithms in Elastic Optical Networks

(EONs),” Opt. Switch. Netw., vol. 23, pp. 5–39, Jan. 2017.

[2] J. Simmons, Optical network design and planning. Springer

International Publishing, 2014.

[3] Y. Hadhbi, H. Kerivin, and A. Wagler, “A novel integer linear
programming model for routing and spectrum assignment in optical

networks,” in 2019 Federated Conference on Computer Science and

Information Systems (FedCSIS), 2019, pp. 127–134.
[4] Y. Wang, X. Cao, and Y. Pan, “A study of the routing and spectrum

allocation in spectrum-sliced Elastic Optical Path networks,” in 2011

Proceedings IEEE INFOCOM, 2011, pp. 1503–1511.

[5] H. Alizadeh Ghazijahani, H. Seyedarabi, J. Musevi Niya, and N.-M.
Cheung, “Optimized Routing and Spectrum Assignment for Video

Communication over an Elastic Optical Network,” arXiv Prepr.

arXiv1909.06536, 2019.
[6] L. F. Delvalle, E. Alfonzo, and D. Pinto-Roa, EONS: An online RSA

simulator for elastic optical networks. 2016.

[7] I. Olszewski, “Routing and Spectrum Assignment in Spectrum Flexible
Transparent Optical Networks BT - Image Processing and

Communications Challenges 5,” 2014, pp. 407–417.

[8] M. Fayez, I. Katib, G. N. Rouskas, T. F. Gharib, H. Khaleed, and H. M.
Faheem, “Recursive algorithm for selecting optimum routing tables to

solve offline routing and spectrum assignment problem,” Ain Shams

Eng. J., Nov. 2019.
[9] F. Lezama, G. Castañón, A. M. Sarmiento, and I. B. Martins,

“Differential evolution optimization applied to the routing and spectrum

allocation problem in flexgrid optical networks,” Photonic Netw.
Commun., vol. 31, no. 1, pp. 129–146, 2016.

[10] N. A. H. M. Faheem, B. Koenig-Riez, Mahmoud Fayez, Iyad Katib,

“Solving the Motif Finding Problem on a Heterogeneous Cluster using
CPUs GPUs and MIC Architectures,” Math. Comput. Sci. Ind., pp. 226–

232, 2015.

[11] H. Faheem and B. König-Ries, “A New Scheduling Strategy for Solving
the Motif Finding Problem on Heterogeneous Architectures,” Int. J.

Comput. Appl., vol. 101, pp. 27–31, Sep. 2014.

