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Abstract—The dynamics of the newly chaotic pulse oscillator, driven by an external periodic signal voltage is strongly investigated. This 

particular forced oscillator has broad range applications in electronic and telecommunication, such as the generation of trains of regular and 

chaotic pulses. Although regular pulses are useful for the modulation of signals, the chaotic one can be used for the signal masking and 

modulations. Based on the appropriate selection of the state variables, a mathematical model is derived for the analytical description of the 

system’s dynamics. This mathematical model is used to seek the equilibrium points and study their stabilities. Applying next the two parameters 

perturbation methods, the periodic solution is found and proved to be sensitive to nonlinearity parameter and the external signal voltage’s 

amplitude. Through numerical investigations, the route to chaos by the periodic doubling is observed, as well as other complex behavior such as 

the generation of pulse like signals. In order to verify theoretical and numerical studies, Pspice simulations and real experiments are performed 

and compared, showing a very good agreement between theory and experiments. 

 

Keywords— Non-autonomous oscillator; period-doubling, train of regular pulse; train of chaotic pulse. 

 

I. INTRODUCTION  

Since the famous discovery of soliton by John Scott Russell 

and the modeling of its mathematical expressions, as well as 

equation admitting it as solution, namely the Korteweg-de 

Vries (KdV), the sine Gordon and the nonlinear Schrödinger 

equations, many researches have been devoted to its potential 

applications in several physical branches and more precisely 

in optical [1,2] and electronic [3,4] communications. In 

communication systems, one usually uses high frequency 

pulses signal as a carrier to modulate the information to be 

transmitted in the form of modulated impulses [5], leading to 

the fact that the transmitted information usually isn’t secured 

to pirate access. To solve this problem, the chaotic systems 

have been introduced and proved to be adequate tools in 

secured communication. 

Recently, the transmission of information via chaotic 

carriers had been proved to be a significant application in 

telecommunication technology and have received particular 

attention [6]. Due to the intention to have information which 

can be the most secure, several kinds of chaos have been 

experimented, going to simply chaos to hyper-chaos among 

others [7-9]. It has been proved that each kind of chaos can 

only be generated by a specific type of oscillator, being it 

autonomous or driven. Although certain cases of autonomous 

oscillators, such as the Colpits, Lorentz and Chua oscillators, 

have been proved to have riches dynamical behaviors, the 

driven cases of these oscillators are richer than the 

autonomous one [10] and this, because of the fact that the time 

dependency of the driven signal voltage introduces one more 

degree of freedom in the system. 

Particularly, some oscillators like the Duffing one can't 

generate signals without being driven. The particularity of the 

Duffing type chaotic oscillator is that oscillations vanish when 

the driven signal voltage is removed or not chosen 

condemnably, which is a serious problem. This is why in order 

solve this problem, A. Tamasevicius and coworkers [11] have 

built its autonomous version, named autonomous Duffing-

Holmes (ADH) Type Chaotic Oscillator, which is able to 

generate chaotic or regular oscillations without being driven. 

According the equation obtained by analyzing this ADH 

chaotic oscillator as we shall see in present paper, the obtained 

Duffing-Holmes equation, which is the autonomous version of 

the Duffing equation contains terms of third order time 

derivative, which is known as the Jerk equation [12]. The 

query here is what would be the behavior of the driven case of 

this new version of ADH chaotic oscillator? One may wonder 

if this system driven by an external periodic signal voltage can 

generate chaotic pulses or impulses, useful in communication 

to propagate secured signals, which does not need to combine 

both chaotic circuits and pulse generator. 

This is why in the present paper we have considered the 

driven version of this ADH chaotic oscillator, and emphasize 

some of its behaviors, which can't be obtained with the 

autonomous one. Thus the paper is organized as follow: In 

Section 2 we present the circuit under consideration, and 

derive its equations of state. Next in Section 3, we seek the 

equilibrium points and we study theirs stabilities criteria, 
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following by the analytical investigation of the periodic 

solution of the system equation through the two parameters 

perturbations method [13]. Next in Section 4, we use 

numerical methods to find the parameters ranges leading to the 

chaotic behavior of the system. Finally, Pspice simulations 

and real experiments are performed in Section 5 in order to 

confirm the validity of analytical and numerical investigations.  

II. CIRCUIT DESCRIPTION AND STATE EQUATION  

2.1. Circuit Description 

We consider here the autonomous nonlinear oscillator 

proposed more recently by A Tamasevicius and coworkers 

[12] experimenting the autonomous version of the Duffing-

Holmes type chaotic oscillator, but which is driven by an 

external sinusoidal signal voltage as depicted in Fig. 1. This 

oscillator contains three different stages, each containing the 

operational amplifiers OA1, OA2 and OA3. The first stage 

containing , the pair of diodes (D1 and D2), the resistors 

R, R1, R2 and R3, the inductor with inductance L. This pair of 

diodes is responsible of the nonlinear character of the 

oscillator under consideration and is governed by the 

following current voltage characteristic equation: 

 

 
Fig. 1. Circuit diagram of the Duffing-Holmes chaotic pulse oscillator, driven 

by the low frequency signal generator Vg. 

 

d
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Which is derived from the Shottky diode equation [6]. Where 

 is the saturation current of the junction,  the voltage 

difference across this pair of diode and  is the thermal 

voltage. This thermal voltage is proportional to absolute 

temperature and takes the value 26mV at room temperature, 

that is at 293K, while , with 1 <  < 2 is the ideality factor 

of the diode. The operational amplifier  contains in its 

negative loop the resistor  and the capacitor , which 

assume the connection between the two first’s stages, and in 

the positive, the supplied sinusoidal signal voltage generator 

with the voltage gV  related to time  as: 

0      ( )gV V cos t  (2) 

0V being the amplitude and   the driven signal angular 

frequency. This external signal voltage, we shall see 

introduces new phenomenon in the system as compared to 

previous works. OA3 contains in negative loop the resistors Ri, 

with 5, ,8i   , and the capacitor C1. In order to simplify our 

studies, all operational amplifiers are supposed to be ideal 

(meaning that they operate in their linear regions), that is 

       0V V   . 

Unlike many other chaotic circuits, the components values 

are not critical, and the circuit described here was constructed 

in real experiments as shown in Fig. 2, with the following 

arbitrary values of electronic components: 

 1 2 3 4 5R 30k ,    R 100 10k   tuneable ,   R   30k ,  R  820   ,R 75k     Ω Ω Ω Ω Ω Ω  

5 6 7 8 1R 75k ,  R R   10k ,R    20k ,   R  20 ,  C   20nF,L  19mH,      Ω Ω Ω Ω  

C  470nF.  (3) 

The nonlinear diode used is the D1N4148 model with the 

characteristics is: η 1.9 , VT 6mV  and Is  2.682 nA . 

2.2 Equation of state and dynamics. 

The Kirchhoff's laws applied to the oscillator shown in 

Fig. 1 lead to the following set of nonlinear ordinary 

differential equations governing the dynamics of the system: 
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 (4) 

where  is the voltage difference across the capacitor C1, 

while iL is the current flowing through the linear inductor. The 

voltage difference Vd  across the pair of nonlinear diode is 

related to the voltage difference Vc across the capacitor C as: 

3     – c d gV V R id V   (5) 

 
Fig. 2. left: Photograph of the experimental circuit consisting of: (1) An 

oscilloscope necessary to visualize signals, (2) The low frequency signal 

generator used to force the oscillator, (3) A source of operational amplifiers 
polarizations, and (4) the corresponding oscillator’s circuit depicted in Fig.1, 

which is zoomed in the right.  

 

It is convenient, accounting to (1) to rewrite equation (4) in 

the simplest dimensionless form as: 
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  (6) 

where by the dots, we mean the differentiation with respect to 

the dimensionless time τ, and where we have introduced the 

following dimensionless variables: 

d C1 L
ref T,       

ref ref ref 

V V ρi
x  ,  y ,       z    ,    V   V t   τ LC

 V V V
      (7) 
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
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 (8) 

Equation (6) can be rearranged to give the following form 

of forced Jerk differential equation: 
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It is obvious that the set of Eq.(6) is invariant under the 

transformation : ( ;  ;  , )  ( ;  ;  , / Ω)x y z x y z       . Therefore, if 

( ( );  ( );  ( ))x y z   is a solution of the set of Eq.(6) for a special set 

of parameters, then ( ( / Ω);  ( / Ω);   ( / Ω)) x y z            is also 

a solution for the same parameters set. 

 

 

III. ANALYTICAL ANALYSIS OF THE SYSTEM’S DYNAMICS 

3.1 Equilibrium Points 

The set of Eq. (6) can be seen as the forced Jerk equation, 

used to model the forced Tamasevicius circuit given by Fig. 1. 

In contrast to the unforced cases, Eq.(6) is non-autonomous, 

that is, time  explicitly appears in the equation in the  cos τΩ  

and  sin τΩ  terms. The phase plane is no longer a suitable 

arena in which to investigate this equation since the vector 

field at a given point changes in time, allowing a trajectory to 

return to that point and intersect itself. The system may be 

made autonomous, however, by increasing its dimension by 

one as follows: 
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with  Ω . This system of four first order ordinary 

differential equation is defined on a phase space with topology 
3    R S , where the circle S comes from the fact that the vector 

field of (13) is 2π-periodic in  . A convenient scheme for 

viewing this four-dimensional flow in three dimensions is by 

way of a Poincare map M. This map is generated by the flow’s 

intersection with a surface of section Σ which may be taken as 

Σ:   = 0 (mod 2π). The Poincare map M : Σ → Σ is defined as 

follows: Let P be a point on Σ, and using it as an initial 

condition for the flow (13), let the resulting trajectory evolves 

in time until   = 2π, that is until it once again intersects Σ, 

this time at some point Q. Then M maps P to Q. Note that a 

fixed point of the Poincare map corresponds to a 2π-periodic 

motion of the flow.  Solving then the system equation (13) 
˙ ˙ ˙

(x y z 0)     for   = 0 (mod 2π) leads the following solutions 

which is the equilibrium point  0 0 0x , y ,z of the system given 

by: 
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where λ is the solution of the following equation: 
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From where it appears that when 1    with 

   0 3 1 5 8 2 0 3 / p             Eq.(15) admits only one 

solution and as a consequence, the system admits one 

equilibrium point: 

However, if σ>1 one has by setting: 
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The following set of situations: 
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 If F < 0, then Eq. (15) admits three solutions (as illustrated 

by Fig. 3), and then three equilibrium points.  
 Otherwise, that is when 0F   Eq. (15) admits only one 

equilibrium point. 

 

 
Fig. 2. (a) Solution of Eq. (15), (b) plot of F given by (16), for the varying value of parameter p, and for the parameters chosen as: 

0 1 2 3 5 7 84,  1             , and 
0 0.5A   It is obvious that this equation admits three solutions for F<0 and only one for F>0.  

 

3.2 Stability of Equilibrium Points. 

Physically, a steady state solution corresponds to an 

equilibrium state of the system and the behavior of the system 

may depend on its stability. To test this stability for 

0(  2 )mod  , let us consider the state 
0E   E  δE   vector, 

where E E(x,  y,  z) and 
1 1 1δE(x ,   y ,   z )  is the perturbation of the 

equilibrium solution  0 0 0 0E x , y ,z . Thus we obtain the 

following system equation: 
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which leads to the following 3× 3 Jacobean matrix: 
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Thus the Jacobean matrix evaluated at the equilibrium 

point E0 satisfies the following characteristic equation: 
3 2

0 1 2λ P λ Pλ P 0     (19) 

with: 
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P pcosh
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 

 (20) 

According to the Routh-Hurwitz criterion, all roots of 

Eq.(19) would have negative real parts if the following 

constraints are satisfied 
0 1 20,  0,  0P P P   , and 

0 1 2 0P P P  . 

These criteria are plotted in Fig.(4) for parameters chosen as in 

Fig.(3), from where it appears that all these parameters are 

positive for  belonging to interval [0.161, 1.14], leading each 

equilibrium point 
0 0 0 (x , y ,z )E  to be stable saddle focus. 

Physically, this result supports the fact that the oscillator can 

oscillate chaotically and admits the existence of stable fixed 

point motion in the system. 

3.3 Weak Amplitude Oscillations in the System. 

In order to approximate the solution of the system 

governed by Eq.(6), let us consider the ordinary  

differential Eq.(9), in which the following change of variables 

is taking into account:  

2 1 0 0 0 2 1 11,   , ,  ,d a b d p P d D        , which leads Eq.(8) 

to: 
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Fig. 4. (a) Parameters of the characteristic equation, (b) Plot of 

0 1 2P P P , for the varying value of parameter p, and for the parameters chosen in Fig. (3).  
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   2

2 3 0      A cos τP   ΩΩ

 (21) 

In the follow, we use a perturbation method to investigate 

the dynamics of Eq.(21) for small values of . The idea of the 

method is that the expected form of solution involves two time 

scales: the fast time scale of the periodic motion itself Ω   , 

and a slower time scale which represents the approach to the 

periodic motion   . In order to substitute these definitions 

into the forced Eq. (21), we need expressions for the first, 

second and third derivatives of x with respect to . We obtain 

these by using the chain rule: 
2 2 2

2

2 2
 Ω ,   Ω 2 Ω ,

dx d

d d

 
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d

d   

 
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  
 (22) 

Substituting (22) into (21) gives the following partial 

differential equation: 
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Next we expand x and Ω in power series: 

0 1 1,  Ω 1x x x k       (24) 

Substituting (24) into (23) and neglecting terms of O(ϵ
2
), 

gives, after collecting terms: 

 At order , one has 
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 However, the order  yields: 
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Equation (25) admits the general solution in the form: 

     0 0, exp ( )cos( ) ( )sin( )x A a B C            (27) 

Note here that the constants of integration A, B and C are 

in fact arbitrary functions of slow time   since (23) is a 

partial differential equation. Substituting (27) into (26) we 

obtain an equation containing resonant terms (that is terms 

proportional to  0exp a ξ ,     cos ξ andsin ξ   and also non 

resonant terms. We require the coefficients of resonant terms 

to vanish, the well-known secularity condition, giving the 

following slow flow: 
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  0 1 2 2 3 02 P ε ε Ac k       (30) 

Equilibrium points of the slow flow (28-30) correspond to 

periodic motions of the forced Eq.(9), to be determined by 

setting ,  ,   
A B C

and
  

  

  
to zero. Equation (28) leads to the trivial 

solution 0, A  while the set of equation (29) and (30) lead to 

the following solution: 
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where 2 2 2R B C  . Squaring the top of (31) and adding it to 

the square of the bottom gives: 
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This equation is solved numerically to give the result plotted 

in Figs. 5, 6 and 7, for the set of parameters: 
1 22 0.5   , 

3 0.6702  , 
0 5.6109,  a   

0 1.4868,  c   
0 4.9891,  d   

1 0.4,k   

1 30.55,a   
1 0.05D  . As one can see from these figures, Eq.(33) 

admits one or three real solutions according to the chosen 

values of P, A0 and . From (26) and (31), the stationary 

periodic solution of Eq.(9) can be approximated as: 
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 (34) 

 

 

 
Fig. 5. Amplitude  2 2R B C   obtained by solving the polynomial Eq. (33) for varying values of P and for: (a): 0 10,A   (b): 0 5A  , (c): 0 2A  , and (d): 

0 0.5A  . 
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Fig. 6. Amplitude  2 2R B C   obtained by solving the polynomial Eq. (33) for varying values of A0 and for: (a): 20,P   and (b): 15P  . 

 

From these obvious results, it appears that the dynamics of the 

oscillator studied in the present paper may be improved by an 

appropriate choice of the nonlinearity coefficient , 

introduced by the pair of nonlinear diodes, the amplitude  

of the driven signal voltage and the tuning parameter .  

 

 
Fig. 7. Amplitude  2 2R B C   obtained by solving the polynomial Eq. (33) for varying values of  and for 

0 5A  : (a):  2P  , and (b):  20P  . 

 

IV. NUMERICAL STUDY  

4.1. Preliminary: Numerical Methods. 

To explore the dynamics of the oscillator studied in present 

paper, the system Eq.(6) is numerically integrated using the 

differential transform method [14], with the time grid always 

kept, τ 0.001  . The computations were performed out using 

the values of electronic components given in (3), which leads 

to the following parameters values: 
3 3 3

1 3 4 56.7020.1O ,   6.7020.1O ,  0.245,  2.6808.1O          

2

6 7 2.0106.1O ,     2 5

8 01.0053.10 ,   10.O530,   p 2.18.1O      

ρ 201.0610, ε   40,   (35) 

while and are chosen as the tuning parameters.  For 

each set of parameters, the set of Eq.(6) is integrated for a 

sufficiently long time and the transient is discarded. Various 

bifurcation diagrams, combined with the corresponding graphs 

of the maximum Lyapunov exponent are plotted to define the 

type of transition leading to chaos in the system. The 

bifurcation diagrams are obtained by plotting the local 

maxima of states variables in terms of the bifurcation control 

parameter . The Lyapunov exponent in this part helps to 

distinguish the regular oscillations characterized by the 

negative exponent and chaotic behaviors marked by the 

positive ones.  

4.2. Routes to Chaos. 

To investigate the sensitivity of the system with respect to 

a single parameter , we fix 2.3,Ω  
0    0.05 V   and vary  in 

the range
20.01 γ 2  . It appears when increasing  as 

illustrated in Fig.(8.a) that, the system undergoes a Hopf 

bifurcation giving rise to a stable period-1 limit cycle. Further 

increasing , this period-1 limit cycle converts to a chaotic 

band attractor via a period doubling bifurcation. The graph of 

maximum Lyapunov exponents is depicted in Fig.(8.b) which 

shows a very good coincidence with the bifurcation one. In 

particular, bands of chaos characterized by positive values the 

maximum Lyapunov exponents can easily be identified in 

these graphs. 

It is obvious as evidence in Figs. (9-11) that the oscillator 

studied here is also sensitive to the parameter . These 

figures which show new phenomena such as the bubbles 

bifurcation (as shown in Figs. (9) and (10)) leading to chaotic 

behaviors (see Fig.(11)). 
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Fig. 8. (a) Bifurcation diagram, and (b) corresponding Lyapunov exponent, obtained by using the values of parameters (35), with 

4   1  .1  . 

 
Fig. 9. (a) Bifurcation diagram in the form of Bubble, and (b) corresponding Lyapunov exponent, obtained by using the values of parameters (35), with 

4    0.82  . 

 

 
Fig. 10. (a) Bifurcation diagram in the form Bubble, obtained by using the values of parameters (35), with 

4    0.84  , showing the periodic doubling of that given 

in Fig.(9), and (b) corresponding Lyapunov exponent 

 
Fig. 11. (a) Bifurcation diagram, and (b) corresponding Lyapunov exponent, obtained by using the values of parameters (35), with 4   1  .8  . The chaotic windows 

can easily be seen. 
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4.3. Others Behavior of System: Generation of Train of 

Regular and Chaotic Pulses. 

To prove the validity of the present studies and that the 

forced oscillator depicted in Fig.1 can generate chaotic pulses, 

the sample phase portraits shown in Fig.12d, with 

corresponding time traces in Fig.12a, and computed for  

2 0.55   and 
4   1  .1  , shows three equilibrium points and 

trajectories starting at the equilibrium point zero and end at the 

same equilibrium point, the well-known homoclinic orbit 

corresponding to pulse signal. As 
2 0.55   belong to chaotic 

window, the corresponding signals generated here are chaotic 

like pulses. Next, by choosing the tuning parameters in regular 

band as sketched in Figs.(13-15), one obtains the generation of 

regular pulses and impulses signals. 

V. PSPICE SIMULATIONS AND EXPERIMENTAL STUDIES  

5.1. Pspice simulations. 

Circuit simulation packages such as Pspice have become 

adequate tools for dynamical simulation of nonlinear circuits. 

Taking full advantage of this simulation software, we have 

made simulations with the aim of confirmation of the validity 

numerical approach. Based on the theoretical analysis 

presented above, realistic Pspice simulations of the system 

shown in fig. 1 are simulated, in order to validate the 

mathematical model proposed in this work. With a worry to 

generate trains of regular and chaotic pulses, several 

simulations are made. Thus, Figs. 12-b and  13.b expresses the 

chaotic behavior of the system, while Figs. 14-b, 15-b and 16-

b show the time dependent signal voltage, leading to the 

generation of regular pulses, agreeing the results of numerical 

investigations. By conveniently choosing the values of the 

components, one can also have the scenario of impulse 

generation (identical to modulated signals), as shown in 

Fig.(16). 

 

 
Fig. 12. Time dependent signal voltage obtained (a) numerically, (b) by pspice simulation, and (c) experimentally. While (d) is the phase space trajectory in (x - y) 

plane, obtained numerically for 2    360R  Ω , leading to 2 0.55   and 4   1  .1  . 

 
Fig. 13. Time dependent signal voltage obtained: (a) numerically (b) by Pspice simulation, (c) experimentally and with 2   1  .5R k Ω , leading to 2 0.13   

and 4   0.11  . As on can see, the system exhibits chaotic pulse like behavior. 
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Fig. 14. Time dependent signal voltage obtained: (a) numerically (b) by Pspice simulation, (c) experimentally and with 

2    6 ,R k Ω  leading to 
2 0.03   and 

4   1.5  . As on can see, the system exhibits regular pulse like behavior. 

 

 
Fig. 15. Time dependent signal voltage obtained: (a) numerically (b) by Pspice simulation, (c) experimentally and with 

2    7.5 ,R k Ω  leading to 
2 0.02   and 

4   0.92  . As on can see, the system exhibits regular pulse like behavior.  

 

 
Fig. 16. (a) Time dependent signal voltage obtained: (a) numerically (b) by Pspice simulation, (c) experimentally and with 2   1  .3 ,R k Ω  leading to 2 0.15   and 

4   1.6  . As on can see, the system exhibits regular impulses like behavior.  

 

5.2 Experimental checking. 

The photograph of the circuit used in our experiments is 

illustrated in Fig. (2). The experimental results are obtained by 

observing as a function of time the voltages across the 

capacitor (C1), As in the case of numerical and PSPICE 

simulations, the oscillator’s dynamics changes substantially 

when the resistor R2 is monitored. This is clearly demonstrated 

by the experimental results depicted in Figures (12.c) to 

(16.c), showing the real behavior of the oscillator under 

investigation in the present work. The experimental results 

were generally close to those obtained from the theoretical and 

numerical methods, and a very good qualitative agreement is 

obtained while comparing the experimental values of the 

control parameter R2 with those of numerical and PSPICE 

simulations.  

VI. CONCLUSION  

In this paper, we have studied the possible generation of 

the pulse signals using an electrical circuit conveniently built, 
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driven by a low frequency signal voltage generator. After 

deriving the set of nonlinear ordinary differential equations 

describing the dynamical behavior the model, we have used 

them to find the equilibrium points and next analyze their 

stabilities. By using the same set of equations, and via the two 

parameters approximation method, the analytical periodic 

solution have been approximated and proved to be sensitive to 

the variations of the nonlinearity coefficient and the amplitude 

of the driven signal voltage. Next in the first intention to 

confirm the validity of our analytical findings, numerical 

investigations were performed, showing new behaviors, not 

observed analytically, namely the system bifurcation and its 

evolution to chaos as well as the bubble bifurcation which 

does not reach to chaos, obtained just by varying the value of 

the resistor R2 chosen as the tuning component. This choice 

being attributed to the fact that nonlinear diode parameter is 

not easily tunable experimentally. For certain values of 

parameters, some special kind of signals in the form of pulses 

and impulses, useful in communication for signal process had 

been generated, which was evidenced through the phase space 

plot showing trajectories that start and end at the same fixed 

point, the well-known homoclinic orbits. Next, Pspice 

simulations as well as real experiments have been used to 

confirm both analytical and numerical results, and the 

obtained results appeared to be in good agreement for all 

investigations. In our future works, we will explore in detail a 

possible application of the circuit to synchronization and 

secured communication. 
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