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Abstract— A few number of variants of Navier-Stokes equations and their higher order generalizations are derived to describe the two way
propagation of small amplitude, wavelength, gravity waves on the surface of water in a canal. These systems are also seen to model the
propagation of long-crested waves on large lakes or the ocean and in other contexts. Depending on linearized terms and positing a solution of
the form e the wave frequency is formulated in terms of wave number. Finally, the phase speed has been established with viscous term for
long wavelength where the first three terms correspond to the expansion of the full linearized dispersion relation.
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. INTRODUCTION

In many field and laboratory studies and in engineering applications, the full Navier-Stokes equations appear complex situation
for modeling at hand and consequently there have appeared many approximate models applying to restricted physical regimes. In
the 1870s, Boussinesq derived some model evolution equations which are applicable in principle to describe motions that are
sensibly two dimensional and which have the form of a perturbation of the one dimensional wave equation. J. L. Bona et al. [1]
derived four parameter family of Boussinesq systems from the two dimensional Euler equations for free surface flow and
formulate criteria to help decide which of these equations one might choose in a given modeling situation. J. L. Bona et al. [2]
also established the first order correct models that are linearly well posed are in fact locally nonlinearly well posed. J. L. Bona and
M. Chen [3] studied the systems which describes approximately the two dimensional propagation of surface waves in a uniform
horizontal channel of length filled with an irrotational, incompressible, inviscid fluid. A. Ouahsine et al. [4] studied an innovative
approach based on the finite elements method is presented to improve the dispersion relation. F. Marche [5] studied the derivation
with asymptotic analysis of two dimensional viscous shallow water model in rotating framework with irregular topography, linear
and quadratic bottom terms and capillary effects considering the three dimensional Navier-Stokes equations with a free moving
surface boundary condition and hydrostatic approximation. D. Dutykh and F. Dias [6] showed how to express the vertical
component of the velocity only in terms of the potential and free surface elevation. D. Dutykh [7] analysed dispersion relation
properties of proposed models and also presented some computations with viscous Boussinesq equations solved by a Fourier type
spectral method. R. Barros et al. [8] derived an approximate multidimensional model of dispersive waves propagating in two
layer fluid with free surface and also introduced the notion of generalized vorticity and derived analogues of integrals of motion,
such as Bernoulli integrals, which are well known in ideal Fluid Mechanics. J. L. Bona et al. [9] obtained new nonlinear systems
describing the interaction of long water waves in both two and three dimensions. T. H. C. Herbers et al. [10] examined the
nonlinear dispersion of random directionally spread surface gravity waves in shallow water with Boussinesq theory. Y. A. Li et al.
[11] described a pseudo-spectral numerical method to solve the systems of one dimensional evolution equations for free surface
waves in a homogeneous layer of an ideal fluid. P. L. —F. Liu and A. Orfila [12] derived sets of depth-integrated continuity and
momentum equations for transient long wave propagation with viscous effects using a perturbation approach and the Boussinesq
approximation. V. Duchene [13] derived asymptotic models for the propagation of two and three dimensional gravity waves at the
free surface and the interface between two layers of immiscible fluids of different densities over an uneven bottom. D. Lannes
[14] described the motion of the free surface and the evolution of the velocity field of a layer of perfect, incompressible,
irrotational fluid under the influence of gravity for an ideal liquid of water wave problem. D. Bresch and B. Desjardins [15]
constructed approximate solutions for the two dimensional viscous shallow water model and for compressible Navier-Stokes
models. M. Chen et al. [16] investigated a water wave model with a nonlocal viscous term and the decay rate of solutions
theoretically and numerically. J. L. Bona and H. Chen [17] derived various model equations considering a body of water of finite
depth under the influence of gravity bounded below by a flat, impermeable surface. They [17] ignored viscous and surface tension
effects and assumed that the flow is incompressible and irrotational where the fluid motion is governed by the Euler equations
together with suitable boundary conditions on the rigid surface and on the air-water interface. In this paper, we formulate the
wave frequency in terms of wave number depending on linearized terms and positing a solution of the form ® _ 4 octablish

the phase speed with viscous term for long wavelength.

Il.  FORMULATION

Let Q, be the domain in R® which is occupied by viscous, incompressible fluid at time t. The system describing the motion of
such a fluid is the Navier-Stokes equation
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p(E— + (\_/.V)\_/j =F-Vp+uV°yv,in Q, (1)

and

V.\_/=0 , in Qt 2

where y=uf+vj+wk is the fluid velocity, I, j, K are the unit vectors along the X, Yy, and z axis respectively, in

R3,E is the body forces (per unit volume) acting on the fluid, p is the fluid density, p is the forcing pressure on the free
surface and g is the fluid viscosity.

Under the assumption of incompressible and irrotational flow, the water wave motion is described by the velocity potential
¢(X, y,z,t) and the free surface water elevation 77(X, y,t), F =—pg, where Qis the gravitational acceleration and

g= (0,0, g). For irrotational flow, V xV =0, where V=V ¢, for some potential ¢ = ¢(X, Y, Z,t) . Then it satisfies the
Laplace equation

Vi=p,+¢,+¢,=0at—h<z<p ©)
Again, Eq.(1) can be written as

p[ﬁ (Vo)+ (ww)wj =—pgk —Vp+uv*(Vg)
j( V¢V)V¢jdr __[(—ngZ—Vp+/N2(V¢))dr
—Id¢ + J-(V¢.V)V¢.dr =—Qz— 1J‘dp + UIVZ(V¢)jr , where £ _ b is kinematic viscosity.
ot P p
%+J'(V¢.V)V¢.dr - gz P atz=p )
ot p

Here, (V4.V )V ¢ = %v.(w)2 ~Vpx(VxVe) ==V.(Vo)

1 1
(Vv IVdr =2 [V(Ve).dr =5<w>2 ©)
Substituting this value in Eq. (4), we have
6¢ 1 ) 2 _
(V¢) 0z +uvVg, atz=n (6)
a P
Also the kinematic free surface boundary condition is
77t+¢x77x+¢y77y_¢z :O' atz:’? (7)

On the fixed portion of the boundary, condition of impermeability is
v.n =0, n being the normal direction of the surface.

o.h, +(/ﬁyhy +¢,=0, atz=-h (8)

Suppose the bottom of the channel be flat and horizon and let h denote the depth of the liquid in its undisturbed state. Then
Egs. (3), (6), (7), and (8) can be written as

o +¢,=0 at—-h<z<n
¢, =0, atz=-h
n+en, —¢ =0 atz=nand 9)

& +%(¢X2 +¢22)+ 9z=v(p, +¢,) at z=n, onthefreesurface p=0

In dimensionless form, the above variables are as follows:
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:Ix,z:h(z —1),77:a77 ,t:—,¢:u,a:—,ﬂ: , U= a,b’colu (10)
Co Co h 1°
where C, =,/gh . So Eq. (9) becomes
po v +¢ 7 =0at0<z <l+an (11)
¢ =0 (12)
* * * 1 * * *
ne+oadn s —E¢ s =0,atz =1+an (13)
and
“+o +1a 2 1— =afv’| @ +l ! atz =l+an (14)
N roap 2/3(” Pt 50 | n

The velocity potential ¢(X Z t) is assumed analytic and we can expand it in power series with respect to the vertical coordinates,

#(x,2,t) Zf (x,t)" (15)

Substituting thls value in Eq. (11) and dropping asterisk, we have,
(m+2m+2)f, ,(x,t)=—B(f,(x1)),. for m=012.............. (16)
Let F =4, (X t) denotes the velocity potential at the bottom Z =0 and using Eq. (16) repeatedly, we have
2

£ ()= C é)kf 0 aF gi‘ Y k=012
Also Eq. (12) implies that fl(X,t)z 0, andso

fr (1) =0,k =012 corrrrrerne. ,

Hence,

th=i /5’ 0" F(x,t) ac

2k
k=0 OX .
= 2 a F 4 _
Substituting this value in Eqs. (13) and (14) and dropping asterisk we obtain,
© (_1)k ﬂk 62k+lF(X,t) 2k aZk+2F(X t) st
7, +0”7><§ (2k)‘ 8X2k+1 +z Zk 1)| aX2k+2 (l+ 0[7]) =0. (18)
and
2
e (—1)k lBk 62k+1F(X,t) 2k 1 0 (_1)k ﬂk 62k+1F(X,t) o
! > 1
77+k§ 2 o (L+an)” +Za kz:(; GO 50 (1+an)
2
w (_ IB 62k+2F Xt .
{z‘; 2I<)+1 aXZkEZ )(1+a77)2k1 (19)
0 ﬁ aZk+2F Xt © ﬂ aZk+4F Xt N
LZ) g 5X2k£2 e A 2k)+2 aXZkEA Jaramy |

The parameters o and f have the same small order while F and 77have been scaled so that they and their partial

derivatives are of order one keeping only the terms of Egs. (18) and (19) which are the lowest order, then the system becomes
2

0°F .
7, +W:termsma,ﬂ
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oF .
+— =terms IN«,
T+ B

Differentiating the second equation with respect to X and conadermgi— :u(x,t), the scaled horizontal velocity at the
X

bottom of the channel, the above two equations become

n, +u, =termsing, (20)
n,+u, =termsine, (21)
When the terms of formal order «, /3 are ignored, then from Egs. (20) and (21), we have

u, +u, =0 (22)

Which is simply the linear wave equation.
All the terms in Egs. (18) and (19) are at most linear in o Or 8 taking next order of approximation .Then the system
becomes

2 2 4
,7t+a . +0”7X8_F+ 6 F —lﬂa = quadratic terms in «, S
OX OX
3
+8_F_£ 82F +g[8_l:j = quadratic terms in «, 8
ot 2oxot 2\ ox

Differentiating the second equation with respect to X and using % =u (x,t) , we have from the above two equations

n, +Uu, +anu+anu, — %,BuXXX = quadratic terms in «,

(22)
,B . .
n, +u, — 5 —u,, +auu, = quadratic terms in «,
For the second order case, Egs. (18) and (19) can be rewritten as
oF BO°F) O°F poF p* 0
+an,| —-= + l+an)-=—;1+3 —cublc terms in «,
g "*(ax 2 o ] o L am)—g e Lesan+ o d
3 3 2 A5 2?2 2
+@_ﬁaf 1+ 2am)+ (aFj ﬂﬁFaF +ﬂ_a4|: L1 af —aﬂuaf
ot 2 ox°ot 2 1 ox ox ox® 24 ox"ot 2 OX OX
= cubic terms in «, S
Again, differentiating the second equation with respect to X and using % = u(x,t) , we have
1 1 B . .
n,+Uu, +anu —Eaﬂnxuxx +anu, —gﬁu -= ﬁnuxxX +70u = cubic terms in «, (23)

2
nx+ut—§um—aﬂnum—aﬂnxuxt+auux—a—2ﬂuu +a—ﬂuu +ﬂ—uxxm—aﬂuu

2 24 *(24)

=cubic termsin «,
For undisturbed surface, the depth is (l— Q)h below where 0< & <1.When 8 =0, it leads to W=U, the horizontal
velocity at the bottom. A formal use of Taylor’s formula with remainder shows and using Eq. (17 ), we get

1 an , 0'F Lo
It ) =F——fB—— 272"+ — B —— 7" — e,
#(x,2,t) = > B /3 —

(9P = B B 4 3
..w_(axla_a S O 470" F +o(s°)
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2
W:u—gﬁzuXX +%494uXXXX +0(ﬂ3) as f#—0 andusing % =F, =u(xt).

By using Fourier transform of a function W of the special variable X is

W(k)= Te“kxw(x)jx { f(k) = Te_ikx f (x)jx} = _]ie”‘x {u(x)—gé’zuXX (x)+ﬂ—2¢9“uXXXX (x)+0(p° )}dx

41
(Lo Lo ol

o
as f# — 0. Thus there appears the relationship

) -1
.-.n(k):[1+§02k2+ﬁ 94k4j W+o(,6’3) :[1—%,80%2+2—iﬂ294k4}vv+o(ﬁ3)

u= w+% pO*W,, +2—54 B0*w,,, +0(A°) (25)
Substituting this value in Egs. (23) and (24), we have
n, +W +ﬁ[392 LD, v alw), + Laplor —1imw,,), + = p2leoz -1 w

t X 2 6 XXX X 2 XX /X 24 5 XXXXX (26)

= cubic terms in «, S
and
n, +W, + %,B(HZ —1)vvxxt +OWW, — affW,, — afin, W, + %aﬂ(&z —1)vvww + %aﬂ(@z +1)\waXX
(27)

5
+ —_

24

Other system of equations correct to second order in ¢, 5 can be obtained using the lower order approximations. Keeping all
the terms in Egs. (26) and (27) quadratic in &, /3 to the right hand side, we have

ﬂz(ez —1{92 —%]wm —afow, =cubic terms in a,f

7AW, +ﬂ@ VG —%jww +a(nw) = quadratic terms in &, (28)
and

n, +W, +%,8(92 —1w,, +oww, = quadratic terms in «, (29)

xXxt
Differentiating Eq. (28) twice with respect to X, we have

1 1

Wy = Ty _ﬂ(E 0* —EJWXXXXX —alnw),, +quadratic terms in «,

Now, let A € R, we get
PWoyy, = AW + (1= 1) W, = ABW,, +(1—/1)ﬁ{—77m _ﬂ[%ez _%j W, —oz(;yw)XXX +cubic terms in a,ﬂ}

2(1,, 1
= ﬂﬂwxxx _(1_/1)ﬂ77xxt _(1_2’)ﬁ [50 _E

Neglecting higher order terms,
(1-2)pw,, =—(1-1)Bn,, +quadratic terms in o, B
o W, =—pn,,. +quadratic terms in «,
Therefore,
LW, o, = —B°1, -+ CUDIC terms in «, B
Thus we may write

]Wxxxxx —aff(1-2)(nw),  +cubic terms in «, 8
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LW, = BPAW, o — (L= 4B + CUbiC terms in a,

Similarly, differentiate Eq. (29) twice with respect to X, we have
1 . .
W, =77, — Eﬂ(ez — 1, +a(ww, ), +quadratic terms in o, 3

Now, let 1 € R, we get

PW,, = (1_ﬂ)ﬂwxxt +/uﬂNxxt
= (1_/'1)ﬁ{_ Nox — 5 ( 1)‘Nxxxxt +CUbIC terms in a, ﬂ}"i_;uﬁ’wxxt

_(1_:u)/877xxx +:up\Nxxt _E(l_ﬂ)ﬂz(ez _1)Wxxxxt +(1—/J)O{ﬁ(WWX )xx +cubic terms in OC,ﬁ

Again, neglecting higher order terms,
A— )pw,, = —@Q— 1)B7,,. +quadratic terms in o, 3

= pw,,, = —Ln,., +quadratic terms in o, S
Also, we may write

LW, o = — 777,00 +CUbIC terms in «, 3

and

/8 XXXXt ﬂ ALW,xxt /82 (1_ /Lll)77xxxxx+ cubic terms in «, ,8
Hence, Eqgs. (26) and (27), we have

 +W, + 0‘(77W) ;(02 __j}“ﬂwxxx (92 _%j(l ﬂ“)ﬂ|:_ 7t _ﬁ(lez _EJWxxxxx _a(nw)xxx:|

2 6
+%aﬂ(82 _lXU\Nxx )x +%(02 _%j ﬂz/llwxxxxx _%(02 _%j (1_11)ﬁ277xxxxt = cubic terms in a!ﬂ
and
x TWe+— ( _1X1 ( ):uﬂl: Mo _716(62 1)‘Nxxxxt )xj|+aWWx +aﬂ(7777xx)x +;0[ﬂ(62 _1)‘NWxxx

+= a,b’(ez +1}/\/XwXX +—(92 1{92 —5j/>’2ylwm —254(492 —1{«92 _;jﬂz(l_:ul)ﬂxxxxx —apfuw, =cubic terms in o, B

Neglectmg cubic terms in ¢, [, we get

1
 — bﬁnxxt + blﬂznxxxxt = _Wx -« (UW)X - aﬁwxxx + baﬁ(ﬂw)m - [a +b— §jaﬂ(nwxx )x

(30)
_alﬂzwxxxxx
and
V\It_dﬂwxxt+dﬁ oot x_Cﬁnxxx_awwx_Caﬂ(wwx)xx_aﬁ(nnxx)x+aﬁ(c+d)wwxxx (31)
+apf(c+d —1)WW, —C B, + ABOW,,
where,
1 1 1 1 1
«92——/1 b= 0> —= 1—1,02—1—92 and d ==(0% -1 u—
a=3(0* -3 Jub=3(07 -3 Ji-2e=20-07) (* -1)u
1 1) 5 1)’
a=—>|0*-=|1-A)+—|9*-=
' 4( :J( ) 24( 5)’11
5 (2 1Y (1
bl__ﬂ(g 5) (1-4),
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5 1
=—(1-6*)| 0*-=|(1-
&=l )[ 5)( 1)

d, =—%(02 —1)2 y+%(92 —1)[92 —%)M
Now the change of variables are

1 1 1
X=p2Rt=p02t,n=a'n, wW=a*'Wand v=a 'S 20
In the new variables, Egs.(30) and (31) can be rewritten as

0!; ﬁf - 0!71 bﬂﬁxxf a 1:8 1 sssst __0!; 3 ( ) _aﬂ +b 73 aﬂ(ﬁw)xxx
B? BB? ﬂﬂz B? B? ﬂﬂz BB?
_2 —
1 aﬁ[a +b— %j(ﬁvvxx )x - al/BZ a—lwxxxxx
BB B
R ~n R ~n 1) .. R
—b7 Mg T+ b177>2>2>z>zf =—W; — (77W)x — AW + b(77W)xxx - (a +b— gj(ﬂvvxx )x — & Woess (32)
and similarly
— AWy + A\ Wypoe = —77; — Clgee — ( )XX (ﬁﬁkx )X + (C +d )VAWAVM 33)

+(C+d _1)W>*< o2 — Cillzazzs + OWyg
To determine the wave frequency in terms of wave number depending on linearized terms and positing a solution of the form
e'(kx’“‘), we have from Eq.(32),
—iw—bik’w—-bjik*w = —ik +iak® —ia k®
1-ak? +ak”
1+bk? +bk*
and similarly from Eq.(33),
1-vik —ck® +ck*
w(k)=k - 1
1+dk® +dk
o (k) = Loake +akt (| 1-vik—ck?+ck®) (1-ak? +ak*)(1-vik —ck® +ck*)
1+bk? +bk* 1+dk® +d,k* (1+bk? +bk*)(1+dk* +dk*)
Hence the phase speed with viscous term for long wave length is
(k)= o’ (k) (L—ak? +ak* J1—vik —ck? +ck*)

= (k) =k

k? (L+bk? +bk* 1+ dk? +d,k*)
—1-vifk—(a+b+d)k* +(a, +ab+ad —b, —bd — d, +b? + 2bd + d2 k° | (a+b+c+dK?
+(a, +ac+c +ab+ad +be+cd b, —bd —d, +b” + 2bd +d” k*
_[alc+acl+a1b+abc+bc1+a1d+acd+cld—ab1—abd—ad1—blc—bcd—cd1+b1d+bd1+ab2 JGJF )
+2abd +ad? +b”c+ 2bed + cd 2 — 2bb, — 2b*d — 2bd, — 2b,d — 2bd? - 2dd, +b°® +3b%d +30bd? +d°
s c2(k)=1-vifk—(a+b+d )k +fa, +ha+b+d)+ad —b, —d, +d?k* |- (a+b+c+dk?
+fa, +ac+c +bla+h+c+d)+ad+cd by —d, +d* k!
_[—bl(a+b+c+d)—dl(a+b+c+d)+b2(a+b+c+d)+d2(a+b+c+d)]k6+O(k7)
+bd(a+c)+ach+d)-bb, —dd, +a,(b+c+d)+c,(a+b+d)
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1(2
k—=|=- 0% k*
(2 wrue)
! (21— 204 +304% =541, )+10(- 3+ 21 — 6% + 31, 9 .
120| +5(5+ 6% 5, )"
1 |(51+ A+ A, +15u 154, )— (67 +131 +134, +1054 —105., )9* k6+o{(k)7}
720 +5(1+114 +114, + 331 — 33y, )0* + T5(1— A — A, — g1+ 1, )6°
+2(<) = P il f (1, OK° + 94,1, OK® 4 (R A, a1, 0, 0K + O |
Where
1(2
f(,0)=-=| = - 0 |,
(1,0) 2(3 o+ j

9w, 11,,0) = %[(21—20y+30,u2 51, )+10(= 3+ 24— 647 + 311, )07 +5(5+ 6> —511, 0" |

1 [(51+/1 + A, +152—154,)— (67 +134 +134, +1052: —1054, )9?

h(2, Ay, s 1, 0) = ———
' 720| +5(1+114 +114, + 331 — 334, )0* +75(1— A — A, — g+ 11, )0°
From Eqg. (34), it is seen that the first three terms which are independent of parameters
0,4, A, u, p, correspond to the expansion of the full linearized dispersion relation of the Navier-Stokes equations.

Stk 2y
30 15

(34)

I1l.  RESULTS AND DISCUSSIONS

Neglecting imaginary and higher order terms in equation (34), we obtain the following figure 1. It is obvious that the phase
velocity is the wave of a single wavelength. This figure also represents a wave of a single wavelength of small surface elevation
and small amplitude.

2.5

1.5

phase velocity

n

O r r r r
-4 -3 -2 -1 (] 1 2 3 4

)
Fig. 1. Phase velocity

IV. CONCLUSION

Waves on the surface of an ideal fluid are governed by the Navier-Stokes equations in the canal from which a few number of
mathematical models for irrotational, viscous and incompressible flow are created. Expanding velocity potential in power series
with respect to the vertical coordinates, odd terms have been rejected. Using scaled horizontal velocity at the bottom of the
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channel, linear wave equation is formulated. Also using linearized term in the higher order generalization of Navier-Stokes
equations and positing a solution of the form e ™", the wave frequency has been derived. Then phase speed for small wave
number is also established where the first three terms defines the full linearized dispersion relation and other terms are due to
viscous force.
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