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Abstract— A few number of variants of Navier-Stokes equations and their higher order generalizations are derived to describe the two way 

propagation of small amplitude, wavelength, gravity waves on the surface of water in a canal. These systems are also seen to model the 

propagation of long-crested waves on large lakes or the ocean and in other contexts. Depending on linearized terms and positing a solution of 

the form ei(kx-wt), the wave frequency is formulated in terms of wave number. Finally, the phase speed has been established with viscous term for 

long wavelength where the first three terms correspond to the expansion of the full linearized dispersion relation. 
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I. INTRODUCTION  

In many field and laboratory studies and in engineering applications, the full Navier-Stokes equations appear complex situation 

for modeling at hand and consequently there have appeared many approximate models applying to restricted physical regimes. In 

the 1870s, Boussinesq derived some model evolution equations which are applicable in principle to describe motions that are 

sensibly two dimensional and which have the form of a perturbation of the one dimensional wave equation. J. L. Bona et al. [1] 

derived four parameter family of Boussinesq systems from the two dimensional Euler equations for free surface flow and 

formulate criteria to help decide which of these equations one might choose in a given modeling situation. J. L. Bona et al. [2] 

also established the first order correct models that are linearly well posed are in fact locally nonlinearly well posed. J. L. Bona and 

M. Chen [3] studied the systems which describes approximately the two dimensional propagation of surface waves in a uniform 

horizontal channel of length filled with an irrotational, incompressible, inviscid fluid. A. Ouahsine et al. [4] studied an innovative 

approach based on the finite elements method is presented to improve the dispersion relation. F. Marche [5] studied the derivation 

with asymptotic analysis of two dimensional viscous shallow water model in rotating framework with irregular topography, linear 

and quadratic bottom terms and capillary effects considering the three dimensional Navier-Stokes equations with a free moving 

surface boundary condition and hydrostatic approximation. D. Dutykh and F. Dias [6] showed how to express the vertical 

component of the velocity only in terms of the potential and free surface elevation. D. Dutykh [7] analysed dispersion relation 

properties of proposed models and also presented some computations with viscous Boussinesq equations solved by a Fourier type 

spectral method. R. Barros et al. [8] derived an approximate multidimensional model of dispersive waves propagating in  two 

layer fluid with free surface and also introduced the notion of generalized vorticity and derived analogues of integrals of motion, 

such as Bernoulli integrals, which are well known in ideal Fluid Mechanics. J. L. Bona et al. [9] obtained new nonlinear systems 

describing the interaction of long water waves in both two and three dimensions. T. H. C. Herbers et al. [10] examined the 

nonlinear dispersion of random directionally spread surface gravity waves in shallow water with Boussinesq theory. Y. A. Li et al. 

[11] described a pseudo-spectral numerical method to solve the systems of one dimensional evolution equations for free surface 

waves in a homogeneous layer of an ideal fluid. P. L. –F. Liu and A. Orfila [12] derived sets of depth-integrated continuity and 

momentum equations for transient long wave propagation with viscous effects using a perturbation approach and the Boussinesq 

approximation. V. Duchene [13] derived asymptotic models for the propagation of two and three dimensional gravity waves at the 

free surface and the interface between two layers of immiscible fluids of different densities over an uneven bottom. D. Lannes 

[14] described the motion of the free surface and the evolution of the velocity field of a layer of perfect, incompressible, 

irrotational fluid under the influence of gravity for an ideal liquid of water wave problem. D. Bresch and B. Desjardins [15] 

constructed approximate solutions for the two dimensional viscous shallow water model and for compressible Navier-Stokes 

models. M. Chen et al. [16] investigated a water wave model with a nonlocal viscous term and the decay rate of solutions 

theoretically and numerically. J. L. Bona and H. Chen [17] derived various model equations considering a body of water of finite 

depth under the influence of gravity bounded below by a flat, impermeable surface. They [17] ignored viscous and surface tension 

effects and assumed that the flow is incompressible and irrotational where the fluid motion is governed by the Euler equations 

together with suitable boundary conditions on the rigid surface and on the air-water interface. In this paper, we formulate the 

wave frequency in terms of wave number depending on linearized terms and positing a solution of the form e
i(kx-wt)

 and establish 

the phase speed with viscous term for long wavelength. 

II. FORMULATION  

Let 
t  be the domain in R

3
 which is occupied by viscous, incompressible fluid at time t. The system describing the motion of 

such a fluid is the Navier-Stokes equation 
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where kwjviuv ˆˆˆ 
 
is the fluid velocity, kji ˆ,ˆ,ˆ  are the unit vectors along the zandyx ,,  axis respectively, in 

3R , F is the body forces (per unit volume) acting on the fluid,  is the fluid density, p is the forcing pressure on the free 

surface and  is the fluid viscosity.       

Under the assumption of incompressible and irrotational flow, the water wave motion is described by the velocity potential 

 tzyx ,,,  and the free surface water elevation  tyx ,, , gF  , where g is the gravitational acceleration and 

 gg ,0,0 . For irrotational flow, 0 v , where v , for some potential  tzyx ,,,   . Then it satisfies the 

Laplace equation  
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Substituting this value in Eq. (4), we have  
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Also the kinematic free surface boundary condition is 

       zatzyyxxt ,0   (7) 

On the fixed portion of the boundary, condition of impermeability is 

0. nv , n  being the normal direction of the surface.  

hzathh zyyxx  ,0   (8) 

Suppose the bottom of the channel be flat and horizon and let h  denote the depth of the liquid in its undisturbed state. Then 

Eqs. (3), (6), (7), and (8) can be written as  
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In dimensionless form, the above variables are as follows: 
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where ghc 0 . So Eq. (9) becomes 
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The velocity potential  tzx ,,  is assumed analytic and we can expand it in power series with respect to the vertical coordinates,  
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Substituting this value in Eq. (11) and dropping asterisk, we have, 
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Let  txF ,0  denotes the velocity potential at the bottom 0z  and using Eq. (16) repeatedly, we have 
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Also Eq. (12) implies that   0,1 txf ,  and so 
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Substituting this value in Eqs. (13) and (14) and dropping asterisk, we obtain, 
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The parameters  and  have the same small order while andF have been scaled so that they and their partial 

derivatives are of order one keeping only the terms of Eqs. (18) and (19) which are the lowest order, then the system becomes 
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Differentiating the second equation with respect to x  and considering  ,
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bottom of the channel, the above two equations become 
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When the terms of formal order  ,  are ignored, then from Eqs. (20) and (21), we have 
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Which is simply the linear wave equation. 

All the terms in Eqs. (18) and (19) are at most linear in  or  taking next order of approximation .Then the  system 
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For the second order case, Eqs. (18) and (19) can be rewritten as 
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as 0 . Thus there appears the relationship   
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Substituting this value in Eqs. (23) and (24), we have  
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and 
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Other system of equations correct to second order in  ,  can be obtained using the lower order approximations. Keeping all 

the terms in Eqs. (26) and (27) quadratic in  , to the right hand side, we have 
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Differentiating Eq. (28) twice with respect to x , we have 
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Neglecting higher order terms,  
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Therefore,  
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Thus we may write 
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Similarly, differentiate Eq. (29) twice with respect to x , we have 
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Again, neglecting higher order terms, 
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Hence, Eqs. (26) and  (27), we have 
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Neglecting cubic terms in  , , we get 
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Now the change of variables are 
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In the new variables, Eqs.(30) and (31) can be rewritten as 
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To determine the wave frequency in terms of wave number depending on linearized terms and positing a solution of the form 
 tkxie 

, we have from Eq.(32), 
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and similarly from Eq.(33), 
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Hence the phase speed with viscous term for long wave length is   
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  (34) 
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From Eq. (34), it is seen that the first three terms which are independent of parameters 

 11 ,,,, 
 
correspond to the expansion of the full linearized dispersion relation of the Navier-Stokes equations. 

III. RESULTS AND DISCUSSIONS  

Neglecting imaginary and higher order terms in equation (34), we obtain the following figure 1. It is obvious that the phase 

velocity is the wave of a single wavelength. This figure also represents a wave of a single wavelength of small surface elevation 

and small amplitude. 
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Fig. 1. Phase velocity 

IV. CONCLUSION  

Waves on the surface of an ideal fluid are governed by the Navier-Stokes equations in the canal from which a few number of 

mathematical models for irrotational, viscous and incompressible flow are created. Expanding velocity potential in power series 

with respect to the vertical coordinates, odd terms have been rejected. Using scaled horizontal velocity at the bottom of the 
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channel, linear wave equation is formulated. Also using linearized term in the higher order generalization of Navier-Stokes 

equations and positing a solution of the form e
i(kx-wt)

, the wave frequency has been derived. Then phase speed for small wave 

number is also established where the first three terms defines the full linearized dispersion relation and other terms are due to 

viscous force. 
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