
 International Journal of Scientific Engineering and Science
Volume 1, Issue 12, pp. 69-73, 2018. ISSN (Online): 2456-7361

69

http://ijses.com/

All rights reserved

Software Test Case Optimization Using Genetic

Algorithm

Sandeep Goyal, Pranmohan Mishra, Amrit Lamichhane, Dr. Parul Gandhi
Faculty of Computer Applications, Manav Rachna International Institute of Research and Studies, Faridabad

Abstract— Testing is work escalated and tedious process. Testing can be completed in two ways either manually or automatically. Tester

conducts the testing process with the assistance of different accessible automated testing tools and strategies. Testing software is essentially the

way toward recognizing an arrangement of information which fulfils the criteria set for testing. Test data generation is the way of collecting the

data which meet the testing criterion. Parts of research have been finished by numerous specialists and they created many test data generator

e.g. random test data generators, symbolic test data generators and dynamic test. This paper presents the streamlining investigation of the

experiment age in light of the Genetic Algorithm and produces test cases which are significantly more reliable. This paper stresses on

generation of test case using genetic algorithm. Genetic algorithm is the adaptation technology of their own. The purpose of the research paper

is to implement the genetic algorithms to reduce the test cases and reduce cost, time and effort to give good quality software.

Keywords— Software testing, genetic algorithm, test data, selection, mutation, crossover.

I. INTRODUCTION

Several approaches were proposed for the test case generation,

mainly random, path-oriented, goal oriented and some

intelligent approach. Random techniques find the test cases

based on assumption made about the fault distribution [1].

Path-oriented technique is usually used to control the flow of

information so that the cases of testing of these paths can be

covered and can be generated. These techniques have been

further classified as static and dynamic. Static techniques are

often based on

Symbolic execution, while dynamic technique requires

data for executing the program under test. Goal-oriented

techniques cover the cases of test covering a selected goal

such as a statement, branch or path taken. Intelligent

techniques or automated test depends on complex computes to

test case generation cases. The objective of the test is to

discover the errors in the software and the process executed

with the intention of finding errors. If the errors are not

recognized by the test, it means that test case set is not

adequate. Activities are carried out to evaluate and verify

properties of a program to check whether it meets the

necessary results or not. Detection of failure is a challenging

task using limited resources. It is easy to recognize the

mistakes in the software because it is said that the software is

not continuous, therefore test the boundary values in the

Border Value Analysis or by using the criteria such as Path

coverage and are not adequate to ensure correctness and

exhausting testing is ineffective [5]. The programs are more

complicated due to the dynamic nature, if a failure occurs

during the initial test and the code changes, the behavior of the

software which was previously passed, is not guaranteed at

pre-error testing cases. Therefore the test should restart.

Software is now being used in critical situations where failure

is only inconvenient, from the perspective of software

development organization, resulting in defects products result

in loss of goodwill. Thus, the only option to do this is the first

time before product is shipped to customer.

In this paper, we present the results of our research into the

application of GA search approach, to make the hand wet on

genetic algorithm by solving general numerical problem. The

paper is structured in the following way: section IV describe

basic structure of genetic algorithm, in section V, VI we

discussed use of proposed algorithm in different testing

methodology and in section VII describe use of GA in

numerical domain.

II. SIGNIFICANCE OF AUTOMATED TESTING

Software systems should be reliable, available, and secure

and to secure these objectives techniques are being used to

avoid mistake, fault tolerance, defect, and theft of mistake etc.

Fault detection is an integral part of the testing. it is usually

done for the following purposes: (a) Quality assurance, (b) for

verification and verification (V & V): Test V & V process is

used as a tool. Tester can claim based on the tester

explanations the result of the test is whether the product works

under some conditions or not. Test with the purpose of

verifying product tasks is called clean test. The deficiencies

are that they can only validate that software works for

specified test cases. A finite number of tests cannot be verified

that the software works for all situations. On the contrary, only

one failed test is enough to show that software does not work

to see dirty test tests. The goal of dirty test is breaking down

the software and software must possess the adequate handling

capabilities to avoid a significant level of dirty tests. For

Reliability Assessment: Software Reliability [10] has

important connection with many aspects of the software.

The structure, and the amount of testing is based on an

operating profile (Estimate of relative frequency of different

usage Input) for the program, tests can serve as one of the

statistical sampling method for failure data for reliability

estimation. That is why the test is important activity in

software development but this is a time consumption process

and sometimes consuming more over 50% of the total efforts

required for development. The cost of software testing can be

very low If the test process is automated

 International Journal of Scientific Engineering and Science
Volume 1, Issue 12, pp. 69-73, 2018. ISSN (Online): 2456-7361

70

http://ijses.com/

All rights reserved

III. NEED FOR GA IN SOFTWARE TESTING

The Demerits of Manual Testing-

Operation speed is limited because it is done by humans.

Cost, high investment in case of time

Limited availability of resources

Duplicacy in test cases

Check out unskilled and wrong examination

Merits of Genetic Algorithms in Software Testing-

Parallelism is an important feature of genetic testing

During operation, there is less chance of trapping in the

extreme code of a test because it is running in a search space.

With the same encoding, only the problem needs to be

changed according to change.

IV. GENETIC ALGORITHM

GAs was created by John Holland and his understudies and

partners at the College of Michigan [2]. Genetic Algorithm

replicates the process of evolution to take care of the issue of

software test case optimization. GA run all the more

productively for the not having any positive strategy and

restricted time stamp.GA may not be the best technique for

any task yet strong and pretty much appropriate for more

intricate optimization task. It is particularly most appropriate

for high power computerized computing. The calculation

starts with a pool or populace of conceivable answer for a

given issue these arrangements at that point experience change

like in nature for delivering new kids or arrangement. The

process is iterated over different ages. The chromosome (i.e.

the GUI control in our application) is assigned to a particular

value called (fitness value). The chromosomes with higher

fitness values are given extreme priority to mate to deliver the

fitter chromosome or streamline arrangement. In this way we

continues adjusting, altering and choosing others to the

process until the point when we achieve the final solution. It is

regularly used to discover ideal solution or close ideal answer

for the complex issue which generally would take the long

time surpassing the assessed time period. GA gets better

solution when we have the large search space i.e. noisy

environment and applicable in various domains such as

control, robotics, signal processing, game playing, scheduling,

design etc. It is valuable when we have expansive search space

(substantial no of solution) including extensive number of

parameter. Conventional strategies are too expensive

regarding processing time. Genetic Algorithm is one of the

cases of counterfeit wise calculation that tries to locate the

best answer for a particular problem domain. Manual testing is

too moderate and costly on account of human association for

age of experiments. So it was a sole requirement for any

product improvement association to discover ideal method for

producing the experiments. Therefore automated testing

techniques were presented, for example, Genetic Algorithm,

Ant bee colony optimization, swarm optimization, these

algorithm produces the test case consequently guaranteeing

that the experiment are not repetitive, utilizing the ideal time

and spending plan.

4.1 Algorithmic Paradigm used for Genetic Algorithm

Firstly, we select the parents out of initial population for

mating. Mutation and crossover operation is carried out among

two parents to get new offspring with the help of mutation or

cross over operator [3]. The new offspring replace the

individual population in the sample and repeats until the final

solution is reached.

Genetic algorithm follows the following steps to solve any

problem.

Step 1. Initialize the sample population consisting finite no. of

chromosome

Step 2. Calculate the fitness value (adaptability to a problem)

of each chromosome using objective function (constraints to

reach the optimum solution)

Step 3. Select the fitter chromosome for further iteration

Step 4. Crossover

Step 5. Mutation

Step 6.Repeat the step 2 to 5 until the final criterion is met or

optimal solution is obtained

Step 7. Best solution is found.

Fig. 1. Diagrammatic representation of genetic algorithm.

4.2 Process of Genetic Algorithm

The first decision that must be taken before executing the

genetic algorithm is representation of solution [4]. The

representations which are not good to the solution drive the

GA to poor execution. In this way we have to pick proper

representation of solution regarding issue having appropriate

mapping capacity amongst genotype and phenotype.

4.2.1 Population initialization

Populations are initialized using these techniques. In

random initialization, we take initial population as the

completely random solutions. In Heuristic initialization we

take the initial population based on the known heuristic

techniques for problem.

It has been observed that the initial population taken on the

basis of heuristic technique result in population having same

solution with less diversity. Thus experiment conducted with

random sample lead to the most optimal solution.

4.2.2 Fitness function calculation

Fitness function basically computes of likelihood of

specific being chosen out of population. It analyses the degree

of fitness of a particular solution with respect to problem in

consideration. GA repeatedly calculates the fitness of a

solution in multiple iteration. Therefore it should be

sufficiently fast otherwise it makes the testing process

exceptionally slow

 International Journal of Scientific Engineering and Science
Volume 1, Issue 12, pp. 69-73, 2018. ISSN (Online): 2456-7361

71

http://ijses.com/

All rights reserved

4.2.3 Parent determination

Parent determination is the significant movement in the

GA as choice of good parent for mating to create new

offspring drive to better solution. Be that as it may, it is not

considered effective to select the greatly fit arrangement as it

will prompt the arrangements which are near each other in this

way prompting the loss of decent variety.

4.2.4 Crossover

Crossover is the process of producing a new offspring by

taking more than one parent. New child inherits the genetic

material or feature of parents indulging in crossover process.

One point cross over random point is taken and tails of two

parents are swapped to get new offspring. Multipoint

crossover two alternating segment of parents are swapped to

get new offspring. Uniform crossover, it is based on gene level

cross over from their parent chromosome rather than segment

level as in one point and two point crossover. Mixing ratio is

0.5, thus each child contains the half of the genes from first

parent and remaining from second parent although points can

be randomly chosen.

4.2.5 Mutation

Mutation is defined as slight change in chromosome to get

a new solution. It alters a one or more genes from initial

chromosome to find new solution. The resultant solution can

be entirely different from previous one or may be identical to

some extent. It helps to maintain diversity in solution and is

applied with low probability.

It is based on the concept of exploring the search domain. It

has been concluded that it converge the solution to desired one

while crossover not.

4.2.6 Stopping condition

Termination conditions in GA specify the stopping criteria

after the desired solution is obtained in few numbers of

iterations. Termination condition in GA can occur because of

the following reasons:

a) Finite number of generation

b) Estimated time frame is completed

c) Estimated budget and allocated resource is reached

d) Most optimized solution is obtained

e) Iteration are not producing better result

V. WHITE BOX TESTING USING GENETIC ALGORITHMS

White box testing checks the internal structure of the

program. The tester works with code, loop and condition

statement. In some research works, code coverage and data

flow testing are discussed using the genetic algorithm.

5.1 Path Testing

Ranjan Shrivastav and Tai-Hun Kim [6] worked on the

technique to test data generation using genetic algorithms.

This weighted CFG uses the path to find all possible paths in

the program to find test errors. If the program does not have

any of the loops, then there is an infinite number of paths in it.

Here, a large number of test cases need to be included in every

way. This is the reason that NP can be a complete problem by

covering all possible paths in the test. Our algorithm works on

the control flow graph (CFG). CFG operates on the

independent route for the new set of statements or conditions.

During the testing, every independent path should come at

least once. Keshavraj and Raza Javidan, worked on path tests

using genetic algorithms. In the Path Testing, we deal with it

to draw program control flow graphs. During the test, we will

have to consider the following parameters for the performance

of the path-

1. Need to cover each independent route.

2. The time of the investigation is not more than the scheduled

time.

The main purpose is to test the path using the genetic

algorithm software quality control. Poonam Saini, Sanjay

Tyagi [7], worked on test data generation in path tests using

genetic algorithms. In software testing, testing cases or testing

data is a more important aspect to manually test effectively.

The time consuming process of test data generation is

compared to the automatic test date generation. Due to the

effort and time-consuming process, software testing is a

customization problem, therefore, the optimization technique

is used to create the appropriate data for the genetic algorithm,

the methods were covered in each every independent path in

control flow graph of control flow graph.

5.2 Data Flow Testing

Mohaheb R. Chiragis [8] worked on automated test data

generation on data flow testing using genetic algorithms.

Genetic algorithm accepts the defuse path of the program for

testing. Defuse path defines the number of input variables, and

their definitions, and the use of each input variable as well; it

analyzes the population size, crossover and the possibility of

mutation. Here, find the number of test cases for a defuse path

to perform data flow testing. Algorithm has an integer vector

that records the difference in each defuse path. The initial

value of the integer vector is zero. It uses calculations or as a

counter to check the effectiveness of the current population

VI. BLACK BOX TESTING USING GENETIC ALGORITHMS

Black Box testing, this tests the software and software

performance, software specifications and user requirements. In

some research, the functional testing and regression testing are

discussed using genetic algorithms.

6.1 Functional Testing

Shay Eyal, and Abraham Kandel [9] worked on the

implementation of evolutionary techniques to improve the

effectiveness of the test cases. The cases of "poor" testing

should be abolished and cases of "good" testing are evaluated

to test. In functional testing, we check the functionality of the

software generated in the genetic algorithm regarding

randomization cases and numerical values in relation to the

population. Then find the values of the fitness function to find

the number of errors to test the cases. "Good" populations act

as test cases while others end. In this way, test sets regard the

set of cases as priority. In this way population or test case is

generated in few number of iteration. Consequently, functional

testing using genetic algorithm expected to reveal the fault

exposing test cases.

 International Journal of Scientific Engineering and Science
Volume 1, Issue 12, pp. 69-73, 2018. ISSN (Online): 2456-7361

72

http://ijses.com/

All rights reserved

VII. GENERATION OF TEST DATA USING GENETIC

ALGORITHMIC APPROACH

Here is the simple example of genetic algorithm to

maximize the following function

F(x) =x
3
over the range of integer 0 to 15.

We are representing x with four bit unsigned binary bits

because binary string of four bit can represent 16 number and

GA work well with binary representation

F(x) is the function which calculates the fitness of each

individual

Firstly we take the four randomly generated solutions as:

1001,0110,1010,0100

For evaluating the fitness of each solution, first we decode

the binary representation into integer as:

1001 9, 1010 10, 0100 4, 0110 6

According to objective function f(x) =x
3

9 729, 6 216, 10 1000, 4 64

Sting no.
Initial

population

X

value

Fitness

value
Probability

Expected

count

N*prob(i)

1 1001 9 729 0.36 1.44

2 1010 10 1000 0.50 2

3 0100 4 64 0.03 0.06

4 0110 6 216 0.11 0.44

Total 2009 1 3.94

Average 502.25 0.25 0.99

Maximum 1000 0.50 2

Thus string number 2 has maximum chance of selection.

We divide the range into 4 bins, sized according to relative

fitness of solution.

String Probability Associate bin

1001 0.36 0…0.36

1010 0.50 0.36…0.86

0100 0.03 0.86…..0.89

0110 0.11 0.89……1

By generating four uniform random number between 0 to 1

we choose the string for next generation after observing which

bin they fall into

Random Bin Chosen String

0.20 0…0.36 1001

0.40 0.36…0.86 1010

0.60 0.36…0.86 1010

0.93 0.89……1 0110

Random number generator determines the pair of string for

us to mate.

For the first pair of string:

We select the cross over point after the third digit which

yields new offspring as:

1001 1000

1010 1011

For second pair of string:

We select the crossover point after the first two bit in the

string and yields new offspring as:

1010 0110

0110 1010

In next iteration we again calculate the fitness of

population

Sting no.
Initial

population

X

value

Fitness

value
Probability

Expected

count

N*prob(i)

1 1000 8 512 0.17 0.68

2 1011 11 1331 0.44 1.76

3 0110 6 216 0.07 0.28

4 1010 10 1000 0.33 1.32

Total 3059 1 1.04

Average 764.75 0.25 1.01

Maximum 1331 0.44 1.76

Total fitness has gone from 2009 to 3059 in a single

generation. Hence we can find the optimized solution in few

generations if we repeat the same process mentioned earlier.

Because the algorithm has already come up with the solution

i.e 1011(x=11) as possible solution.

VIII. CONCLUSION

Testing is the way toward approving the client requisite. It

expends one third of the product development life cycle and

moderately exorbitant and imperative than different process of

software development life cycle. As, it is impossible to test the

software extensively with manual testing, in this paper we

have examined the how evolutionary process is useful in

software testing. GA operates on large search space choosing

the best out of numerous solutions. It also shows how GA

adjusts them to any condition to think of better solution. GA

can be connected to extensive number of problems like n-

queens problem, travelling salesman problem etc. to generate

optimal solution. GA has made major headways in the field of

software testing for the age of experiments conceivable

because of which we can find out the ideal solution which is

exhibited by taking most modest number of framework in this

paper for producing experiments. In this paper basic numerical

problem is unraveled with. This shows how efficient it is for

generation of test data in each generation. This will definitely

pave the way the way for further work in this area.

ACKNOWLEDGEMENT

We are highly indebted to Dr. Parul Gandhi and Dr.

Prasenjit Banerjee for their constant support and guidance

under which this work has been possible.

REFERENCES

[1] Kulvinder Singh, Iqbal Kaur, and Rakesh Kumar, “Automatic test case
generation using genetic algorithm with antirandom population,”

International Journal of Advanced Computer Engineering, vol. 5, issue

1, pp. 21-27, 2012.
[2] Fundamental of Genetic algorithm: RC Chakrabarty,

www.myreaders.info

[3] Benjamin J. Lynch, Optimizing with Genetics Algorithm, 2006.

 International Journal of Scientific Engineering and Science
Volume 1, Issue 12, pp. 69-73, 2018. ISSN (Online): 2456-7361

73

http://ijses.com/

All rights reserved

[4] https://www.tutorialspoint.com/genetic_algorithms/index.htm
[5] Software Engineering and Testing by K.K Agrawal and Nasib Singh

[6] Praveen Ranjan Srivastava and Tai-hoon Kim, “Application of genetic

algorithm in software testing,” International Journal of Software
Engineering and Its Applications, vol. 3, issue 4, pp. 87-96, 2009.

[7] Poonam Saini and Sanjay Tyagi, “Test data generation for basis path

testing using genetic algorithm and clonal selection algorithm,”
International Journal of Science and Research (IJSR), vol. 3 issue 6, pp.

2319-7064, 2014.

[8] Moheb R. Girgis, “Automatic test data generation for data flow testing,
using a genetic algorithm,” Journal of Universal Computer Science, vol.

11, Issue 6, pp. 898-915, 2005

[9] Mark Last, Shay Eyal, and Abraham Kandel, “Effective Black-Box
Testing with Genetic Algorithms,” Department of Computer Science and

Engineering, Ben-Gurion University of the Negev, BeerSheva, Israel,

2005.
[10] R. L. Michael, Handbook of Software Reliability Engineering, McGraw-

Hill Publishing, ISBN 0-07-039400-8, 1995.

https://www.tutorialspoint.com/genetic_algorithms/index.htm

