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Abstract—The two known fuzzy partition clustering algorithms, FCM and FPCM are based on Euclidean distance function, which can only be 

used to detect spherical structural clusters. GK clustering algorithm and GG clustering algorithm, were developed to detect non-spherical 

structural clusters, but both of them need additional prior information. In our previous studies, we developed four improved algorithms, FCM-

M, FPCM-M, FCM-CM and FPCM-CM based on unsupervised Mahalanobis distance without any additional prior information. In first two 

algorithms, only the local covariance matrix of each cluster was considered, In last two algorithms, not only the local covariance matrix of each 

cluster but also the overall covariance matrix was considered, and FPCM-CM is the better one. In this paper, a more information about 

“separable criterion” is considered, and the further improved new algorithm, “fuzzy possibility c-mean based on complete Mahalanobis 

distance and separable criterion, (FPCM-CMS)” is proposed. It can get more information and higher accuracy by considering the additional 

separable criterion than FPCM-CM. A real data set was applied to prove that the performance of the FPCM-CMS algorithm is better than 

those of above six algorithms. 
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I. INTRODUCTION  

The clustering analysis plays an important role in data analysis 

and interpretation. It groups the data into classes or clusters so 

that the data objects within a cluster have high similarity in 

comparison to one another, but are very dissimilar to those 

data objects in other clusters. 

Fuzzy partition clustering is a branch in cluster analysis, it 

is widely used in pattern recognition field. The well known 

fuzzy Possibility partition clustering algorithms, PCM [3], and 

FPCM [4] are proposed to improve the problems of outlier and 

noise in FCM [1], [2], but the above three algorithms were 

based on Euclidean distance function, which can only be used 

to detect spherical structural clusters. 

Extending Euclidean distance to Mahalanobis distance, 

Gustafson-Kessel (GK) clustering algorithm [5] and Gath-

Geva (GG) clustering algorithm [6], are developed to detect 

non-spherical structural clusters, but both of them needed 

additional prior information. In our previous studies, we 

developed four improved algorithms, FCM-M [7], [8], FPCM-

M [9],  FCM-CM [10] and FPCM-CM [11], [12] based on 

unsupervised Mahalanobis distance without any additional 

prior information. In first two algorithms, only the local 

covariance matrix of each cluster was considered, In last two 

algorithms, not only the local covariance matrix of each 

cluster but also the overall covariance matrix was considered, 

and FPCM-CMS is the better one. 

In this paper, a more information about “separable 

criterion” is considered [13], and the further improved new 

algorithm, “fuzzy possibility c-mean based on complete 

Mahalanobis distance and separable criterion, (FPCM-CMS)” 

is proposed [14]. It can get more information and higher 

accuracy by considering the additional separable criterion than 

FPCM-CM. A real data set was applied to prove that the 

performance of the FPCM-CMS algorithm is better than those 

of above six algorithms. 

A real data set was applied to prove that the performance 

of the FPCM-CMS algorithm is better than those of the 

previous six algorithms. 

This paper is organized as followings: Fuzzy c-mean 

algorithm is introduced in section II(A), Fuzzy possibility c-

mean algorithm is introduced in section II(B), FPCM-M 

algorithm is introduced in section II(C). FCM-CMS algorithm 

is described in section II(D). FPCM-CMS algorithm is 

described in section II(E), Experiment and result are described 

in section III and final section is for conclusions and future 

works [15]. 

II. LITERATURE REVIEW  

Extending Euclidean distance to Mahalanobis distance, the 

well known fuzzy partition clustering algorithms, Gustafson-

Kessel (GK) clustering algorithm and Gath-Geva (GG) 

clustering algorithm were developed to detect non- spherical 

structural clusters, but these two algorithms fail to consider the 

relationships between cluster centers in the objective function, 

GK algorithm must have prior information of shape volume in 

each data class, otherwise, it can only be considered to detect 

the data classes with same volume. GG algorithm must have 

prior probabilities of the clusters. 

A. Fuzzy c-Mean Algorithm 

The objective function used in FCM is given by the 

following Equation. 

 
2

2

1 1 1 1

, ,
c n c n

m m m

FCM ij ij ij j i

i j i j

J U A X d x a 
   

     (1) 

 0,1ij   is the membership degree of data object 
jx in 

cluster 
iC , and it satisfies the following constraint given by 

Equation (2)  

1
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i
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C is the number of clusters, m is the fuzzifier, m>1,which 

controls the fuzziness of the method. They are both parameters 

and need to be specified before running the algorithm. 
22

ij j id x a  is the square Euclidean distance between data 

object 
jx to center

ia . 

Minimizing objective function (1) with constraint (2), the 

updating function for 
ia  and 

ij  is obtained as (3) and (4), 
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B. Fuzzy Possibility C-Mean Algorithm 

The improved fuzzy partition clustering algorithms “Fuzzy 

Possibility C-Mean (FPCM)” is given by Equation (5) 
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constraints：membership  
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typicality 
1
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Minimizing objective function (5) with constraint (6) and 

(7), the updating function for 
ia ,

ij  and
ijt  is obtained as (8), (9) 

and (10) 
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1,2,..., . 1,2,...,i c j n   

C. FPCM-M Algorithm 

The improved fuzzy partition clustering algorithms “Fuzzy 

Possibility C-Mean (FPCM)” is given by Equation (5) 

For improving the FPCM algorithm, we added the class 

covariance matrix and a regulating factor of covariance 

matrix, 1ln i
  , to each class in objective function (5). The 

improved new algorithm, “Fuzzy Possibility C-Mean based on 

Mahalanobis distance (FPCM-M)”, is obtained, and the 

objective function of FPCM-M is given as (11) and constraints 

(12); 
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Minimizing objective function (11) with constraint (12), 

(13) the updating function for 
ia , 

ij , 
ijt and 

i  is obtained as 

(14), (15), (16)  and (17) 
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D. FCM-CMS Algorithm 

Now, for improving the above two problems, we added a 

regulating factor of covariance matrix,  
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, 

to each class in objective function, and deleted the constraint 
of the determinant of covariance matrices, i iM  ,in GK 

Algorithm as the objective function (18). The improved new 
algorithm, “Fuzzy C-Mean based on Mahalanobis Complete 
distance (FCM-CMS)”, is obtained as following. 
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Using the Lagrange multiplier method, to minimize the 

objective function (22) with constraint (23) respect to 

parameters 
ia  ,

ij , 
i , we can obtain the solutions as (25). To 

avoid the singular problem and to select the better initial 

membership matrix , the updating functions for 
ia , 

ij , and 
i  

are obtained as (24) ~ (25).  
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The new fuzzy clustering algorithm (FCM-CMS) can be 

summarized in the following steps: 

Step 1: Determining the number of cluster; c and m-value 

(let m=2), given converging error, 0  (such as 0.001  ).  

Method 1: choose the result membership matrix of FCM 

algorithm as the initial one. 

Method 2: let  0
, 1,2,...,ia i c  be the result centers of k-mean 

algorithm, and  0

ij j id x a   be distances between data 

object 
jx to center  0

ia . 
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E. New Algorithm - FPCM-CMS 

The clustering optimization was based on objective 

functions. The choice of an appropriate objective function is 

the point to the success of the cluster analysis. In FCM-M 

algorithm, it didn’t consider the relationships between cluster 

centers in the objective function, now, we proposed an 

improved Fuzzy C-Mean algorithm, FPCM-CMS, which is not 

only based on unsupervised Mahalanobis distance, but also 

considering the relationships between cluster centers, and the 

relationships between the center of all points and the cluster 

centers in the objective function, the singular and the initial 
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vectors 
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Complete Mahalanobis distance and separable criterion 
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The new fuzzy clustering algorithm (FPCM-CMS) can be 

summarized in the following steps: 

Step 1: Determining the number of cluster; c, let 

m=2, 3  , Given converging error 0  (such 

as 0.001  ) choose the result membership matrix of 
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FPCM-CM algorithm as the initial one and the normalized 

result typicality matrix of FPCM-CM algorithm as the initial 

one respectively; 
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and 
 0

ij j id x a   be distances between data object 
jx to 

center  0

ia . 

   

 

0

1

,

1, 2,..., , 1, 2,...,

M ij

ij c

M sj

s

d d

d d

i c j n










 

  (37) 

   

 

0

1

,

1, 2,..., , 1, 2,...,

M ij

ij n

M is

s

d d
t

d d

i c j n








 

   (38) 

 

 (39) 

 

         

0

0 0 0 0 1

1 1

( )( )

i

n nm m

ij j i j i ij

j j

x a x a  

 

 

    
      (40) 

 

         

   

0 0 0 0

0 1

0 0

1

n m

ij ij j i j i

j

i n m

ij ij

j

t x a x a

t













      
     

 
    
     




 (41) 

 

     

     

     

0 0 0

11 12 1

0 0 0
0 21 22 2

0 0 0

1 2

...

...

... ... ...

...

n

n

c c cn

U

  

  

  

 
 
 

  
 
 
 

 (42) 

 

     

     

     

0 0 0

11 12 1

0 0 0
0 21 22 2

0 0 0

1 2

...

...

... ... ...

...

n

n

c c cn

t t t

t t t
T

t t t

 
 
 

  
 
 
 

 (43) 

       0 0 0 0

1 2 ... cA a a a 
   (44) 

       0 0 0 0

1 2, ,..., c
     
   (45) 

Step 2: Find  
 

           
 

    
11

1 1 1 1 1 11

1 1

1

1

k

i

n cm m
k k k k k k

ij ij i j t t il l

j l

a

F t x a v a
c c






     

 



               
 

 

              
 

  
1 1

1 1 1 1 1 1

1 1

1

1

n cm m
k k k k k k

ij ij i t il

j l

F t v I
c c




 

     

 

             
   (46) 

 

      
    

  
    

1 1

1

1 1

1

n m k kk k

ij ij j i j i

jk

i n m
k k

ij ij

j

t x a x a

t









 



 



     
   

 

   
   




 (47) 

 

 
      

      
    

  

 
      

      
    

  

1
1

11 1
1

1 11 1

ln

ln

k

ij

m
k k k kk k

c j i i j i i i t t i t

k k k ks k k

j s s j s s s t t s t

x a x a a a a a

x a x a a a a a





 


  



 
                   
  
                    

  

  (48) 

 

                   

                   

1

1
1 1

1

1 1
1

1

ln

ln1

k k k kk k
j i j i i t t i ti i

k k k kk k
s i s i i t t i ti i

k

ij

n x a x a a a a a

x a x a a a a as

t

 
 


 

 


 



           
      

                  



 
  
  
  

  
 



 

(49)

 
where 

        

 
   

 

1

1

1

,

0

0 0

p
k k k k

i si si si

s

k k
k si si

si
k

si

if

if



 










   

       
 



 (50) 

          

   

 

1
1

1

1 1

1 , 0
k

si

p k
k k k

i si si si

s

k k

i si

s p 










 

  

      
   

  
 




 (51) 
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III. EXPERIMENT 

A real data set of students with sample size 146 from 

elementary schools was selected. The main factors of the data 

were calculated by using factor analysis. According to the 

main factors, the samples were assigned to 4 clusters based on 

the clustering analysis. The results were shown in table I. 

 
TABLE I. The characteristics of 4 clusters. 

Cluster 
Sample 

size 

Mathematics 

Concepts 

Average Distance of 

the points from 

center of Cluster 

1 36 Partition -.14984 

2 89 Unit .21161 

3 16 Fraction -.30416 
4   5 Unknown unit -.74490 

 

Each 15 sample points were randomly drawn from Cluster 

1, cluster 2, and cluster 3, respectively, and 5 from cluster 4. 

The classification accuracies of testing samples were 

shown in table II. 

 
TABLE II. Classification accuracies of testing samples. 

Algorithm Classification Accuracies (%) 

FCM 56 
FPCM 68 

FPCM-M 70 

FCM-CMS 79 
FPCM-CMS 86 

Accuracies (%) of Using different Fuzzy Clustering Algorithm 

 

From the data of table II, we found that the FPCM-CMS 

algorithms could obtain the best results, up to 86%. Next, the 

FCM-CMS algorithms could obtain the second better results, 

up to 79%. 
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IV. CONCLUSION  

An improved new fuzzy clustering algorithm, FPCM-

CMS, is developed to obtain better quality of fuzzy clustering 

results. The objective function includes a fuzzy within-cluster 

scatter matrix, a new between-prototypes scatter matrix, the 

regulating terms about the covariance matrices, and the 

regulating terms about the relationships between cluster 

centers, the relationships between the center of all points and 

the cluster centers. The update equations for the memberships 

and the cluster centers and the covariance matrices are directly 

derived from the Lagrange’s method. Finally, a numerical 

example shows that FPCM-CMS gives more accurate 

clustering results than others. 
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