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Abstract—The two known fuzzy partition clustering algorithms, FCM and FPCM are based on Euclidean distance function, which can only be
used to detect spherical structural clusters. GK clustering algorithm and GG clustering algorithm, were developed to detect non-spherical
structural clusters, but both of them need additional prior information. In our previous studies, we developed four improved algorithms, FCM-
M, FPCM-M, FCM-CM and FPCM-CM based on unsupervised Mahalanobis distance without any additional prior information. In first two
algorithms, only the local covariance matrix of each cluster was considered, In last two algorithms, not only the local covariance matrix of each
cluster but also the overall covariance matrix was considered, and FPCM-CM is the better one. In this paper, a more information about
“separable criterion” is considered, and the further improved new algorithm, “fuzzy possibility c-mean based on complete Mahalanobis
distance and separable criterion, (FPCM-CMS) " is proposed. It can get more information and higher accuracy by considering the additional
separable criterion than FPCM-CM. A real data set was applied to prove that the performance of the FPCM-CMS algorithm is better than

those of above six algorithms.
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. INTRODUCTION

The clustering analysis plays an important role in data analysis
and interpretation. It groups the data into classes or clusters so
that the data objects within a cluster have high similarity in
comparison to one another, but are very dissimilar to those
data objects in other clusters.

Fuzzy partition clustering is a branch in cluster analysis, it
is widely used in pattern recognition field. The well known
fuzzy Possibility partition clustering algorithms, PCM [3], and
FPCM [4] are proposed to improve the problems of outlier and
noise in FCM [1], [2], but the above three algorithms were
based on Euclidean distance function, which can only be used
to detect spherical structural clusters.

Extending Euclidean distance to Mahalanobis distance,
Gustafson-Kessel (GK) clustering algorithm [5] and Gath-
Geva (GG) clustering algorithm [6], are developed to detect
non-spherical structural clusters, but both of them needed
additional prior information. In our previous studies, we
developed four improved algorithms, FCM-M [7], [8], FPCM-
M [9], FCM-CM [10] and FPCM-CM [11], [12] based on
unsupervised Mahalanobis distance without any additional
prior information. In first two algorithms, only the local
covariance matrix of each cluster was considered, In last two
algorithms, not only the local covariance matrix of each
cluster but also the overall covariance matrix was considered,
and FPCM-CMS is the better one.

In this paper, a more information about ‘“separable
criterion” is considered [13], and the further improved new
algorithm, “fuzzy possibility c-mean based on complete
Mahalanobis distance and separable criterion, (FPCM-CMS)”
is proposed [14]. It can get more information and higher
accuracy by considering the additional separable criterion than
FPCM-CM. A real data set was applied to prove that the
performance of the FPCM-CMS algorithm is better than those
of above six algorithms.
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A real data set was applied to prove that the performance
of the FPCM-CMS algorithm is better than those of the
previous six algorithms.

This paper is organized as followings: Fuzzy c-mean
algorithm is introduced in section 11(A), Fuzzy possibility c-
mean algorithm is introduced in section 11(B), FPCM-M
algorithm is introduced in section 11(C). FCM-CMS algorithm
is described in section 1I(D). FPCM-CMS algorithm is
described in section I1(E), Experiment and result are described
in section 11l and final section is for conclusions and future
works [15].

Il.  LITERATURE REVIEW

Extending Euclidean distance to Mahalanobis distance, the
well known fuzzy partition clustering algorithms, Gustafson-
Kessel (GK) clustering algorithm and Gath-Geva (GG)
clustering algorithm were developed to detect non- spherical
structural clusters, but these two algorithms fail to consider the
relationships between cluster centers in the objective function,
GK algorithm must have prior information of shape volume in
each data class, otherwise, it can only be considered to detect
the data classes with same volume. GG algorithm must have
prior probabilities of the clusters.

A. Fuzzy c-Mean Algorithm

The objective function used in FCM is given by the
following Equation.

‘]ancrvl (U A X ) = chznlllui}ndijz = chznl:'u';n "51 _giuz (1)

i=1 j= i=1 j=

H €[0,1] is the membership degree of data object x in
cluster c,, and it satisfies the following constraint given by
Equation (2)

Do =1,Vj=12,...n )
i=1
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C is the number of clusters, m is the fuzzifier, m>1,which
controls the fuzziness of the method. They are both parameters
and need to be specified before running the algorithm.

dy =|x; —EHZ is the square Euclidean distance between data
object x; to centera, .

Minimizing objective function (1) with constraint (2), the
updating function for a and 4, is obtained as (3) and (4),

Z /Uijmlj (3)

a = ':i i=12,..c

Zﬂijm
j=1

(XJ' _Q’i) " ()

B. Fuzzy Possibility C-Mean Algorithm

The improved fuzzy partition clustering algorithms “Fuzzy
Possibility C-Mean (FPCM)” is given by Equation (5)

e (U.T,AX) ZZ(/‘U +t )Hx a1H (5)

constraints : membershlp

Z'Llij :l,ijl,Z,...,n’ (6)

i=1

typicality ztij =1,%i=12,..,c @)
j=1

Minimizing objective function (5) with constraint (6) and
(7), the updating function for a, ;;, andt, is obtained as (8), (9)

and (10)
i(/‘li;n + ti}; )lj (8)
== i=12..c
Z(,ui:" +tJ)
4y = Z&[(Xj—ﬁ.‘),(xj—é)} ’ )
= (ll_é)(xl_é)
i=12,..,c,j=12,..,n _
Gt
[ (sy-a)(a) |
t _
! ,Z‘{(ﬁ—@)’(&—é.)} (10)
i=12,..,c.j=12,...n

C. FPCM-M Algorithm

The improved fuzzy partition clustering algorithms “Fuzzy
Possibility C-Mean (FPCM)” is given by Equation (5)

For improving the FPCM algorithm, we added the class
covariance matrix and a regulating factor of covariance

matrix, —In \+2f1 , to each class in objective function (5). The

improved new algorithm, “Fuzzy Possibility C-Mean based on
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Mahalanobis distance (FPCM-M)”, is obtained, and the
objective function of FFCM-M is given as (11) and constraints
(12);

Jtreww (U T,AZX)

c n (11)
533 +4) (-8 55 -a) -l
constraints Z”” =1,"j=12,..,n (12)
St =1, "i=12,..,c (13)

j=1
Minimizing objective function (11) with constraint (12),
(13) the updating function for a, 4, t,and 5, is obtained as

(14), (15), (16) and (17)

g :_jz_;/uij } Zluumz X; (14)
i=12,..,c
I L
e (x-a) T (x —a)-m= "
,uij: Z (x Q-,) (xl g‘) n‘ ! ‘ (15)
A (x-a) 5 (x-a)-in[z]
L o
n )_ " 6-1
SZ & 3 ) In‘z ‘ (16)
jnhﬁ+@X&—%X&—%Y
3, == -
;(Mrjn + tif) a4

D. FCM-CMS Algorithm

Now, for improving the above two problems, we added a
regulating factor of covariance matrix,

_|n\+z-‘1\—(6y -a)zZ'(a-a)
C(C 1)22 il (g‘l g!) (@ §|)

i=1 1=1

to each class in objective function, and deleted the constraint
of the determinant of covariance matrices, |M,|= p, ,in GK
Algorithm as the objective function (18). The improved new
algorithm, “Fuzzy C-Mean based on Mahalanobis Complete
distance (FCM-CMS)”, is obtained as following.
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Constraints: membership,

S =1,% j=12,..n,

i=1

-af(a-a)

(19)

where
Wik|_1— min wis?
V(k)_ 1<r,s<c
il = R 1
max W|r<s 1 min W'r<s 1
1<r,s<c 1<r,s<c

2 2

a a(k_l)

a-ar a*agk_l)

-1
Wrs = = -

Using the Lagrange multiplier method, to minimize the
objective function (22) with constraint (23) respect to

parameters a , 4, , X;, We can obtain the solutions as (25). To
avoid the singular problem and to select the better initial
membership matrix , the updating functions for a, 4 , and X,
are obtained as (24) ~ (25).

1 o

_1) = ilgl:|

Y L Cv1a )
=F |:jzl:ﬂij (Zi X; Etgt) C(C

(20)

where F = {Zl i (Zfl - Zfl) -
=

i=12,...,C

=3 (ah) Tary

(/171)+ . ﬂ;l ifA, >0
*J o ifa, <o

I A
1<s<p,A; >0

The new fuzzy clustering algorithm (FCM-CMS) can be
summarized in the following steps:

Z—ZAFF

s=1

1
== +2i

z_—l| -

| -+ 1
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Step 1: Determining the number of cluster; ¢ and m-value
(let m=2), given converging error, & > 0 (such as &£ =0.001).

Method 1: choose the result membership matrix of FCM
algorithm as the initial one.

Method 2: let a® i=12,..c be the result centers of k-mean

algorithm, and d, =”51—§f°>” be distances between data

object x; to center a®.

d,, :Klrjg?()(](nd] (22)
) = c(d“” %) 12 i=12, (23)
;(dm -dy)
a® = (ZI:'LI'(JO)]—J)(ZI:'” D i=12.c
Z(ﬂ.ﬁ V(% —a)(x-a”)
o &
=z == (24)
> ()"
j=1
0
0O _ | A 4ty
) ) |
[ (0 0 (0 ]
My )(51) :Ul( )(52)"':“1 )(Xn) (25)
| (%) 1 (%) (%)
" (%) 18 (%)t (%)
(0t
o[
9. 40
67 (%) 67 (%) (%)
[0 00) 8 (36).10 (x,)
t” (%) 17 (%) (%,)
A =[a”al..a | (26)
2(0) [2(0) 2(0) "z(co)] @7)
2= -0
Step 2: Find
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Wik|_l— min Wlfs_1
(k) 1<r,s<c
il _ . _
max W|i'<s 1o min W|i'<3 !
1<r,s<c

where

1<r,s<c

" z[( )H()()()] |
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i=12,..,C
o0 [t T gt 19 m
T e o
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where
=0 = > AT (re)
[ane = {[a0] i a0 =0
N o if 2§90 =0 (31)

Z[ﬂ( H Mo (r(k)

[0

1=s=p, /’Ls(k)>0

(=]

= -

Step 3: Increment k until r]nSg(Hgfk) -V <z,

E. New Algorithm - FPCM-CMS

The clustering optimization was based on objective
functions. The choice of an appropriate objective function is
the point to the success of the cluster analysis. In FCM-M
algorithm, it didn’t consider the relationships between cluster
centers in the objective function, now, we proposed an
improved Fuzzy C-Mean algorithm, FPCM-CMS, which is not
only based on unsupervised Mahalanobis distance, but also
considering the relationships between cluster centers, and the
relationships between the center of all points and the cluster
centers in the objective function, the singular and the initial
values problems were also solved. Let {X3, X5, X3, ..., X} be a
set of n data points represented by p-dimensional feature

VECtors X;=(Xyj, Xpjs -+ Xpj) € RP. The pxn data matrix Z has
the cluster center matrix A=[a;, ..., ag], l<c<n and the
membership matrix U = [z ]x, , Where z; is the membership
value of x; belonging to a;. V =[v; ], express the weighting
matrix, and v;, is the weighting value between v; and vy. The

fuzzy exponent m is greater than 1. Thus, we can obtained the
objective function of Fuzzy Possibility c-Mean based on
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Complete Mahalanobis distance and separable criterion
(FPCM-CMS) as following.

‘]I':"PCM CMS(U T.AZL X)7

53 ) (-8 2

-a)-hz’|-(a-a) I (a -é[)}

=l j=1 (32)
- 121; i(a-a)(a-a)
Constraints: membership
>ouy=1,7j=12..n
i=1
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Dt =1,7i=12,...c
j=1
where
1 n
glzﬁéljv
19 )
Z=n 2 (x-a)(x -a)
Wt~ min Wrs
(%) il 1<r,s<c (33)
A = ,
il max W||55_ - min W'r<s_1
1<r,s<c 1<r,s<c
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| (5 -a) 5 (y -a) s -(a-a) 5P (@ -a) [
SR e e (34)
T (x-a) T (x-a)-nfE-(a-a) 5t (a -a)
(D)= 0)=4
!
o (-a) st (x-a )= -(a-a) 5 (a-a) 7
=] 2 (-a) % (- -z ~(a-a) &' (8 -a,)
s=1 i i t (35)
(45 +5) (x5 -a ) (x ~a)
%=+ n 36
2 (4 +t) (30)
=, =Zp“zsirsir;i i=12,...,c
1 —1\* —1\* /’LQil if ;l’si 0
= =) T () ={o .
.= = TI At
1<s=p, A, >0

The new fuzzy clustering algorithm (FPCM-CMS) can be
summarized in the following steps:

Step 1. Determining the number of cluster; c, let
m=2, 6=3 , Given converging error & >0 (such
as € =0.001) choose the result membership matrix of
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FPCM-CM algorithm as the initial one and the normalized
result typicality matrix of FPCM-CM algorithm as the initial
one respectively;

let a® i=12,...,c be the result centers of k-mean algorithm,
and d; :ng —g,.(o)” be distances between data object x; to
center a®.
T =7C(dM %) ,
> (dy ) @37
i=12,..,,j=12,..,n
tI(O) — (dM d']) ,
> (dh ) (38)
i=12,_...,c,j=1,2,...,n
a® =3[ ]x )(Z[u P i=12. (39)
AL "
QL ] (% -a”)(x -a" N[ [ o)
=t =
ST T 0o )2
AR : S ; (41)
ST 7]

7 gt

DO | A8 Hsg ety

(42)
w13y
11
I o
T _ |ttt
...... (43)
t(o) t(o).. t(o)
AO _[50 50 40
[a”al”..a | )
50 _ 2(0) , 2(0) . 2(0)
I: 1 c :I (45)
Step 2: Find
al =
[F(kﬂl[i((#u ) )[(ZEk’l’)ﬂzjfz;lg}c(cl_l)g(v‘k S ‘}

g R (R RN = U ] B
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ty =
i(x fal' )W:(X [a] )m[z‘“}i(m ~ax(al’-a) | )
LTl (s {3 T (o] -8 2 ()-8
i =
o7t
i L[5 ] (L [ ] e -a ) 5[l -a)
S| (eal [T (e faln[ ] 2l 5 (al-a) (49)
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= = 3T (re)
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® I:/’L(k):l if A0 >o0
B { (o) if 20 =o0
st [ AL e (reo
(=07 =30 K o

=) [A%

1=s=p,24=0

Step 3: Increment k; until max

I<i<c

At -a* V)<

Ill.  EXPERIMENT

A real data set of students with sample size 146 from
elementary schools was selected. The main factors of the data
were calculated by using factor analysis. According to the
main factors, the samples were assigned to 4 clusters based on
the clustering analysis. The results were shown in table I.

TABLE I. The characteristics of 4 clusters.

Average Distance of

Cluster Sample Méthemailcs the points from
Size oncepts center of Cluster

1 36 Partition -.14984

2 89 Unit 21161

3 16 Fraction -.30416

4 5 Unknown unit -.74490

Each 15 sample points were randomly drawn from Cluster
1, cluster 2, and cluster 3, respectively, and 5 from cluster 4.

The classification accuracies of testing samples were
shown in table I1.

TABLE II. Classification accuracies of testing samples.

Algorithm Classification Accuracies (%)
FCM 56
FPCM 68
FPCM-M 70
FCM-CMS 79
FPCM-CMS 86

Accuracies (%) of Using different Fuzzy Clustering Algorithm

From the data of table Il, we found that the FPCM-CMS
algorithms could obtain the best results, up to 86%. Next, the
FCM-CMS algorithms could obtain the second better results,
up to 79%.
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IV. CONCLUSION

An improved new fuzzy clustering algorithm, FPCM-
CMS, is developed to obtain better quality of fuzzy clustering
results. The objective function includes a fuzzy within-cluster
scatter matrix, a new between-prototypes scatter matrix, the
regulating terms about the covariance matrices, and the
regulating terms about the relationships between cluster
centers, the relationships between the center of all points and
the cluster centers. The update equations for the memberships
and the cluster centers and the covariance matrices are directly
derived from the Lagrange’s method. Finally, a numerical
example shows that FPCM-CMS gives more accurate
clustering results than others.
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